8393d4833f
The only case that doesn't work is decoding a wrapper type from JSON at the top level. This doesn't make sense and probably no users do it I changed it to throw.
1150 lines
39 KiB
C
1150 lines
39 KiB
C
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2014 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "protobuf.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <ruby/encoding.h>
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Ruby <-> native slot management.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
|
|
#define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
|
|
#define DEREF(memory, type) *(type*)(memory)
|
|
|
|
size_t native_slot_size(upb_fieldtype_t type) {
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT: return 4;
|
|
case UPB_TYPE_DOUBLE: return 8;
|
|
case UPB_TYPE_BOOL: return 1;
|
|
case UPB_TYPE_STRING: return sizeof(VALUE);
|
|
case UPB_TYPE_BYTES: return sizeof(VALUE);
|
|
case UPB_TYPE_MESSAGE: return sizeof(VALUE);
|
|
case UPB_TYPE_ENUM: return 4;
|
|
case UPB_TYPE_INT32: return 4;
|
|
case UPB_TYPE_INT64: return 8;
|
|
case UPB_TYPE_UINT32: return 4;
|
|
case UPB_TYPE_UINT64: return 8;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
static bool is_ruby_num(VALUE value) {
|
|
return (TYPE(value) == T_FLOAT ||
|
|
TYPE(value) == T_FIXNUM ||
|
|
TYPE(value) == T_BIGNUM);
|
|
}
|
|
|
|
void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) {
|
|
if (!is_ruby_num(val)) {
|
|
rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(val)));
|
|
}
|
|
|
|
// NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
|
|
// bound; we just need to do precision checks (i.e., disallow rounding) and
|
|
// check for < 0 on unsigned types.
|
|
if (TYPE(val) == T_FLOAT) {
|
|
double dbl_val = NUM2DBL(val);
|
|
if (floor(dbl_val) != dbl_val) {
|
|
rb_raise(rb_eRangeError,
|
|
"Non-integral floating point value assigned to integer field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(val)));
|
|
}
|
|
}
|
|
if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
|
|
if (NUM2DBL(val) < 0) {
|
|
rb_raise(rb_eRangeError,
|
|
"Assigning negative value to unsigned integer field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(val)));
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
|
|
rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
|
|
kRubyStringUtf8Encoding : kRubyString8bitEncoding;
|
|
VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
|
|
|
|
if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) {
|
|
// Note: this will not duplicate underlying string data unless necessary.
|
|
value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
|
|
|
|
if (type == UPB_TYPE_STRING &&
|
|
rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
|
|
rb_raise(rb_eEncodingError, "String is invalid UTF-8");
|
|
}
|
|
|
|
// Ensure the data remains valid. Since we called #encode a moment ago,
|
|
// this does not freeze the string the user assigned.
|
|
rb_obj_freeze(value);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
void native_slot_set(const char* name,
|
|
upb_fieldtype_t type, VALUE type_class,
|
|
void* memory, VALUE value) {
|
|
native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0);
|
|
}
|
|
|
|
void native_slot_set_value_and_case(const char* name,
|
|
upb_fieldtype_t type, VALUE type_class,
|
|
void* memory, VALUE value,
|
|
uint32_t* case_memory,
|
|
uint32_t case_number) {
|
|
// Note that in order to atomically change the value in memory and the case
|
|
// value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
|
|
// all Ruby VM calls are complete. The case is then set at the bottom of this
|
|
// function.
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT:
|
|
if (!is_ruby_num(value)) {
|
|
rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(value)));
|
|
}
|
|
DEREF(memory, float) = NUM2DBL(value);
|
|
break;
|
|
case UPB_TYPE_DOUBLE:
|
|
if (!is_ruby_num(value)) {
|
|
rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(value)));
|
|
}
|
|
DEREF(memory, double) = NUM2DBL(value);
|
|
break;
|
|
case UPB_TYPE_BOOL: {
|
|
int8_t val = -1;
|
|
if (value == Qtrue) {
|
|
val = 1;
|
|
} else if (value == Qfalse) {
|
|
val = 0;
|
|
} else {
|
|
rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(value)));
|
|
}
|
|
DEREF(memory, int8_t) = val;
|
|
break;
|
|
}
|
|
case UPB_TYPE_STRING:
|
|
if (CLASS_OF(value) == rb_cSymbol) {
|
|
value = rb_funcall(value, rb_intern("to_s"), 0);
|
|
} else if (CLASS_OF(value) != rb_cString) {
|
|
rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(value)));
|
|
}
|
|
|
|
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
|
|
break;
|
|
|
|
case UPB_TYPE_BYTES: {
|
|
if (CLASS_OF(value) != rb_cString) {
|
|
rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).",
|
|
name, rb_class2name(CLASS_OF(value)));
|
|
}
|
|
|
|
DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
|
|
break;
|
|
}
|
|
case UPB_TYPE_MESSAGE: {
|
|
if (CLASS_OF(value) == CLASS_OF(Qnil)) {
|
|
value = Qnil;
|
|
} else if (CLASS_OF(value) != type_class) {
|
|
// check for possible implicit conversions
|
|
VALUE converted_value = Qnil;
|
|
const char* field_type_name = rb_class2name(type_class);
|
|
|
|
if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 &&
|
|
rb_obj_is_kind_of(value, rb_cTime)) {
|
|
// Time -> Google::Protobuf::Timestamp
|
|
VALUE hash = rb_hash_new();
|
|
rb_hash_aset(hash, rb_str_new2("seconds"),
|
|
rb_funcall(value, rb_intern("to_i"), 0));
|
|
rb_hash_aset(hash, rb_str_new2("nanos"),
|
|
rb_funcall(value, rb_intern("nsec"), 0));
|
|
{
|
|
VALUE args[1] = {hash};
|
|
converted_value = rb_class_new_instance(1, args, type_class);
|
|
}
|
|
} else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 &&
|
|
rb_obj_is_kind_of(value, rb_cNumeric)) {
|
|
// Numeric -> Google::Protobuf::Duration
|
|
VALUE hash = rb_hash_new();
|
|
rb_hash_aset(hash, rb_str_new2("seconds"),
|
|
rb_funcall(value, rb_intern("to_i"), 0));
|
|
{
|
|
VALUE n_value =
|
|
rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1));
|
|
n_value =
|
|
rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000));
|
|
n_value = rb_funcall(n_value, rb_intern("round"), 0);
|
|
rb_hash_aset(hash, rb_str_new2("nanos"), n_value);
|
|
}
|
|
{
|
|
VALUE args[1] = { hash };
|
|
converted_value = rb_class_new_instance(1, args, type_class);
|
|
}
|
|
}
|
|
|
|
// raise if no suitable conversaion could be found
|
|
if (converted_value == Qnil) {
|
|
rb_raise(cTypeError,
|
|
"Invalid type %s to assign to submessage field '%s'.",
|
|
rb_class2name(CLASS_OF(value)), name);
|
|
} else {
|
|
value = converted_value;
|
|
}
|
|
}
|
|
DEREF(memory, VALUE) = value;
|
|
break;
|
|
}
|
|
case UPB_TYPE_ENUM: {
|
|
int32_t int_val = 0;
|
|
if (TYPE(value) == T_STRING) {
|
|
value = rb_funcall(value, rb_intern("to_sym"), 0);
|
|
} else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
|
|
rb_raise(cTypeError,
|
|
"Expected number or symbol type for enum field '%s'.", name);
|
|
}
|
|
if (TYPE(value) == T_SYMBOL) {
|
|
// Ensure that the given symbol exists in the enum module.
|
|
VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
|
|
if (lookup == Qnil) {
|
|
rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name);
|
|
} else {
|
|
int_val = NUM2INT(lookup);
|
|
}
|
|
} else {
|
|
native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value);
|
|
int_val = NUM2INT(value);
|
|
}
|
|
DEREF(memory, int32_t) = int_val;
|
|
break;
|
|
}
|
|
case UPB_TYPE_INT32:
|
|
case UPB_TYPE_INT64:
|
|
case UPB_TYPE_UINT32:
|
|
case UPB_TYPE_UINT64:
|
|
native_slot_check_int_range_precision(name, type, value);
|
|
switch (type) {
|
|
case UPB_TYPE_INT32:
|
|
DEREF(memory, int32_t) = NUM2INT(value);
|
|
break;
|
|
case UPB_TYPE_INT64:
|
|
DEREF(memory, int64_t) = NUM2LL(value);
|
|
break;
|
|
case UPB_TYPE_UINT32:
|
|
DEREF(memory, uint32_t) = NUM2UINT(value);
|
|
break;
|
|
case UPB_TYPE_UINT64:
|
|
DEREF(memory, uint64_t) = NUM2ULL(value);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (case_memory != NULL) {
|
|
*case_memory = case_number;
|
|
}
|
|
}
|
|
|
|
VALUE native_slot_get(upb_fieldtype_t type,
|
|
VALUE type_class,
|
|
const void* memory) {
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT:
|
|
return DBL2NUM(DEREF(memory, float));
|
|
case UPB_TYPE_DOUBLE:
|
|
return DBL2NUM(DEREF(memory, double));
|
|
case UPB_TYPE_BOOL:
|
|
return DEREF(memory, int8_t) ? Qtrue : Qfalse;
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
return DEREF(memory, VALUE);
|
|
case UPB_TYPE_MESSAGE: {
|
|
VALUE val = DEREF(memory, VALUE);
|
|
|
|
// Lazily expand wrapper type if necessary.
|
|
int type = TYPE(val);
|
|
if (type != T_DATA && type != T_NIL) {
|
|
// This must be a wrapper type.
|
|
val = ruby_wrapper_type(type_class, val);
|
|
DEREF(memory, VALUE) = val;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
case UPB_TYPE_ENUM: {
|
|
int32_t val = DEREF(memory, int32_t);
|
|
VALUE symbol = enum_lookup(type_class, INT2NUM(val));
|
|
if (symbol == Qnil) {
|
|
return INT2NUM(val);
|
|
} else {
|
|
return symbol;
|
|
}
|
|
}
|
|
case UPB_TYPE_INT32:
|
|
return INT2NUM(DEREF(memory, int32_t));
|
|
case UPB_TYPE_INT64:
|
|
return LL2NUM(DEREF(memory, int64_t));
|
|
case UPB_TYPE_UINT32:
|
|
return UINT2NUM(DEREF(memory, uint32_t));
|
|
case UPB_TYPE_UINT64:
|
|
return ULL2NUM(DEREF(memory, uint64_t));
|
|
default:
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
void native_slot_init(upb_fieldtype_t type, void* memory) {
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT:
|
|
DEREF(memory, float) = 0.0;
|
|
break;
|
|
case UPB_TYPE_DOUBLE:
|
|
DEREF(memory, double) = 0.0;
|
|
break;
|
|
case UPB_TYPE_BOOL:
|
|
DEREF(memory, int8_t) = 0;
|
|
break;
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
DEREF(memory, VALUE) = rb_str_new2("");
|
|
rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
|
|
kRubyString8bitEncoding : kRubyStringUtf8Encoding);
|
|
break;
|
|
case UPB_TYPE_MESSAGE:
|
|
DEREF(memory, VALUE) = Qnil;
|
|
break;
|
|
case UPB_TYPE_ENUM:
|
|
case UPB_TYPE_INT32:
|
|
DEREF(memory, int32_t) = 0;
|
|
break;
|
|
case UPB_TYPE_INT64:
|
|
DEREF(memory, int64_t) = 0;
|
|
break;
|
|
case UPB_TYPE_UINT32:
|
|
DEREF(memory, uint32_t) = 0;
|
|
break;
|
|
case UPB_TYPE_UINT64:
|
|
DEREF(memory, uint64_t) = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void native_slot_mark(upb_fieldtype_t type, void* memory) {
|
|
switch (type) {
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
case UPB_TYPE_MESSAGE:
|
|
rb_gc_mark(DEREF(memory, VALUE));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
|
|
memcpy(to, from, native_slot_size(type));
|
|
}
|
|
|
|
void native_slot_deep_copy(upb_fieldtype_t type, VALUE type_class, void* to,
|
|
void* from) {
|
|
switch (type) {
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES: {
|
|
VALUE from_val = DEREF(from, VALUE);
|
|
DEREF(to, VALUE) = (from_val != Qnil) ?
|
|
rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
|
|
break;
|
|
}
|
|
case UPB_TYPE_MESSAGE: {
|
|
VALUE from_val = native_slot_get(type, type_class, from);
|
|
DEREF(to, VALUE) = (from_val != Qnil) ?
|
|
Message_deep_copy(from_val) : Qnil;
|
|
break;
|
|
}
|
|
default:
|
|
memcpy(to, from, native_slot_size(type));
|
|
}
|
|
}
|
|
|
|
bool native_slot_eq(upb_fieldtype_t type, VALUE type_class, void* mem1,
|
|
void* mem2) {
|
|
switch (type) {
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
case UPB_TYPE_MESSAGE: {
|
|
VALUE val1 = native_slot_get(type, type_class, mem1);
|
|
VALUE val2 = native_slot_get(type, type_class, mem2);
|
|
VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
|
|
return ret == Qtrue;
|
|
}
|
|
default:
|
|
return !memcmp(mem1, mem2, native_slot_size(type));
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Map field utilities.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef;
|
|
if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
|
|
upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
|
|
return NULL;
|
|
}
|
|
subdef = upb_fielddef_msgsubdef(field);
|
|
return upb_msgdef_mapentry(subdef) ? subdef : NULL;
|
|
}
|
|
|
|
const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
|
|
assert(subdef);
|
|
return subdef;
|
|
}
|
|
|
|
bool is_map_field(const upb_fielddef *field) {
|
|
const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
|
|
if (subdef == NULL) return false;
|
|
|
|
// Map fields are a proto3 feature.
|
|
// If we're using proto2 syntax we need to fallback to the repeated field.
|
|
return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
|
|
}
|
|
|
|
const upb_fielddef* map_field_key(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef = map_entry_msgdef(field);
|
|
return map_entry_key(subdef);
|
|
}
|
|
|
|
const upb_fielddef* map_field_value(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef = map_entry_msgdef(field);
|
|
return map_entry_value(subdef);
|
|
}
|
|
|
|
const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
|
|
const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
|
|
assert(key_field != NULL);
|
|
return key_field;
|
|
}
|
|
|
|
const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
|
|
const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
|
|
assert(value_field != NULL);
|
|
return value_field;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Memory layout management.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
bool field_contains_hasbit(MessageLayout* layout,
|
|
const upb_fielddef* field) {
|
|
return layout->fields[upb_fielddef_index(field)].hasbit !=
|
|
MESSAGE_FIELD_NO_HASBIT;
|
|
}
|
|
|
|
static size_t align_up_to(size_t offset, size_t granularity) {
|
|
// Granularity must be a power of two.
|
|
return (offset + granularity - 1) & ~(granularity - 1);
|
|
}
|
|
|
|
bool is_value_field(const upb_fielddef* f) {
|
|
return upb_fielddef_isseq(f) || upb_fielddef_issubmsg(f) ||
|
|
upb_fielddef_isstring(f);
|
|
}
|
|
|
|
void create_layout(Descriptor* desc) {
|
|
const upb_msgdef *msgdef = desc->msgdef;
|
|
MessageLayout* layout = ALLOC(MessageLayout);
|
|
int nfields = upb_msgdef_numfields(msgdef);
|
|
int noneofs = upb_msgdef_numoneofs(msgdef);
|
|
upb_msg_field_iter it;
|
|
upb_msg_oneof_iter oit;
|
|
size_t off = 0;
|
|
size_t hasbit = 0;
|
|
|
|
layout->empty_template = NULL;
|
|
layout->desc = desc;
|
|
desc->layout = layout;
|
|
|
|
layout->fields = ALLOC_N(MessageField, nfields);
|
|
layout->oneofs = NULL;
|
|
|
|
if (noneofs > 0) {
|
|
layout->oneofs = ALLOC_N(MessageOneof, noneofs);
|
|
}
|
|
|
|
for (upb_msg_field_begin(&it, msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
if (upb_fielddef_haspresence(field)) {
|
|
layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
|
|
} else {
|
|
layout->fields[upb_fielddef_index(field)].hasbit =
|
|
MESSAGE_FIELD_NO_HASBIT;
|
|
}
|
|
}
|
|
|
|
if (hasbit != 0) {
|
|
off += (hasbit + 8 - 1) / 8;
|
|
}
|
|
|
|
off = align_up_to(off, sizeof(VALUE));
|
|
layout->value_offset = off;
|
|
layout->repeated_count = 0;
|
|
layout->map_count = 0;
|
|
layout->value_count = 0;
|
|
|
|
// Place all VALUE fields for repeated fields.
|
|
for (upb_msg_field_begin(&it, msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
if (upb_fielddef_containingoneof(field) || !upb_fielddef_isseq(field) ||
|
|
upb_fielddef_ismap(field)) {
|
|
continue;
|
|
}
|
|
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
off += sizeof(VALUE);
|
|
layout->repeated_count++;
|
|
}
|
|
|
|
// Place all VALUE fields for map fields.
|
|
for (upb_msg_field_begin(&it, msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
if (upb_fielddef_containingoneof(field) || !upb_fielddef_isseq(field) ||
|
|
!upb_fielddef_ismap(field)) {
|
|
continue;
|
|
}
|
|
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
off += sizeof(VALUE);
|
|
layout->map_count++;
|
|
}
|
|
|
|
layout->value_count = layout->repeated_count + layout->map_count;
|
|
|
|
// Next place all other (non-oneof) VALUE fields.
|
|
for (upb_msg_field_begin(&it, msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
if (upb_fielddef_containingoneof(field) || !is_value_field(field) ||
|
|
upb_fielddef_isseq(field)) {
|
|
continue;
|
|
}
|
|
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
off += sizeof(VALUE);
|
|
layout->value_count++;
|
|
}
|
|
|
|
// Now place all other (non-oneof) fields.
|
|
for (upb_msg_field_begin(&it, msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
size_t field_size;
|
|
|
|
if (upb_fielddef_containingoneof(field) || is_value_field(field)) {
|
|
continue;
|
|
}
|
|
|
|
// Allocate |field_size| bytes for this field in the layout.
|
|
field_size = native_slot_size(upb_fielddef_type(field));
|
|
|
|
// Align current offset up to |size| granularity.
|
|
off = align_up_to(off, field_size);
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
off += field_size;
|
|
}
|
|
|
|
// Handle oneofs now -- we iterate over oneofs specifically and allocate only
|
|
// one slot per oneof.
|
|
//
|
|
// We assign all value slots first, then pack the 'case' fields at the end,
|
|
// since in the common case (modern 64-bit platform) these are 8 bytes and 4
|
|
// bytes respectively and we want to avoid alignment overhead.
|
|
//
|
|
// Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
|
|
// space for oneof cases is conceptually as wide as field tag numbers. In
|
|
// practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
|
|
// members (8 or 16 bits respectively), so conceivably we could assign
|
|
// consecutive case numbers and then pick a smaller oneof case slot size, but
|
|
// the complexity to implement this indirection is probably not worthwhile.
|
|
for (upb_msg_oneof_begin(&oit, msgdef);
|
|
!upb_msg_oneof_done(&oit);
|
|
upb_msg_oneof_next(&oit)) {
|
|
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
|
|
upb_oneof_iter fit;
|
|
|
|
// Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
|
|
// all fields.
|
|
size_t field_size = NATIVE_SLOT_MAX_SIZE;
|
|
// Align the offset.
|
|
off = align_up_to(off, field_size);
|
|
// Assign all fields in the oneof this same offset.
|
|
for (upb_oneof_begin(&fit, oneof);
|
|
!upb_oneof_done(&fit);
|
|
upb_oneof_next(&fit)) {
|
|
const upb_fielddef* field = upb_oneof_iter_field(&fit);
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
layout->oneofs[upb_oneofdef_index(oneof)].offset = off;
|
|
}
|
|
off += field_size;
|
|
}
|
|
|
|
// Now the case fields.
|
|
for (upb_msg_oneof_begin(&oit, msgdef);
|
|
!upb_msg_oneof_done(&oit);
|
|
upb_msg_oneof_next(&oit)) {
|
|
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
|
|
size_t field_size = sizeof(uint32_t);
|
|
// Align the offset.
|
|
off = (off + field_size - 1) & ~(field_size - 1);
|
|
layout->oneofs[upb_oneofdef_index(oneof)].case_offset = off;
|
|
off += field_size;
|
|
}
|
|
|
|
layout->size = off;
|
|
layout->msgdef = msgdef;
|
|
|
|
// Create the empty message template.
|
|
layout->empty_template = ALLOC_N(char, layout->size);
|
|
memset(layout->empty_template, 0, layout->size);
|
|
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
layout_clear(layout, layout->empty_template, upb_msg_iter_field(&it));
|
|
}
|
|
}
|
|
|
|
void free_layout(MessageLayout* layout) {
|
|
xfree(layout->empty_template);
|
|
xfree(layout->fields);
|
|
xfree(layout->oneofs);
|
|
xfree(layout);
|
|
}
|
|
|
|
VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) {
|
|
VALUE type_class = Qnil;
|
|
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
|
|
VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool,
|
|
upb_fielddef_msgsubdef(field));
|
|
type_class = Descriptor_msgclass(submsgdesc);
|
|
} else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
|
|
VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool,
|
|
upb_fielddef_enumsubdef(field));
|
|
type_class = EnumDescriptor_enummodule(subenumdesc);
|
|
}
|
|
return type_class;
|
|
}
|
|
|
|
static void* slot_memory(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
return ((uint8_t *)storage) +
|
|
layout->fields[upb_fielddef_index(field)].offset;
|
|
}
|
|
|
|
static uint32_t* slot_oneof_case(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_oneofdef* oneof) {
|
|
return (uint32_t*)(((uint8_t*)storage) +
|
|
layout->oneofs[upb_oneofdef_index(oneof)].case_offset);
|
|
}
|
|
|
|
uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage,
|
|
const upb_oneofdef* oneof) {
|
|
uint32_t* ptr = slot_oneof_case(layout, storage, oneof);
|
|
return *ptr & ~ONEOF_CASE_MASK;
|
|
}
|
|
|
|
static void slot_set_hasbit(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
|
|
assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
|
|
|
|
((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
|
|
}
|
|
|
|
static void slot_clear_hasbit(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
|
|
assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
|
|
((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
|
|
}
|
|
|
|
static bool slot_is_hasbit_set(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
|
|
if (hasbit == MESSAGE_FIELD_NO_HASBIT) {
|
|
return false;
|
|
}
|
|
|
|
return DEREF_OFFSET(
|
|
(uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
|
|
}
|
|
|
|
VALUE layout_has(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
assert(field_contains_hasbit(layout, field));
|
|
return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
void layout_clear(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
void* memory = slot_memory(layout, storage, field);
|
|
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
|
|
|
|
if (field_contains_hasbit(layout, field)) {
|
|
slot_clear_hasbit(layout, storage, field);
|
|
}
|
|
|
|
if (oneof) {
|
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
|
|
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
|
|
*oneof_case = ONEOF_CASE_NONE;
|
|
} else if (is_map_field(field)) {
|
|
VALUE map = Qnil;
|
|
|
|
const upb_fielddef* key_field = map_field_key(field);
|
|
const upb_fielddef* value_field = map_field_value(field);
|
|
VALUE type_class = field_type_class(layout, value_field);
|
|
|
|
if (type_class != Qnil) {
|
|
VALUE args[3] = {
|
|
fieldtype_to_ruby(upb_fielddef_type(key_field)),
|
|
fieldtype_to_ruby(upb_fielddef_type(value_field)),
|
|
type_class,
|
|
};
|
|
map = rb_class_new_instance(3, args, cMap);
|
|
} else {
|
|
VALUE args[2] = {
|
|
fieldtype_to_ruby(upb_fielddef_type(key_field)),
|
|
fieldtype_to_ruby(upb_fielddef_type(value_field)),
|
|
};
|
|
map = rb_class_new_instance(2, args, cMap);
|
|
}
|
|
|
|
DEREF(memory, VALUE) = map;
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
VALUE ary = Qnil;
|
|
|
|
VALUE type_class = field_type_class(layout, field);
|
|
|
|
if (type_class != Qnil) {
|
|
VALUE args[2] = {
|
|
fieldtype_to_ruby(upb_fielddef_type(field)),
|
|
type_class,
|
|
};
|
|
ary = rb_class_new_instance(2, args, cRepeatedField);
|
|
} else {
|
|
VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
|
|
ary = rb_class_new_instance(1, args, cRepeatedField);
|
|
}
|
|
|
|
DEREF(memory, VALUE) = ary;
|
|
} else {
|
|
native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
|
|
field_type_class(layout, field), memory,
|
|
layout_get_default(field));
|
|
}
|
|
}
|
|
|
|
VALUE layout_get_default(const upb_fielddef *field) {
|
|
switch (upb_fielddef_type(field)) {
|
|
case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
|
|
case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
|
|
case UPB_TYPE_BOOL:
|
|
return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
|
|
case UPB_TYPE_MESSAGE: return Qnil;
|
|
case UPB_TYPE_ENUM: {
|
|
const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
|
|
int32_t num = upb_fielddef_defaultint32(field);
|
|
const char *label = upb_enumdef_iton(enumdef, num);
|
|
if (label) {
|
|
return ID2SYM(rb_intern(label));
|
|
} else {
|
|
return INT2NUM(num);
|
|
}
|
|
}
|
|
case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
|
|
case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
|
|
case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
|
|
case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES: {
|
|
size_t size;
|
|
const char *str = upb_fielddef_defaultstr(field, &size);
|
|
return get_frozen_string(str, size,
|
|
upb_fielddef_type(field) == UPB_TYPE_BYTES);
|
|
}
|
|
default: return Qnil;
|
|
}
|
|
}
|
|
|
|
VALUE layout_get(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
void* memory = slot_memory(layout, storage, field);
|
|
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
|
|
bool field_set;
|
|
if (field_contains_hasbit(layout, field)) {
|
|
field_set = slot_is_hasbit_set(layout, storage, field);
|
|
} else {
|
|
field_set = true;
|
|
}
|
|
|
|
if (oneof) {
|
|
uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof);
|
|
if (oneof_case != upb_fielddef_number(field)) {
|
|
return layout_get_default(field);
|
|
}
|
|
return native_slot_get(upb_fielddef_type(field),
|
|
field_type_class(layout, field), memory);
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
return *((VALUE *)memory);
|
|
} else if (!field_set) {
|
|
return layout_get_default(field);
|
|
} else {
|
|
return native_slot_get(upb_fielddef_type(field),
|
|
field_type_class(layout, field), memory);
|
|
}
|
|
}
|
|
|
|
static void check_repeated_field_type(const MessageLayout* layout, VALUE val,
|
|
const upb_fielddef* field) {
|
|
RepeatedField* self;
|
|
assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
|
|
|
|
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
|
|
RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
|
|
rb_raise(cTypeError, "Expected repeated field array");
|
|
}
|
|
|
|
self = ruby_to_RepeatedField(val);
|
|
if (self->field_type != upb_fielddef_type(field)) {
|
|
rb_raise(cTypeError, "Repeated field array has wrong element type");
|
|
}
|
|
|
|
if (self->field_type_class != field_type_class(layout, field)) {
|
|
rb_raise(cTypeError, "Repeated field array has wrong message/enum class");
|
|
}
|
|
}
|
|
|
|
static void check_map_field_type(const MessageLayout* layout, VALUE val,
|
|
const upb_fielddef* field) {
|
|
const upb_fielddef* key_field = map_field_key(field);
|
|
const upb_fielddef* value_field = map_field_value(field);
|
|
Map* self;
|
|
|
|
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
|
|
RTYPEDDATA_TYPE(val) != &Map_type) {
|
|
rb_raise(cTypeError, "Expected Map instance");
|
|
}
|
|
|
|
self = ruby_to_Map(val);
|
|
if (self->key_type != upb_fielddef_type(key_field)) {
|
|
rb_raise(cTypeError, "Map key type does not match field's key type");
|
|
}
|
|
if (self->value_type != upb_fielddef_type(value_field)) {
|
|
rb_raise(cTypeError, "Map value type does not match field's value type");
|
|
}
|
|
if (self->value_type_class != field_type_class(layout, value_field)) {
|
|
rb_raise(cTypeError, "Map value type has wrong message/enum class");
|
|
}
|
|
}
|
|
|
|
void layout_set(MessageLayout* layout,
|
|
void* storage,
|
|
const upb_fielddef* field,
|
|
VALUE val) {
|
|
void* memory = slot_memory(layout, storage, field);
|
|
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
|
|
|
|
if (oneof) {
|
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
|
|
if (val == Qnil) {
|
|
// Assigning nil to a oneof field clears the oneof completely.
|
|
*oneof_case = ONEOF_CASE_NONE;
|
|
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
|
|
} else {
|
|
// The transition between field types for a single oneof (union) slot is
|
|
// somewhat complex because we need to ensure that a GC triggered at any
|
|
// point by a call into the Ruby VM sees a valid state for this field and
|
|
// does not either go off into the weeds (following what it thinks is a
|
|
// VALUE but is actually a different field type) or miss an object (seeing
|
|
// what it thinks is a primitive field but is actually a VALUE for the new
|
|
// field type).
|
|
//
|
|
// In order for the transition to be safe, the oneof case slot must be in
|
|
// sync with the value slot whenever the Ruby VM has been called. Thus, we
|
|
// use native_slot_set_value_and_case(), which ensures that both the value
|
|
// and case number are altered atomically (w.r.t. the Ruby VM).
|
|
uint32_t case_value = upb_fielddef_number(field);
|
|
if (upb_fielddef_issubmsg(field) || upb_fielddef_isstring(field)) {
|
|
case_value |= ONEOF_CASE_MASK;
|
|
}
|
|
|
|
native_slot_set_value_and_case(
|
|
upb_fielddef_name(field), upb_fielddef_type(field),
|
|
field_type_class(layout, field), memory, val, oneof_case, case_value);
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
check_map_field_type(layout, val, field);
|
|
DEREF(memory, VALUE) = val;
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
check_repeated_field_type(layout, val, field);
|
|
DEREF(memory, VALUE) = val;
|
|
} else {
|
|
native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
|
|
field_type_class(layout, field), memory, val);
|
|
}
|
|
|
|
if (layout->fields[upb_fielddef_index(field)].hasbit !=
|
|
MESSAGE_FIELD_NO_HASBIT) {
|
|
slot_set_hasbit(layout, storage, field);
|
|
}
|
|
}
|
|
|
|
void layout_init(MessageLayout* layout, void* storage) {
|
|
VALUE* value = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
|
|
int i;
|
|
|
|
for (i = 0; i < layout->repeated_count; i++, value++) {
|
|
*value = RepeatedField_new_this_type(*value);
|
|
}
|
|
|
|
for (i = 0; i < layout->map_count; i++, value++) {
|
|
*value = Map_new_this_type(*value);
|
|
}
|
|
}
|
|
|
|
void layout_mark(MessageLayout* layout, void* storage) {
|
|
VALUE* values = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
|
|
int noneofs = upb_msgdef_numoneofs(layout->msgdef);
|
|
int i;
|
|
|
|
for (i = 0; i < layout->value_count; i++) {
|
|
rb_gc_mark(values[i]);
|
|
}
|
|
|
|
for (i = 0; i < noneofs; i++) {
|
|
MessageOneof* oneof = &layout->oneofs[i];
|
|
uint32_t* case_ptr = (uint32_t*)CHARPTR_AT(storage, oneof->case_offset);
|
|
if (*case_ptr & ONEOF_CASE_MASK) {
|
|
rb_gc_mark(DEREF_OFFSET(storage, oneof->offset, VALUE));
|
|
}
|
|
}
|
|
}
|
|
|
|
void layout_dup(MessageLayout* layout, void* to, void* from) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
|
|
|
|
void* to_memory = slot_memory(layout, to, field);
|
|
void* from_memory = slot_memory(layout, from, field);
|
|
|
|
if (oneof) {
|
|
uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
|
|
uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
|
|
if (slot_read_oneof_case(layout, from, oneof) ==
|
|
upb_fielddef_number(field)) {
|
|
*to_oneof_case = *from_oneof_case;
|
|
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
|
|
} else {
|
|
if (field_contains_hasbit(layout, field)) {
|
|
if (!slot_is_hasbit_set(layout, from, field)) continue;
|
|
slot_set_hasbit(layout, to, field);
|
|
}
|
|
|
|
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
|
|
|
|
void* to_memory = slot_memory(layout, to, field);
|
|
void* from_memory = slot_memory(layout, from, field);
|
|
|
|
if (oneof) {
|
|
uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
|
|
uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
|
|
if (slot_read_oneof_case(layout, from, oneof) ==
|
|
upb_fielddef_number(field)) {
|
|
*to_oneof_case = *from_oneof_case;
|
|
native_slot_deep_copy(upb_fielddef_type(field),
|
|
field_type_class(layout, field), to_memory,
|
|
from_memory);
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
DEREF(to_memory, VALUE) =
|
|
Map_deep_copy(DEREF(from_memory, VALUE));
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
DEREF(to_memory, VALUE) =
|
|
RepeatedField_deep_copy(DEREF(from_memory, VALUE));
|
|
} else {
|
|
if (field_contains_hasbit(layout, field)) {
|
|
if (!slot_is_hasbit_set(layout, from, field)) continue;
|
|
slot_set_hasbit(layout, to, field);
|
|
}
|
|
|
|
native_slot_deep_copy(upb_fielddef_type(field),
|
|
field_type_class(layout, field), to_memory,
|
|
from_memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
|
|
|
|
void* msg1_memory = slot_memory(layout, msg1, field);
|
|
void* msg2_memory = slot_memory(layout, msg2, field);
|
|
|
|
if (oneof) {
|
|
uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, oneof);
|
|
uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, oneof);
|
|
if (*msg1_oneof_case != *msg2_oneof_case ||
|
|
(slot_read_oneof_case(layout, msg1, oneof) ==
|
|
upb_fielddef_number(field) &&
|
|
!native_slot_eq(upb_fielddef_type(field),
|
|
field_type_class(layout, field), msg1_memory,
|
|
msg2_memory))) {
|
|
return Qfalse;
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
if (!Map_eq(DEREF(msg1_memory, VALUE),
|
|
DEREF(msg2_memory, VALUE))) {
|
|
return Qfalse;
|
|
}
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
|
|
DEREF(msg2_memory, VALUE))) {
|
|
return Qfalse;
|
|
}
|
|
} else {
|
|
if (slot_is_hasbit_set(layout, msg1, field) !=
|
|
slot_is_hasbit_set(layout, msg2, field) ||
|
|
!native_slot_eq(upb_fielddef_type(field),
|
|
field_type_class(layout, field), msg1_memory,
|
|
msg2_memory)) {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
VALUE layout_hash(MessageLayout* layout, void* storage) {
|
|
upb_msg_field_iter it;
|
|
st_index_t h = rb_hash_start(0);
|
|
VALUE hash_sym = rb_intern("hash");
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
VALUE field_val = layout_get(layout, storage, field);
|
|
h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
|
|
}
|
|
h = rb_hash_end(h);
|
|
|
|
return INT2FIX(h);
|
|
}
|
|
|
|
VALUE layout_inspect(MessageLayout* layout, void* storage) {
|
|
VALUE str = rb_str_new2("");
|
|
|
|
upb_msg_field_iter it;
|
|
bool first = true;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
VALUE field_val = layout_get(layout, storage, field);
|
|
|
|
if (!first) {
|
|
str = rb_str_cat2(str, ", ");
|
|
} else {
|
|
first = false;
|
|
}
|
|
str = rb_str_cat2(str, upb_fielddef_name(field));
|
|
str = rb_str_cat2(str, ": ");
|
|
|
|
str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
|
|
}
|
|
|
|
return str;
|
|
}
|