986 lines
28 KiB
JavaScript
986 lines
28 KiB
JavaScript
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
/**
|
|
* @fileoverview This file contains helper code used by jspb.BinaryReader
|
|
* and BinaryWriter.
|
|
*
|
|
* @author aappleby@google.com (Austin Appleby)
|
|
*/
|
|
|
|
goog.provide('jspb.utils');
|
|
|
|
goog.require('goog.asserts');
|
|
goog.require('goog.crypt.base64');
|
|
goog.require('goog.string');
|
|
goog.require('jspb.BinaryConstants');
|
|
|
|
|
|
/**
|
|
* Javascript can't natively handle 64-bit data types, so to manipulate them we
|
|
* have to split them into two 32-bit halves and do the math manually.
|
|
*
|
|
* Instead of instantiating and passing small structures around to do this, we
|
|
* instead just use two global temporary values. This one stores the low 32
|
|
* bits of a split value - for example, if the original value was a 64-bit
|
|
* integer, this temporary value will contain the low 32 bits of that integer.
|
|
* If the original value was a double, this temporary value will contain the
|
|
* low 32 bits of the binary representation of that double, etcetera.
|
|
* @type {number}
|
|
*/
|
|
jspb.utils.split64Low = 0;
|
|
|
|
|
|
/**
|
|
* And correspondingly, this temporary variable will contain the high 32 bits
|
|
* of whatever value was split.
|
|
* @type {number}
|
|
*/
|
|
jspb.utils.split64High = 0;
|
|
|
|
|
|
/**
|
|
* Splits an unsigned Javascript integer into two 32-bit halves and stores it
|
|
* in the temp values above.
|
|
* @param {number} value The number to split.
|
|
*/
|
|
jspb.utils.splitUint64 = function(value) {
|
|
// Extract low 32 bits and high 32 bits as unsigned integers.
|
|
var lowBits = value >>> 0;
|
|
var highBits = Math.floor((value - lowBits) /
|
|
jspb.BinaryConstants.TWO_TO_32) >>> 0;
|
|
|
|
jspb.utils.split64Low = lowBits;
|
|
jspb.utils.split64High = highBits;
|
|
};
|
|
|
|
|
|
/**
|
|
* Splits a signed Javascript integer into two 32-bit halves and stores it in
|
|
* the temp values above.
|
|
* @param {number} value The number to split.
|
|
*/
|
|
jspb.utils.splitInt64 = function(value) {
|
|
// Convert to sign-magnitude representation.
|
|
var sign = (value < 0);
|
|
value = Math.abs(value);
|
|
|
|
// Extract low 32 bits and high 32 bits as unsigned integers.
|
|
var lowBits = value >>> 0;
|
|
var highBits = Math.floor((value - lowBits) /
|
|
jspb.BinaryConstants.TWO_TO_32);
|
|
highBits = highBits >>> 0;
|
|
|
|
// Perform two's complement conversion if the sign bit was set.
|
|
if (sign) {
|
|
highBits = ~highBits >>> 0;
|
|
lowBits = ~lowBits >>> 0;
|
|
lowBits += 1;
|
|
if (lowBits > 0xFFFFFFFF) {
|
|
lowBits = 0;
|
|
highBits++;
|
|
if (highBits > 0xFFFFFFFF) highBits = 0;
|
|
}
|
|
}
|
|
|
|
jspb.utils.split64Low = lowBits;
|
|
jspb.utils.split64High = highBits;
|
|
};
|
|
|
|
|
|
/**
|
|
* Convers a signed Javascript integer into zigzag format, splits it into two
|
|
* 32-bit halves, and stores it in the temp values above.
|
|
* @param {number} value The number to split.
|
|
*/
|
|
jspb.utils.splitZigzag64 = function(value) {
|
|
// Convert to sign-magnitude and scale by 2 before we split the value.
|
|
var sign = (value < 0);
|
|
value = Math.abs(value) * 2;
|
|
|
|
jspb.utils.splitUint64(value);
|
|
var lowBits = jspb.utils.split64Low;
|
|
var highBits = jspb.utils.split64High;
|
|
|
|
// If the value is negative, subtract 1 from the split representation so we
|
|
// don't lose the sign bit due to precision issues.
|
|
if (sign) {
|
|
if (lowBits == 0) {
|
|
if (highBits == 0) {
|
|
lowBits = 0xFFFFFFFF;
|
|
highBits = 0xFFFFFFFF;
|
|
} else {
|
|
highBits--;
|
|
lowBits = 0xFFFFFFFF;
|
|
}
|
|
} else {
|
|
lowBits--;
|
|
}
|
|
}
|
|
|
|
jspb.utils.split64Low = lowBits;
|
|
jspb.utils.split64High = highBits;
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts a floating-point number into 32-bit IEEE representation and stores
|
|
* it in the temp values above.
|
|
* @param {number} value
|
|
*/
|
|
jspb.utils.splitFloat32 = function(value) {
|
|
var sign = (value < 0) ? 1 : 0;
|
|
value = sign ? -value : value;
|
|
var exp;
|
|
var mant;
|
|
|
|
// Handle zeros.
|
|
if (value === 0) {
|
|
if ((1 / value) > 0) {
|
|
// Positive zero.
|
|
jspb.utils.split64High = 0;
|
|
jspb.utils.split64Low = 0x00000000;
|
|
} else {
|
|
// Negative zero.
|
|
jspb.utils.split64High = 0;
|
|
jspb.utils.split64Low = 0x80000000;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle nans.
|
|
if (isNaN(value)) {
|
|
jspb.utils.split64High = 0;
|
|
jspb.utils.split64Low = 0x7FFFFFFF;
|
|
return;
|
|
}
|
|
|
|
// Handle infinities.
|
|
if (value > jspb.BinaryConstants.FLOAT32_MAX) {
|
|
jspb.utils.split64High = 0;
|
|
jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0;
|
|
return;
|
|
}
|
|
|
|
// Handle denormals.
|
|
if (value < jspb.BinaryConstants.FLOAT32_MIN) {
|
|
// Number is a denormal.
|
|
mant = Math.round(value / Math.pow(2, -149));
|
|
jspb.utils.split64High = 0;
|
|
jspb.utils.split64Low = ((sign << 31) | mant) >>> 0;
|
|
return;
|
|
}
|
|
|
|
exp = Math.floor(Math.log(value) / Math.LN2);
|
|
mant = value * Math.pow(2, -exp);
|
|
mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF;
|
|
|
|
jspb.utils.split64High = 0;
|
|
jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts a floating-point number into 64-bit IEEE representation and stores
|
|
* it in the temp values above.
|
|
* @param {number} value
|
|
*/
|
|
jspb.utils.splitFloat64 = function(value) {
|
|
var sign = (value < 0) ? 1 : 0;
|
|
value = sign ? -value : value;
|
|
|
|
// Handle zeros.
|
|
if (value === 0) {
|
|
if ((1 / value) > 0) {
|
|
// Positive zero.
|
|
jspb.utils.split64High = 0x00000000;
|
|
jspb.utils.split64Low = 0x00000000;
|
|
} else {
|
|
// Negative zero.
|
|
jspb.utils.split64High = 0x80000000;
|
|
jspb.utils.split64Low = 0x00000000;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle nans.
|
|
if (isNaN(value)) {
|
|
jspb.utils.split64High = 0x7FFFFFFF;
|
|
jspb.utils.split64Low = 0xFFFFFFFF;
|
|
return;
|
|
}
|
|
|
|
// Handle infinities.
|
|
if (value > jspb.BinaryConstants.FLOAT64_MAX) {
|
|
jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0;
|
|
jspb.utils.split64Low = 0;
|
|
return;
|
|
}
|
|
|
|
// Handle denormals.
|
|
if (value < jspb.BinaryConstants.FLOAT64_MIN) {
|
|
// Number is a denormal.
|
|
var mant = value / Math.pow(2, -1074);
|
|
var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32);
|
|
jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0;
|
|
jspb.utils.split64Low = (mant >>> 0);
|
|
return;
|
|
}
|
|
|
|
var exp = Math.floor(Math.log(value) / Math.LN2);
|
|
if (exp == 1024) exp = 1023;
|
|
var mant = value * Math.pow(2, -exp);
|
|
|
|
var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF;
|
|
var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0;
|
|
|
|
jspb.utils.split64High =
|
|
((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0;
|
|
jspb.utils.split64Low = mantLow;
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts an 8-character hash string into two 32-bit numbers and stores them
|
|
* in the temp values above.
|
|
* @param {string} hash
|
|
*/
|
|
jspb.utils.splitHash64 = function(hash) {
|
|
var a = hash.charCodeAt(0);
|
|
var b = hash.charCodeAt(1);
|
|
var c = hash.charCodeAt(2);
|
|
var d = hash.charCodeAt(3);
|
|
var e = hash.charCodeAt(4);
|
|
var f = hash.charCodeAt(5);
|
|
var g = hash.charCodeAt(6);
|
|
var h = hash.charCodeAt(7);
|
|
|
|
jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0;
|
|
jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* Joins two 32-bit values into a 64-bit unsigned integer. Precision will be
|
|
* lost if the result is greater than 2^52.
|
|
* @param {number} bitsLow
|
|
* @param {number} bitsHigh
|
|
* @return {number}
|
|
*/
|
|
jspb.utils.joinUint64 = function(bitsLow, bitsHigh) {
|
|
return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + bitsLow;
|
|
};
|
|
|
|
|
|
/**
|
|
* Joins two 32-bit values into a 64-bit signed integer. Precision will be lost
|
|
* if the result is greater than 2^52.
|
|
* @param {number} bitsLow
|
|
* @param {number} bitsHigh
|
|
* @return {number}
|
|
*/
|
|
jspb.utils.joinInt64 = function(bitsLow, bitsHigh) {
|
|
// If the high bit is set, do a manual two's complement conversion.
|
|
var sign = (bitsHigh & 0x80000000);
|
|
if (sign) {
|
|
bitsLow = (~bitsLow + 1) >>> 0;
|
|
bitsHigh = ~bitsHigh >>> 0;
|
|
if (bitsLow == 0) {
|
|
bitsHigh = (bitsHigh + 1) >>> 0;
|
|
}
|
|
}
|
|
|
|
var result = jspb.utils.joinUint64(bitsLow, bitsHigh);
|
|
return sign ? -result : result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag
|
|
* decoding. Precision will be lost if the result is greater than 2^52.
|
|
* @param {number} bitsLow
|
|
* @param {number} bitsHigh
|
|
* @return {number}
|
|
*/
|
|
jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) {
|
|
// Extract the sign bit and shift right by one.
|
|
var sign = bitsLow & 1;
|
|
bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) >>> 0;
|
|
bitsHigh = bitsHigh >>> 1;
|
|
|
|
// Increment the split value if the sign bit was set.
|
|
if (sign) {
|
|
bitsLow = (bitsLow + 1) >>> 0;
|
|
if (bitsLow == 0) {
|
|
bitsHigh = (bitsHigh + 1) >>> 0;
|
|
}
|
|
}
|
|
|
|
var result = jspb.utils.joinUint64(bitsLow, bitsHigh);
|
|
return sign ? -result : result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Joins two 32-bit values into a 32-bit IEEE floating point number and
|
|
* converts it back into a Javascript number.
|
|
* @param {number} bitsLow The low 32 bits of the binary number;
|
|
* @param {number} bitsHigh The high 32 bits of the binary number.
|
|
* @return {number}
|
|
*/
|
|
jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) {
|
|
var sign = ((bitsLow >> 31) * 2 + 1);
|
|
var exp = (bitsLow >>> 23) & 0xFF;
|
|
var mant = bitsLow & 0x7FFFFF;
|
|
|
|
if (exp == 0xFF) {
|
|
if (mant) {
|
|
return NaN;
|
|
} else {
|
|
return sign * Infinity;
|
|
}
|
|
}
|
|
|
|
if (exp == 0) {
|
|
// Denormal.
|
|
return sign * Math.pow(2, -149) * mant;
|
|
} else {
|
|
return sign * Math.pow(2, exp - 150) *
|
|
(mant + Math.pow(2, 23));
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Joins two 32-bit values into a 64-bit IEEE floating point number and
|
|
* converts it back into a Javascript number.
|
|
* @param {number} bitsLow The low 32 bits of the binary number;
|
|
* @param {number} bitsHigh The high 32 bits of the binary number.
|
|
* @return {number}
|
|
*/
|
|
jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) {
|
|
var sign = ((bitsHigh >> 31) * 2 + 1);
|
|
var exp = (bitsHigh >>> 20) & 0x7FF;
|
|
var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow;
|
|
|
|
if (exp == 0x7FF) {
|
|
if (mant) {
|
|
return NaN;
|
|
} else {
|
|
return sign * Infinity;
|
|
}
|
|
}
|
|
|
|
if (exp == 0) {
|
|
// Denormal.
|
|
return sign * Math.pow(2, -1074) * mant;
|
|
} else {
|
|
return sign * Math.pow(2, exp - 1075) *
|
|
(mant + jspb.BinaryConstants.TWO_TO_52);
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Joins two 32-bit values into an 8-character hash string.
|
|
* @param {number} bitsLow
|
|
* @param {number} bitsHigh
|
|
* @return {string}
|
|
*/
|
|
jspb.utils.joinHash64 = function(bitsLow, bitsHigh) {
|
|
var a = (bitsLow >>> 0) & 0xFF;
|
|
var b = (bitsLow >>> 8) & 0xFF;
|
|
var c = (bitsLow >>> 16) & 0xFF;
|
|
var d = (bitsLow >>> 24) & 0xFF;
|
|
var e = (bitsHigh >>> 0) & 0xFF;
|
|
var f = (bitsHigh >>> 8) & 0xFF;
|
|
var g = (bitsHigh >>> 16) & 0xFF;
|
|
var h = (bitsHigh >>> 24) & 0xFF;
|
|
|
|
return String.fromCharCode(a, b, c, d, e, f, g, h);
|
|
};
|
|
|
|
|
|
/**
|
|
* Individual digits for number->string conversion.
|
|
* @const {!Array.<number>}
|
|
*/
|
|
jspb.utils.DIGITS = [
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
|
|
];
|
|
|
|
|
|
/**
|
|
* Losslessly converts a 64-bit unsigned integer in 32:32 split representation
|
|
* into a decimal string.
|
|
* @param {number} bitsLow The low 32 bits of the binary number;
|
|
* @param {number} bitsHigh The high 32 bits of the binary number.
|
|
* @return {string} The binary number represented as a string.
|
|
*/
|
|
jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) {
|
|
// Skip the expensive conversion if the number is small enough to use the
|
|
// built-in conversions.
|
|
if (bitsHigh <= 0x1FFFFF) {
|
|
return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow);
|
|
}
|
|
|
|
// What this code is doing is essentially converting the input number from
|
|
// base-2 to base-1e7, which allows us to represent the 64-bit range with
|
|
// only 3 (very large) digits. Those digits are then trivial to convert to
|
|
// a base-10 string.
|
|
|
|
// The magic numbers used here are -
|
|
// 2^24 = 16777216 = (1,6777216) in base-1e7.
|
|
// 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7.
|
|
|
|
// Split 32:32 representation into 16:24:24 representation so our
|
|
// intermediate digits don't overflow.
|
|
var low = bitsLow & 0xFFFFFF;
|
|
var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF;
|
|
var high = (bitsHigh >> 16) & 0xFFFF;
|
|
|
|
// Assemble our three base-1e7 digits, ignoring carries. The maximum
|
|
// value in a digit at this step is representable as a 48-bit integer, which
|
|
// can be stored in a 64-bit floating point number.
|
|
var digitA = low + (mid * 6777216) + (high * 6710656);
|
|
var digitB = mid + (high * 8147497);
|
|
var digitC = (high * 2);
|
|
|
|
// Apply carries from A to B and from B to C.
|
|
var base = 10000000;
|
|
if (digitA >= base) {
|
|
digitB += Math.floor(digitA / base);
|
|
digitA %= base;
|
|
}
|
|
|
|
if (digitB >= base) {
|
|
digitC += Math.floor(digitB / base);
|
|
digitB %= base;
|
|
}
|
|
|
|
// Convert base-1e7 digits to base-10, omitting leading zeroes.
|
|
var table = jspb.utils.DIGITS;
|
|
var start = false;
|
|
var result = '';
|
|
|
|
function emit(digit) {
|
|
var temp = base;
|
|
for (var i = 0; i < 7; i++) {
|
|
temp /= 10;
|
|
var decimalDigit = ((digit / temp) % 10) >>> 0;
|
|
if ((decimalDigit == 0) && !start) continue;
|
|
start = true;
|
|
result += table[decimalDigit];
|
|
}
|
|
}
|
|
|
|
if (digitC || start) emit(digitC);
|
|
if (digitB || start) emit(digitB);
|
|
if (digitA || start) emit(digitA);
|
|
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Losslessly converts a 64-bit signed integer in 32:32 split representation
|
|
* into a decimal string.
|
|
* @param {number} bitsLow The low 32 bits of the binary number;
|
|
* @param {number} bitsHigh The high 32 bits of the binary number.
|
|
* @return {string} The binary number represented as a string.
|
|
*/
|
|
jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) {
|
|
// If we're treating the input as a signed value and the high bit is set, do
|
|
// a manual two's complement conversion before the decimal conversion.
|
|
var negative = (bitsHigh & 0x80000000);
|
|
if (negative) {
|
|
bitsLow = (~bitsLow + 1) >>> 0;
|
|
var carry = (bitsLow == 0) ? 1 : 0;
|
|
bitsHigh = (~bitsHigh + carry) >>> 0;
|
|
}
|
|
|
|
var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);
|
|
return negative ? '-' + result : result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Convert an 8-character hash string representing either a signed or unsigned
|
|
* 64-bit integer into its decimal representation without losing accuracy.
|
|
* @param {string} hash The hash string to convert.
|
|
* @param {boolean} signed True if we should treat the hash string as encoding
|
|
* a signed integer.
|
|
* @return {string}
|
|
*/
|
|
jspb.utils.hash64ToDecimalString = function(hash, signed) {
|
|
jspb.utils.splitHash64(hash);
|
|
var bitsLow = jspb.utils.split64Low;
|
|
var bitsHigh = jspb.utils.split64High;
|
|
return signed ?
|
|
jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) :
|
|
jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts an array of 8-character hash strings into their decimal
|
|
* representations.
|
|
* @param {!Array.<string>} hashes The array of hash strings to convert.
|
|
* @param {boolean} signed True if we should treat the hash string as encoding
|
|
* a signed integer.
|
|
* @return {!Array.<string>}
|
|
*/
|
|
jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) {
|
|
var result = new Array(hashes.length);
|
|
for (var i = 0; i < hashes.length; i++) {
|
|
result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts a signed or unsigned decimal string into its hash string
|
|
* representation.
|
|
* @param {string} dec
|
|
* @return {string}
|
|
*/
|
|
jspb.utils.decimalStringToHash64 = function(dec) {
|
|
goog.asserts.assert(dec.length > 0);
|
|
|
|
// Check for minus sign.
|
|
var minus = false;
|
|
if (dec[0] === '-') {
|
|
minus = true;
|
|
dec = dec.slice(1);
|
|
}
|
|
|
|
// Store result as a byte array.
|
|
var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0];
|
|
|
|
// Set result to m*result + c.
|
|
function muladd(m, c) {
|
|
for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) {
|
|
var r = m * resultBytes[i] + c;
|
|
resultBytes[i] = r & 0xFF;
|
|
c = r >>> 8;
|
|
}
|
|
}
|
|
|
|
// Negate the result bits.
|
|
function neg() {
|
|
for (var i = 0; i < 8; i++) {
|
|
resultBytes[i] = (~resultBytes[i]) & 0xFF;
|
|
}
|
|
}
|
|
|
|
// For each decimal digit, set result to 10*result + digit.
|
|
for (var i = 0; i < dec.length; i++) {
|
|
muladd(10, jspb.utils.DIGITS.indexOf(dec[i]));
|
|
}
|
|
|
|
// If there's a minus sign, convert into two's complement.
|
|
if (minus) {
|
|
neg();
|
|
muladd(1, 1);
|
|
}
|
|
|
|
return String.fromCharCode.apply(null, resultBytes);
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts a signed or unsigned decimal string into two 32-bit halves, and
|
|
* stores them in the temp variables listed above.
|
|
* @param {string} value The decimal string to convert.
|
|
*/
|
|
jspb.utils.splitDecimalString = function(value) {
|
|
jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value));
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts an 8-character hash string into its hexadecimal representation.
|
|
* @param {string} hash
|
|
* @return {string}
|
|
*/
|
|
jspb.utils.hash64ToHexString = function(hash) {
|
|
var temp = new Array(18);
|
|
temp[0] = '0';
|
|
temp[1] = 'x';
|
|
|
|
for (var i = 0; i < 8; i++) {
|
|
var c = hash.charCodeAt(7 - i);
|
|
temp[i * 2 + 2] = jspb.utils.DIGITS[c >> 4];
|
|
temp[i * 2 + 3] = jspb.utils.DIGITS[c & 0xF];
|
|
}
|
|
|
|
var result = temp.join('');
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts a '0x<16 digits>' hex string into its hash string representation.
|
|
* @param {string} hex
|
|
* @return {string}
|
|
*/
|
|
jspb.utils.hexStringToHash64 = function(hex) {
|
|
hex = hex.toLowerCase();
|
|
goog.asserts.assert(hex.length == 18);
|
|
goog.asserts.assert(hex[0] == '0');
|
|
goog.asserts.assert(hex[1] == 'x');
|
|
|
|
var result = '';
|
|
for (var i = 0; i < 8; i++) {
|
|
var hi = jspb.utils.DIGITS.indexOf(hex[i * 2 + 2]);
|
|
var lo = jspb.utils.DIGITS.indexOf(hex[i * 2 + 3]);
|
|
result = String.fromCharCode(hi * 16 + lo) + result;
|
|
}
|
|
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Convert an 8-character hash string representing either a signed or unsigned
|
|
* 64-bit integer into a Javascript number. Will lose accuracy if the result is
|
|
* larger than 2^52.
|
|
* @param {string} hash The hash string to convert.
|
|
* @param {boolean} signed True if the has should be interpreted as a signed
|
|
* number.
|
|
* @return {number}
|
|
*/
|
|
jspb.utils.hash64ToNumber = function(hash, signed) {
|
|
jspb.utils.splitHash64(hash);
|
|
var bitsLow = jspb.utils.split64Low;
|
|
var bitsHigh = jspb.utils.split64High;
|
|
return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) :
|
|
jspb.utils.joinUint64(bitsLow, bitsHigh);
|
|
};
|
|
|
|
|
|
/**
|
|
* Convert a Javascript number into an 8-character hash string. Will lose
|
|
* precision if the value is non-integral or greater than 2^64.
|
|
* @param {number} value The integer to convert.
|
|
* @return {string}
|
|
*/
|
|
jspb.utils.numberToHash64 = function(value) {
|
|
jspb.utils.splitInt64(value);
|
|
return jspb.utils.joinHash64(jspb.utils.split64Low,
|
|
jspb.utils.split64High);
|
|
};
|
|
|
|
|
|
/**
|
|
* Counts the number of contiguous varints in a buffer.
|
|
* @param {!Uint8Array} buffer The buffer to scan.
|
|
* @param {number} start The starting point in the buffer to scan.
|
|
* @param {number} end The end point in the buffer to scan.
|
|
* @return {number} The number of varints in the buffer.
|
|
*/
|
|
jspb.utils.countVarints = function(buffer, start, end) {
|
|
// Count how many high bits of each byte were set in the buffer.
|
|
var count = 0;
|
|
for (var i = start; i < end; i++) {
|
|
count += buffer[i] >> 7;
|
|
}
|
|
|
|
// The number of varints in the buffer equals the size of the buffer minus
|
|
// the number of non-terminal bytes in the buffer (those with the high bit
|
|
// set).
|
|
return (end - start) - count;
|
|
};
|
|
|
|
|
|
/**
|
|
* Counts the number of contiguous varint fields with the given field number in
|
|
* the buffer.
|
|
* @param {!Uint8Array} buffer The buffer to scan.
|
|
* @param {number} start The starting point in the buffer to scan.
|
|
* @param {number} end The end point in the buffer to scan.
|
|
* @param {number} field The field number to count.
|
|
* @return {number} The number of matching fields in the buffer.
|
|
*/
|
|
jspb.utils.countVarintFields = function(buffer, start, end, field) {
|
|
var count = 0;
|
|
var cursor = start;
|
|
var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT;
|
|
|
|
if (tag < 128) {
|
|
// Single-byte field tag, we can use a slightly quicker count.
|
|
while (cursor < end) {
|
|
// Skip the field tag, or exit if we find a non-matching tag.
|
|
if (buffer[cursor++] != tag) return count;
|
|
|
|
// Field tag matches, we've found a valid field.
|
|
count++;
|
|
|
|
// Skip the varint.
|
|
while (1) {
|
|
var x = buffer[cursor++];
|
|
if ((x & 0x80) == 0) break;
|
|
}
|
|
}
|
|
} else {
|
|
while (cursor < end) {
|
|
// Skip the field tag, or exit if we find a non-matching tag.
|
|
var temp = tag;
|
|
while (temp > 128) {
|
|
if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count;
|
|
cursor++;
|
|
temp >>= 7;
|
|
}
|
|
if (buffer[cursor++] != temp) return count;
|
|
|
|
// Field tag matches, we've found a valid field.
|
|
count++;
|
|
|
|
// Skip the varint.
|
|
while (1) {
|
|
var x = buffer[cursor++];
|
|
if ((x & 0x80) == 0) break;
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
};
|
|
|
|
|
|
/**
|
|
* Counts the number of contiguous fixed32 fields with the given tag in the
|
|
* buffer.
|
|
* @param {!Uint8Array} buffer The buffer to scan.
|
|
* @param {number} start The starting point in the buffer to scan.
|
|
* @param {number} end The end point in the buffer to scan.
|
|
* @param {number} tag The tag value to count.
|
|
* @param {number} stride The number of bytes to skip per field.
|
|
* @return {number} The number of fields with a matching tag in the buffer.
|
|
* @private
|
|
*/
|
|
jspb.utils.countFixedFields_ =
|
|
function(buffer, start, end, tag, stride) {
|
|
var count = 0;
|
|
var cursor = start;
|
|
|
|
if (tag < 128) {
|
|
// Single-byte field tag, we can use a slightly quicker count.
|
|
while (cursor < end) {
|
|
// Skip the field tag, or exit if we find a non-matching tag.
|
|
if (buffer[cursor++] != tag) return count;
|
|
|
|
// Field tag matches, we've found a valid field.
|
|
count++;
|
|
|
|
// Skip the value.
|
|
cursor += stride;
|
|
}
|
|
} else {
|
|
while (cursor < end) {
|
|
// Skip the field tag, or exit if we find a non-matching tag.
|
|
var temp = tag;
|
|
while (temp > 128) {
|
|
if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;
|
|
temp >>= 7;
|
|
}
|
|
if (buffer[cursor++] != temp) return count;
|
|
|
|
// Field tag matches, we've found a valid field.
|
|
count++;
|
|
|
|
// Skip the value.
|
|
cursor += stride;
|
|
}
|
|
}
|
|
return count;
|
|
};
|
|
|
|
|
|
/**
|
|
* Counts the number of contiguous fixed32 fields with the given field number
|
|
* in the buffer.
|
|
* @param {!Uint8Array} buffer The buffer to scan.
|
|
* @param {number} start The starting point in the buffer to scan.
|
|
* @param {number} end The end point in the buffer to scan.
|
|
* @param {number} field The field number to count.
|
|
* @return {number} The number of matching fields in the buffer.
|
|
*/
|
|
jspb.utils.countFixed32Fields = function(buffer, start, end, field) {
|
|
var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32;
|
|
return jspb.utils.countFixedFields_(buffer, start, end, tag, 4);
|
|
};
|
|
|
|
|
|
/**
|
|
* Counts the number of contiguous fixed64 fields with the given field number
|
|
* in the buffer.
|
|
* @param {!Uint8Array} buffer The buffer to scan.
|
|
* @param {number} start The starting point in the buffer to scan.
|
|
* @param {number} end The end point in the buffer to scan.
|
|
* @param {number} field The field number to count
|
|
* @return {number} The number of matching fields in the buffer.
|
|
*/
|
|
jspb.utils.countFixed64Fields = function(buffer, start, end, field) {
|
|
var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64;
|
|
return jspb.utils.countFixedFields_(buffer, start, end, tag, 8);
|
|
};
|
|
|
|
|
|
/**
|
|
* Counts the number of contiguous delimited fields with the given field number
|
|
* in the buffer.
|
|
* @param {!Uint8Array} buffer The buffer to scan.
|
|
* @param {number} start The starting point in the buffer to scan.
|
|
* @param {number} end The end point in the buffer to scan.
|
|
* @param {number} field The field number to count.
|
|
* @return {number} The number of matching fields in the buffer.
|
|
*/
|
|
jspb.utils.countDelimitedFields = function(buffer, start, end, field) {
|
|
var count = 0;
|
|
var cursor = start;
|
|
var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED;
|
|
|
|
while (cursor < end) {
|
|
// Skip the field tag, or exit if we find a non-matching tag.
|
|
var temp = tag;
|
|
while (temp > 128) {
|
|
if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;
|
|
temp >>= 7;
|
|
}
|
|
if (buffer[cursor++] != temp) return count;
|
|
|
|
// Field tag matches, we've found a valid field.
|
|
count++;
|
|
|
|
// Decode the length prefix.
|
|
var length = 0;
|
|
var shift = 1;
|
|
while (1) {
|
|
temp = buffer[cursor++];
|
|
length += (temp & 0x7f) * shift;
|
|
shift *= 128;
|
|
if ((temp & 0x80) == 0) break;
|
|
}
|
|
|
|
// Advance the cursor past the blob.
|
|
cursor += length;
|
|
}
|
|
return count;
|
|
};
|
|
|
|
|
|
/**
|
|
* String-ify bytes for text format. Should be optimized away in non-debug.
|
|
* The returned string uses \xXX escapes for all values and is itself quoted.
|
|
* [1, 31] serializes to '"\x01\x1f"'.
|
|
* @param {jspb.ByteSource} byteSource The bytes to serialize.
|
|
* @return {string} Stringified bytes for text format.
|
|
*/
|
|
jspb.utils.debugBytesToTextFormat = function(byteSource) {
|
|
var s = '"';
|
|
if (byteSource) {
|
|
var bytes = jspb.utils.byteSourceToUint8Array(byteSource);
|
|
for (var i = 0; i < bytes.length; i++) {
|
|
s += '\\x';
|
|
if (bytes[i] < 16) s += '0';
|
|
s += bytes[i].toString(16);
|
|
}
|
|
}
|
|
return s + '"';
|
|
};
|
|
|
|
|
|
/**
|
|
* String-ify a scalar for text format. Should be optimized away in non-debug.
|
|
* @param {string|number|boolean} scalar The scalar to stringify.
|
|
* @return {string} Stringified scalar for text format.
|
|
*/
|
|
jspb.utils.debugScalarToTextFormat = function(scalar) {
|
|
if (goog.isString(scalar)) {
|
|
return goog.string.quote(scalar);
|
|
} else {
|
|
return scalar.toString();
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Utility function: convert a string with codepoints 0--255 inclusive to a
|
|
* Uint8Array. If any codepoints greater than 255 exist in the string, throws an
|
|
* exception.
|
|
* @param {string} str
|
|
* @return {!Uint8Array}
|
|
*/
|
|
jspb.utils.stringToByteArray = function(str) {
|
|
var arr = new Uint8Array(str.length);
|
|
for (var i = 0; i < str.length; i++) {
|
|
var codepoint = str.charCodeAt(i);
|
|
if (codepoint > 255) {
|
|
throw new Error('Conversion error: string contains codepoint ' +
|
|
'outside of byte range');
|
|
}
|
|
arr[i] = codepoint;
|
|
}
|
|
return arr;
|
|
};
|
|
|
|
|
|
/**
|
|
* Converts any type defined in jspb.ByteSource into a Uint8Array.
|
|
* @param {!jspb.ByteSource} data
|
|
* @return {!Uint8Array}
|
|
* @suppress {invalidCasts}
|
|
*/
|
|
jspb.utils.byteSourceToUint8Array = function(data) {
|
|
if (data.constructor === Uint8Array) {
|
|
return /** @type {!Uint8Array} */(data);
|
|
}
|
|
|
|
if (data.constructor === ArrayBuffer) {
|
|
data = /** @type {!ArrayBuffer} */(data);
|
|
return /** @type {!Uint8Array} */(new Uint8Array(data));
|
|
}
|
|
|
|
if (data.constructor === Array) {
|
|
data = /** @type {!Array.<number>} */(data);
|
|
return /** @type {!Uint8Array} */(new Uint8Array(data));
|
|
}
|
|
|
|
if (data.constructor === String) {
|
|
data = /** @type {string} */(data);
|
|
return goog.crypt.base64.decodeStringToUint8Array(data);
|
|
}
|
|
|
|
goog.asserts.fail('Type not convertible to Uint8Array.');
|
|
return /** @type {!Uint8Array} */(new Uint8Array(0));
|
|
};
|