986 lines
34 KiB
C
986 lines
34 KiB
C
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2014 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "protobuf.h"
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Parsing.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
|
|
|
|
// Creates a handlerdata that simply contains the offset for this field.
|
|
static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {
|
|
size_t* hd_ofs = ALLOC(size_t);
|
|
*hd_ofs = ofs;
|
|
upb_handlers_addcleanup(h, hd_ofs, free);
|
|
return hd_ofs;
|
|
}
|
|
|
|
typedef struct {
|
|
size_t ofs;
|
|
const upb_msgdef *md;
|
|
} submsg_handlerdata_t;
|
|
|
|
// Creates a handlerdata that contains offset and submessage type information.
|
|
static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,
|
|
const upb_fielddef* f) {
|
|
submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
|
|
hd->ofs = ofs;
|
|
hd->md = upb_fielddef_msgsubdef(f);
|
|
upb_handlers_addcleanup(h, hd, free);
|
|
return hd;
|
|
}
|
|
|
|
// A handler that starts a repeated field. Gets the Repeated*Field instance for
|
|
// this field (such an instance always exists even in an empty message).
|
|
static void *startseq_handler(void* closure, const void* hd) {
|
|
MessageHeader* msg = closure;
|
|
const size_t *ofs = hd;
|
|
return (void*)DEREF(Message_data(msg), *ofs, VALUE);
|
|
}
|
|
|
|
// Handlers that append primitive values to a repeated field (a regular Ruby
|
|
// array for now).
|
|
#define DEFINE_APPEND_HANDLER(type, ctype) \
|
|
static bool append##type##_handler(void *closure, const void *hd, \
|
|
ctype val) { \
|
|
VALUE ary = (VALUE)closure; \
|
|
RepeatedField_push_native(ary, &val); \
|
|
return true; \
|
|
}
|
|
|
|
DEFINE_APPEND_HANDLER(bool, bool)
|
|
DEFINE_APPEND_HANDLER(int32, int32_t)
|
|
DEFINE_APPEND_HANDLER(uint32, uint32_t)
|
|
DEFINE_APPEND_HANDLER(float, float)
|
|
DEFINE_APPEND_HANDLER(int64, int64_t)
|
|
DEFINE_APPEND_HANDLER(uint64, uint64_t)
|
|
DEFINE_APPEND_HANDLER(double, double)
|
|
|
|
// Appends a string to a repeated field (a regular Ruby array for now).
|
|
static void* appendstr_handler(void *closure,
|
|
const void *hd,
|
|
size_t size_hint) {
|
|
VALUE ary = (VALUE)closure;
|
|
VALUE str = rb_str_new2("");
|
|
rb_enc_associate(str, kRubyStringUtf8Encoding);
|
|
RepeatedField_push(ary, str);
|
|
return (void*)str;
|
|
}
|
|
|
|
// Appends a 'bytes' string to a repeated field (a regular Ruby array for now).
|
|
static void* appendbytes_handler(void *closure,
|
|
const void *hd,
|
|
size_t size_hint) {
|
|
VALUE ary = (VALUE)closure;
|
|
VALUE str = rb_str_new2("");
|
|
rb_enc_associate(str, kRubyString8bitEncoding);
|
|
RepeatedField_push(ary, str);
|
|
return (void*)str;
|
|
}
|
|
|
|
// Sets a non-repeated string field in a message.
|
|
static void* str_handler(void *closure,
|
|
const void *hd,
|
|
size_t size_hint) {
|
|
MessageHeader* msg = closure;
|
|
const size_t *ofs = hd;
|
|
VALUE str = rb_str_new2("");
|
|
rb_enc_associate(str, kRubyStringUtf8Encoding);
|
|
DEREF(Message_data(msg), *ofs, VALUE) = str;
|
|
return (void*)str;
|
|
}
|
|
|
|
// Sets a non-repeated 'bytes' field in a message.
|
|
static void* bytes_handler(void *closure,
|
|
const void *hd,
|
|
size_t size_hint) {
|
|
MessageHeader* msg = closure;
|
|
const size_t *ofs = hd;
|
|
VALUE str = rb_str_new2("");
|
|
rb_enc_associate(str, kRubyString8bitEncoding);
|
|
DEREF(Message_data(msg), *ofs, VALUE) = str;
|
|
return (void*)str;
|
|
}
|
|
|
|
static size_t stringdata_handler(void* closure, const void* hd,
|
|
const char* str, size_t len,
|
|
const upb_bufhandle* handle) {
|
|
VALUE rb_str = (VALUE)closure;
|
|
rb_str_cat(rb_str, str, len);
|
|
return len;
|
|
}
|
|
|
|
// Appends a submessage to a repeated field (a regular Ruby array for now).
|
|
static void *appendsubmsg_handler(void *closure, const void *hd) {
|
|
VALUE ary = (VALUE)closure;
|
|
const submsg_handlerdata_t *submsgdata = hd;
|
|
VALUE subdesc =
|
|
get_def_obj((void*)submsgdata->md);
|
|
VALUE subklass = Descriptor_msgclass(subdesc);
|
|
|
|
VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
|
|
RepeatedField_push(ary, submsg_rb);
|
|
|
|
MessageHeader* submsg;
|
|
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
|
|
return submsg;
|
|
}
|
|
|
|
// Sets a non-repeated submessage field in a message.
|
|
static void *submsg_handler(void *closure, const void *hd) {
|
|
MessageHeader* msg = closure;
|
|
const submsg_handlerdata_t* submsgdata = hd;
|
|
VALUE subdesc =
|
|
get_def_obj((void*)submsgdata->md);
|
|
VALUE subklass = Descriptor_msgclass(subdesc);
|
|
|
|
if (DEREF(Message_data(msg), submsgdata->ofs, VALUE) == Qnil) {
|
|
DEREF(Message_data(msg), submsgdata->ofs, VALUE) =
|
|
rb_class_new_instance(0, NULL, subklass);
|
|
}
|
|
|
|
VALUE submsg_rb = DEREF(Message_data(msg), submsgdata->ofs, VALUE);
|
|
MessageHeader* submsg;
|
|
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
|
|
return submsg;
|
|
}
|
|
|
|
// Handler data for startmap/endmap handlers.
|
|
typedef struct {
|
|
size_t ofs;
|
|
upb_fieldtype_t key_field_type;
|
|
upb_fieldtype_t value_field_type;
|
|
VALUE value_field_typeclass;
|
|
} map_handlerdata_t;
|
|
|
|
// Temporary frame for map parsing: at the beginning of a map entry message, a
|
|
// submsg handler allocates a frame to hold (i) a reference to the Map object
|
|
// into which this message will be inserted and (ii) storage slots to
|
|
// temporarily hold the key and value for this map entry until the end of the
|
|
// submessage. When the submessage ends, another handler is called to insert the
|
|
// value into the map.
|
|
typedef struct {
|
|
VALUE map;
|
|
char key_storage[NATIVE_SLOT_MAX_SIZE];
|
|
char value_storage[NATIVE_SLOT_MAX_SIZE];
|
|
} map_parse_frame_t;
|
|
|
|
// Handler to begin a map entry: allocates a temporary frame. This is the
|
|
// 'startsubmsg' handler on the msgdef that contains the map field.
|
|
static void *startmapentry_handler(void *closure, const void *hd) {
|
|
MessageHeader* msg = closure;
|
|
const map_handlerdata_t* mapdata = hd;
|
|
VALUE map_rb = DEREF(Message_data(msg), mapdata->ofs, VALUE);
|
|
|
|
map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
|
|
frame->map = map_rb;
|
|
|
|
native_slot_init(mapdata->key_field_type, &frame->key_storage);
|
|
native_slot_init(mapdata->value_field_type, &frame->value_storage);
|
|
|
|
return frame;
|
|
}
|
|
|
|
// Handler to end a map entry: inserts the value defined during the message into
|
|
// the map. This is the 'endmsg' handler on the map entry msgdef.
|
|
static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
|
|
map_parse_frame_t* frame = closure;
|
|
const map_handlerdata_t* mapdata = hd;
|
|
|
|
VALUE key = native_slot_get(
|
|
mapdata->key_field_type, Qnil,
|
|
&frame->key_storage);
|
|
VALUE value = native_slot_get(
|
|
mapdata->value_field_type, mapdata->value_field_typeclass,
|
|
&frame->value_storage);
|
|
|
|
Map_index_set(frame->map, key, value);
|
|
free(frame);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Allocates a new map_handlerdata_t given the map entry message definition. If
|
|
// the offset of the field within the parent message is also given, that is
|
|
// added to the handler data as well. Note that this is called *twice* per map
|
|
// field: once in the parent message handler setup when setting the startsubmsg
|
|
// handler and once in the map entry message handler setup when setting the
|
|
// key/value and endmsg handlers. The reason is that there is no easy way to
|
|
// pass the handlerdata down to the sub-message handler setup.
|
|
static map_handlerdata_t* new_map_handlerdata(
|
|
size_t ofs,
|
|
const upb_msgdef* mapentry_def) {
|
|
|
|
map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
|
|
hd->ofs = ofs;
|
|
const upb_fielddef* key_field = upb_msgdef_itof(mapentry_def,
|
|
MAP_KEY_FIELD);
|
|
assert(key_field != NULL);
|
|
hd->key_field_type = upb_fielddef_type(key_field);
|
|
const upb_fielddef* value_field = upb_msgdef_itof(mapentry_def,
|
|
MAP_VALUE_FIELD);
|
|
assert(value_field != NULL);
|
|
hd->value_field_type = upb_fielddef_type(value_field);
|
|
hd->value_field_typeclass = field_type_class(value_field);
|
|
|
|
return hd;
|
|
}
|
|
|
|
// Set up handlers for a repeated field.
|
|
static void add_handlers_for_repeated_field(upb_handlers *h,
|
|
const upb_fielddef *f,
|
|
size_t offset) {
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
|
|
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
|
|
upb_handlers_setstartseq(h, f, startseq_handler, &attr);
|
|
upb_handlerattr_uninit(&attr);
|
|
|
|
switch (upb_fielddef_type(f)) {
|
|
|
|
#define SET_HANDLER(utype, ltype) \
|
|
case utype: \
|
|
upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
|
|
break;
|
|
|
|
SET_HANDLER(UPB_TYPE_BOOL, bool);
|
|
SET_HANDLER(UPB_TYPE_INT32, int32);
|
|
SET_HANDLER(UPB_TYPE_UINT32, uint32);
|
|
SET_HANDLER(UPB_TYPE_ENUM, int32);
|
|
SET_HANDLER(UPB_TYPE_FLOAT, float);
|
|
SET_HANDLER(UPB_TYPE_INT64, int64);
|
|
SET_HANDLER(UPB_TYPE_UINT64, uint64);
|
|
SET_HANDLER(UPB_TYPE_DOUBLE, double);
|
|
|
|
#undef SET_HANDLER
|
|
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES: {
|
|
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
|
|
upb_handlers_setstartstr(h, f, is_bytes ?
|
|
appendbytes_handler : appendstr_handler,
|
|
NULL);
|
|
upb_handlers_setstring(h, f, stringdata_handler, NULL);
|
|
break;
|
|
}
|
|
case UPB_TYPE_MESSAGE: {
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
|
|
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
|
|
upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
|
|
upb_handlerattr_uninit(&attr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set up handlers for a singular field.
|
|
static void add_handlers_for_singular_field(upb_handlers *h,
|
|
const upb_fielddef *f,
|
|
size_t offset) {
|
|
switch (upb_fielddef_type(f)) {
|
|
case UPB_TYPE_BOOL:
|
|
case UPB_TYPE_INT32:
|
|
case UPB_TYPE_UINT32:
|
|
case UPB_TYPE_ENUM:
|
|
case UPB_TYPE_FLOAT:
|
|
case UPB_TYPE_INT64:
|
|
case UPB_TYPE_UINT64:
|
|
case UPB_TYPE_DOUBLE:
|
|
// The shim writes directly at the given offset (instead of using
|
|
// DEREF()) so we need to add the msg overhead.
|
|
upb_shim_set(h, f, offset + sizeof(MessageHeader), -1);
|
|
break;
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES: {
|
|
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
|
|
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
|
|
upb_handlers_setstartstr(h, f,
|
|
is_bytes ? bytes_handler : str_handler,
|
|
&attr);
|
|
upb_handlers_setstring(h, f, stringdata_handler, &attr);
|
|
upb_handlerattr_uninit(&attr);
|
|
break;
|
|
}
|
|
case UPB_TYPE_MESSAGE: {
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
|
|
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));
|
|
upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
|
|
upb_handlerattr_uninit(&attr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adds handlers to a map field.
|
|
static void add_handlers_for_mapfield(upb_handlers* h,
|
|
const upb_fielddef* fielddef,
|
|
size_t offset) {
|
|
const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
|
|
map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef);
|
|
upb_handlers_addcleanup(h, hd, free);
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
|
|
upb_handlerattr_sethandlerdata(&attr, hd);
|
|
upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
|
|
upb_handlerattr_uninit(&attr);
|
|
}
|
|
|
|
// Adds handlers to a map-entry msgdef.
|
|
static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
|
|
upb_handlers* h) {
|
|
const upb_fielddef* key_field = map_entry_key(msgdef);
|
|
const upb_fielddef* value_field = map_entry_value(msgdef);
|
|
map_handlerdata_t* hd = new_map_handlerdata(0, msgdef);
|
|
upb_handlers_addcleanup(h, hd, free);
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
|
|
upb_handlerattr_sethandlerdata(&attr, hd);
|
|
upb_handlers_setendmsg(h, endmap_handler, &attr);
|
|
|
|
add_handlers_for_singular_field(
|
|
h, key_field,
|
|
// Convert the offset into map_parse_frame_t to an offset understood by the
|
|
// singular field handlers, so that we don't have to use special
|
|
// map-key/value-specific handlers. The ordinary singular field handlers expect
|
|
// a Message* and assume offset is relative to the data section at the end, so
|
|
// we compensate for that addition.
|
|
offsetof(map_parse_frame_t, key_storage) - sizeof(MessageHeader));
|
|
add_handlers_for_singular_field(
|
|
h, value_field,
|
|
offsetof(map_parse_frame_t, value_storage) - sizeof(MessageHeader));
|
|
}
|
|
|
|
static void add_handlers_for_message(const void *closure, upb_handlers *h) {
|
|
const upb_msgdef* msgdef = upb_handlers_msgdef(h);
|
|
Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
|
|
|
|
// If this is a mapentry message type, set up a special set of handlers and
|
|
// bail out of the normal (user-defined) message type handling.
|
|
if (upb_msgdef_mapentry(msgdef)) {
|
|
add_handlers_for_mapentry(msgdef, h);
|
|
return;
|
|
}
|
|
|
|
// Ensure layout exists. We may be invoked to create handlers for a given
|
|
// message if we are included as a submsg of another message type before our
|
|
// class is actually built, so to work around this, we just create the layout
|
|
// (and handlers, in the class-building function) on-demand.
|
|
if (desc->layout == NULL) {
|
|
desc->layout = create_layout(desc->msgdef);
|
|
}
|
|
|
|
upb_msg_iter i;
|
|
|
|
for (upb_msg_begin(&i, desc->msgdef);
|
|
!upb_msg_done(&i);
|
|
upb_msg_next(&i)) {
|
|
const upb_fielddef *f = upb_msg_iter_field(&i);
|
|
size_t offset = desc->layout->offsets[upb_fielddef_index(f)];
|
|
|
|
if (is_map_field(f)) {
|
|
add_handlers_for_mapfield(h, f, offset);
|
|
} else if (upb_fielddef_isseq(f)) {
|
|
add_handlers_for_repeated_field(h, f, offset);
|
|
} else {
|
|
add_handlers_for_singular_field(h, f, offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Creates upb handlers for populating a message.
|
|
static const upb_handlers *new_fill_handlers(Descriptor* desc,
|
|
const void* owner) {
|
|
// TODO(cfallin, haberman): once upb gets a caching/memoization layer for
|
|
// handlers, reuse subdef handlers so that e.g. if we already parse
|
|
// B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
|
|
// parse A-with-field-of-type-B-with-field-of-type-C.
|
|
return upb_handlers_newfrozen(desc->msgdef, owner,
|
|
add_handlers_for_message, NULL);
|
|
}
|
|
|
|
// Constructs the handlers for filling a message's data into an in-memory
|
|
// object.
|
|
const upb_handlers* get_fill_handlers(Descriptor* desc) {
|
|
if (!desc->fill_handlers) {
|
|
desc->fill_handlers =
|
|
new_fill_handlers(desc, &desc->fill_handlers);
|
|
}
|
|
return desc->fill_handlers;
|
|
}
|
|
|
|
// Constructs the upb decoder method for parsing messages of this type.
|
|
// This is called from the message class creation code.
|
|
const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
|
|
const void* owner) {
|
|
const upb_handlers* handlers = get_fill_handlers(desc);
|
|
upb_pbdecodermethodopts opts;
|
|
upb_pbdecodermethodopts_init(&opts, handlers);
|
|
|
|
const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner);
|
|
return ret;
|
|
}
|
|
|
|
static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
|
|
if (desc->fill_method == NULL) {
|
|
desc->fill_method = new_fillmsg_decodermethod(
|
|
desc, &desc->fill_method);
|
|
}
|
|
return desc->fill_method;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.decode(data) => message
|
|
*
|
|
* Decodes the given data (as a string containing bytes in protocol buffers wire
|
|
* format) under the interpretration given by this message class's definition
|
|
* and returns a message object with the corresponding field values.
|
|
*/
|
|
VALUE Message_decode(VALUE klass, VALUE data) {
|
|
VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar);
|
|
Descriptor* desc = ruby_to_Descriptor(descriptor);
|
|
VALUE msgklass = Descriptor_msgclass(descriptor);
|
|
|
|
if (TYPE(data) != T_STRING) {
|
|
rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
|
|
}
|
|
|
|
VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass);
|
|
MessageHeader* msg;
|
|
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
|
|
|
|
const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
|
|
const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
|
|
upb_pbdecoder decoder;
|
|
upb_sink sink;
|
|
upb_status status = UPB_STATUS_INIT;
|
|
|
|
upb_pbdecoder_init(&decoder, method, &status);
|
|
upb_sink_reset(&sink, h, msg);
|
|
upb_pbdecoder_resetoutput(&decoder, &sink);
|
|
upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
|
|
upb_pbdecoder_input(&decoder));
|
|
|
|
upb_pbdecoder_uninit(&decoder);
|
|
if (!upb_ok(&status)) {
|
|
rb_raise(rb_eRuntimeError, "Error occurred during parsing: %s.",
|
|
upb_status_errmsg(&status));
|
|
}
|
|
|
|
return msg_rb;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.decode_json(data) => message
|
|
*
|
|
* Decodes the given data (as a string containing bytes in protocol buffers wire
|
|
* format) under the interpretration given by this message class's definition
|
|
* and returns a message object with the corresponding field values.
|
|
*/
|
|
VALUE Message_decode_json(VALUE klass, VALUE data) {
|
|
VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar);
|
|
Descriptor* desc = ruby_to_Descriptor(descriptor);
|
|
VALUE msgklass = Descriptor_msgclass(descriptor);
|
|
|
|
if (TYPE(data) != T_STRING) {
|
|
rb_raise(rb_eArgError, "Expected string for JSON data.");
|
|
}
|
|
// TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
|
|
// convert, because string handlers pass data directly to message string
|
|
// fields.
|
|
|
|
VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass);
|
|
MessageHeader* msg;
|
|
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
|
|
|
|
upb_status status = UPB_STATUS_INIT;
|
|
upb_json_parser parser;
|
|
upb_json_parser_init(&parser, &status);
|
|
|
|
upb_sink sink;
|
|
upb_sink_reset(&sink, get_fill_handlers(desc), msg);
|
|
upb_json_parser_resetoutput(&parser, &sink);
|
|
upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
|
|
upb_json_parser_input(&parser));
|
|
|
|
upb_json_parser_uninit(&parser);
|
|
if (!upb_ok(&status)) {
|
|
rb_raise(rb_eRuntimeError, "Error occurred during parsing: %s.",
|
|
upb_status_errmsg(&status));
|
|
}
|
|
|
|
return msg_rb;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Serializing.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// The code below also comes from upb's prototype Ruby binding, developed by
|
|
// haberman@.
|
|
|
|
/* stringsink *****************************************************************/
|
|
|
|
// This should probably be factored into a common upb component.
|
|
|
|
typedef struct {
|
|
upb_byteshandler handler;
|
|
upb_bytessink sink;
|
|
char *ptr;
|
|
size_t len, size;
|
|
} stringsink;
|
|
|
|
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
|
|
stringsink *sink = _sink;
|
|
sink->len = 0;
|
|
return sink;
|
|
}
|
|
|
|
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
|
|
size_t len, const upb_bufhandle *handle) {
|
|
UPB_UNUSED(hd);
|
|
UPB_UNUSED(handle);
|
|
|
|
stringsink *sink = _sink;
|
|
size_t new_size = sink->size;
|
|
|
|
while (sink->len + len > new_size) {
|
|
new_size *= 2;
|
|
}
|
|
|
|
if (new_size != sink->size) {
|
|
sink->ptr = realloc(sink->ptr, new_size);
|
|
sink->size = new_size;
|
|
}
|
|
|
|
memcpy(sink->ptr + sink->len, ptr, len);
|
|
sink->len += len;
|
|
|
|
return len;
|
|
}
|
|
|
|
void stringsink_init(stringsink *sink) {
|
|
upb_byteshandler_init(&sink->handler);
|
|
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
|
|
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
|
|
|
|
upb_bytessink_reset(&sink->sink, &sink->handler, sink);
|
|
|
|
sink->size = 32;
|
|
sink->ptr = malloc(sink->size);
|
|
sink->len = 0;
|
|
}
|
|
|
|
void stringsink_uninit(stringsink *sink) {
|
|
free(sink->ptr);
|
|
}
|
|
|
|
/* msgvisitor *****************************************************************/
|
|
|
|
// TODO: If/when we support proto2 semantics in addition to the current proto3
|
|
// semantics, which means that we have true field presence, we will want to
|
|
// modify msgvisitor so that it emits all present fields rather than all
|
|
// non-default-value fields.
|
|
//
|
|
// Likewise, when implementing JSON serialization, we may need to have a
|
|
// 'verbose' mode that outputs all fields and a 'concise' mode that outputs only
|
|
// those with non-default values.
|
|
|
|
static void putmsg(VALUE msg, const Descriptor* desc,
|
|
upb_sink *sink, int depth);
|
|
|
|
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
|
|
upb_selector_t ret;
|
|
bool ok = upb_handlers_getselector(f, type, &ret);
|
|
UPB_ASSERT_VAR(ok, ok);
|
|
return ret;
|
|
}
|
|
|
|
static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
|
|
if (str == Qnil) return;
|
|
|
|
assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
|
|
upb_sink subsink;
|
|
|
|
// Ensure that the string has the correct encoding. We also check at field-set
|
|
// time, but the user may have mutated the string object since then.
|
|
native_slot_validate_string_encoding(upb_fielddef_type(f), str);
|
|
|
|
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
|
|
&subsink);
|
|
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
|
|
RSTRING_LEN(str), NULL);
|
|
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
|
|
}
|
|
|
|
static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
|
|
int depth) {
|
|
if (submsg == Qnil) return;
|
|
|
|
upb_sink subsink;
|
|
VALUE descriptor = rb_iv_get(submsg, kDescriptorInstanceVar);
|
|
Descriptor* subdesc = ruby_to_Descriptor(descriptor);
|
|
|
|
upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
|
|
putmsg(submsg, subdesc, &subsink, depth + 1);
|
|
upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
|
|
}
|
|
|
|
static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
|
|
int depth) {
|
|
if (ary == Qnil) return;
|
|
|
|
upb_sink subsink;
|
|
|
|
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
|
|
|
|
upb_fieldtype_t type = upb_fielddef_type(f);
|
|
upb_selector_t sel = 0;
|
|
if (upb_fielddef_isprimitive(f)) {
|
|
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
|
|
}
|
|
|
|
int size = NUM2INT(RepeatedField_length(ary));
|
|
for (int i = 0; i < size; i++) {
|
|
void* memory = RepeatedField_index_native(ary, i);
|
|
switch (type) {
|
|
#define T(upbtypeconst, upbtype, ctype) \
|
|
case upbtypeconst: \
|
|
upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \
|
|
break;
|
|
|
|
T(UPB_TYPE_FLOAT, float, float)
|
|
T(UPB_TYPE_DOUBLE, double, double)
|
|
T(UPB_TYPE_BOOL, bool, int8_t)
|
|
case UPB_TYPE_ENUM:
|
|
T(UPB_TYPE_INT32, int32, int32_t)
|
|
T(UPB_TYPE_UINT32, uint32, uint32_t)
|
|
T(UPB_TYPE_INT64, int64, int64_t)
|
|
T(UPB_TYPE_UINT64, uint64, uint64_t)
|
|
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
putstr(*((VALUE *)memory), f, &subsink);
|
|
break;
|
|
case UPB_TYPE_MESSAGE:
|
|
putsubmsg(*((VALUE *)memory), f, &subsink, depth);
|
|
break;
|
|
|
|
#undef T
|
|
|
|
}
|
|
}
|
|
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
|
|
}
|
|
|
|
static void put_ruby_value(VALUE value,
|
|
const upb_fielddef *f,
|
|
VALUE type_class,
|
|
int depth,
|
|
upb_sink *sink) {
|
|
upb_selector_t sel = 0;
|
|
if (upb_fielddef_isprimitive(f)) {
|
|
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
|
|
}
|
|
|
|
switch (upb_fielddef_type(f)) {
|
|
case UPB_TYPE_INT32:
|
|
upb_sink_putint32(sink, sel, NUM2INT(value));
|
|
break;
|
|
case UPB_TYPE_INT64:
|
|
upb_sink_putint64(sink, sel, NUM2LL(value));
|
|
break;
|
|
case UPB_TYPE_UINT32:
|
|
upb_sink_putuint32(sink, sel, NUM2UINT(value));
|
|
break;
|
|
case UPB_TYPE_UINT64:
|
|
upb_sink_putuint64(sink, sel, NUM2ULL(value));
|
|
break;
|
|
case UPB_TYPE_FLOAT:
|
|
upb_sink_putfloat(sink, sel, NUM2DBL(value));
|
|
break;
|
|
case UPB_TYPE_DOUBLE:
|
|
upb_sink_putdouble(sink, sel, NUM2DBL(value));
|
|
break;
|
|
case UPB_TYPE_ENUM: {
|
|
if (TYPE(value) == T_SYMBOL) {
|
|
value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
|
|
}
|
|
upb_sink_putint32(sink, sel, NUM2INT(value));
|
|
break;
|
|
}
|
|
case UPB_TYPE_BOOL:
|
|
upb_sink_putbool(sink, sel, value == Qtrue);
|
|
break;
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
putstr(value, f, sink);
|
|
break;
|
|
case UPB_TYPE_MESSAGE:
|
|
putsubmsg(value, f, sink, depth);
|
|
}
|
|
}
|
|
|
|
static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
|
|
int depth) {
|
|
if (map == Qnil) return;
|
|
Map* self = ruby_to_Map(map);
|
|
|
|
upb_sink subsink;
|
|
|
|
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
|
|
|
|
assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
|
|
const upb_fielddef* key_field = map_field_key(f);
|
|
const upb_fielddef* value_field = map_field_value(f);
|
|
|
|
Map_iter it;
|
|
for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
|
|
VALUE key = Map_iter_key(&it);
|
|
VALUE value = Map_iter_value(&it);
|
|
|
|
upb_sink entry_sink;
|
|
upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), &entry_sink);
|
|
upb_sink_startmsg(&entry_sink);
|
|
|
|
put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink);
|
|
put_ruby_value(value, value_field, self->value_type_class, depth + 1,
|
|
&entry_sink);
|
|
|
|
upb_status status;
|
|
upb_sink_endmsg(&entry_sink, &status);
|
|
upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
|
|
}
|
|
|
|
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
|
|
}
|
|
|
|
static void putmsg(VALUE msg_rb, const Descriptor* desc,
|
|
upb_sink *sink, int depth) {
|
|
upb_sink_startmsg(sink);
|
|
|
|
// Protect against cycles (possible because users may freely reassign message
|
|
// and repeated fields) by imposing a maximum recursion depth.
|
|
if (depth > UPB_SINK_MAX_NESTING) {
|
|
rb_raise(rb_eRuntimeError,
|
|
"Maximum recursion depth exceeded during encoding.");
|
|
}
|
|
|
|
MessageHeader* msg;
|
|
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
|
|
void* msg_data = Message_data(msg);
|
|
|
|
upb_msg_iter i;
|
|
for (upb_msg_begin(&i, desc->msgdef);
|
|
!upb_msg_done(&i);
|
|
upb_msg_next(&i)) {
|
|
upb_fielddef *f = upb_msg_iter_field(&i);
|
|
uint32_t offset = desc->layout->offsets[upb_fielddef_index(f)];
|
|
|
|
if (is_map_field(f)) {
|
|
VALUE map = DEREF(msg_data, offset, VALUE);
|
|
if (map != Qnil) {
|
|
putmap(map, f, sink, depth);
|
|
}
|
|
} else if (upb_fielddef_isseq(f)) {
|
|
VALUE ary = DEREF(msg_data, offset, VALUE);
|
|
if (ary != Qnil) {
|
|
putary(ary, f, sink, depth);
|
|
}
|
|
} else if (upb_fielddef_isstring(f)) {
|
|
VALUE str = DEREF(msg_data, offset, VALUE);
|
|
if (RSTRING_LEN(str) > 0) {
|
|
putstr(str, f, sink);
|
|
}
|
|
} else if (upb_fielddef_issubmsg(f)) {
|
|
putsubmsg(DEREF(msg_data, offset, VALUE), f, sink, depth);
|
|
} else {
|
|
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
|
|
|
|
#define T(upbtypeconst, upbtype, ctype, default_value) \
|
|
case upbtypeconst: { \
|
|
ctype value = DEREF(msg_data, offset, ctype); \
|
|
if (value != default_value) { \
|
|
upb_sink_put##upbtype(sink, sel, value); \
|
|
} \
|
|
} \
|
|
break;
|
|
|
|
switch (upb_fielddef_type(f)) {
|
|
T(UPB_TYPE_FLOAT, float, float, 0.0)
|
|
T(UPB_TYPE_DOUBLE, double, double, 0.0)
|
|
T(UPB_TYPE_BOOL, bool, uint8_t, 0)
|
|
case UPB_TYPE_ENUM:
|
|
T(UPB_TYPE_INT32, int32, int32_t, 0)
|
|
T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
|
|
T(UPB_TYPE_INT64, int64, int64_t, 0)
|
|
T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
|
|
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
|
|
}
|
|
|
|
#undef T
|
|
|
|
}
|
|
}
|
|
|
|
upb_status status;
|
|
upb_sink_endmsg(sink, &status);
|
|
}
|
|
|
|
static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
|
|
if (desc->pb_serialize_handlers == NULL) {
|
|
desc->pb_serialize_handlers =
|
|
upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
|
|
}
|
|
return desc->pb_serialize_handlers;
|
|
}
|
|
|
|
static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) {
|
|
if (desc->json_serialize_handlers == NULL) {
|
|
desc->json_serialize_handlers =
|
|
upb_json_printer_newhandlers(
|
|
desc->msgdef, &desc->json_serialize_handlers);
|
|
}
|
|
return desc->json_serialize_handlers;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.encode(msg) => bytes
|
|
*
|
|
* Encodes the given message object to its serialized form in protocol buffers
|
|
* wire format.
|
|
*/
|
|
VALUE Message_encode(VALUE klass, VALUE msg_rb) {
|
|
VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar);
|
|
Descriptor* desc = ruby_to_Descriptor(descriptor);
|
|
|
|
stringsink sink;
|
|
stringsink_init(&sink);
|
|
|
|
const upb_handlers* serialize_handlers =
|
|
msgdef_pb_serialize_handlers(desc);
|
|
|
|
upb_pb_encoder encoder;
|
|
upb_pb_encoder_init(&encoder, serialize_handlers);
|
|
upb_pb_encoder_resetoutput(&encoder, &sink.sink);
|
|
|
|
putmsg(msg_rb, desc, upb_pb_encoder_input(&encoder), 0);
|
|
|
|
VALUE ret = rb_str_new(sink.ptr, sink.len);
|
|
|
|
upb_pb_encoder_uninit(&encoder);
|
|
stringsink_uninit(&sink);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.encode_json(msg) => json_string
|
|
*
|
|
* Encodes the given message object into its serialized JSON representation.
|
|
*/
|
|
VALUE Message_encode_json(VALUE klass, VALUE msg_rb) {
|
|
VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar);
|
|
Descriptor* desc = ruby_to_Descriptor(descriptor);
|
|
|
|
stringsink sink;
|
|
stringsink_init(&sink);
|
|
|
|
const upb_handlers* serialize_handlers =
|
|
msgdef_json_serialize_handlers(desc);
|
|
|
|
upb_json_printer printer;
|
|
upb_json_printer_init(&printer, serialize_handlers);
|
|
upb_json_printer_resetoutput(&printer, &sink.sink);
|
|
|
|
putmsg(msg_rb, desc, upb_json_printer_input(&printer), 0);
|
|
|
|
VALUE ret = rb_str_new(sink.ptr, sink.len);
|
|
|
|
upb_json_printer_uninit(&printer);
|
|
stringsink_uninit(&sink);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Google::Protobuf.encode(msg) => bytes
|
|
*
|
|
* Encodes the given message object to protocol buffers wire format. This is an
|
|
* alternative to the #encode method on msg's class.
|
|
*/
|
|
VALUE Google_Protobuf_encode(VALUE self, VALUE msg_rb) {
|
|
VALUE klass = CLASS_OF(msg_rb);
|
|
return Message_encode(klass, msg_rb);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Google::Protobuf.encode_json(msg) => json_string
|
|
*
|
|
* Encodes the given message object to its JSON representation. This is an
|
|
* alternative to the #encode_json method on msg's class.
|
|
*/
|
|
VALUE Google_Protobuf_encode_json(VALUE self, VALUE msg_rb) {
|
|
VALUE klass = CLASS_OF(msg_rb);
|
|
return Message_encode_json(klass, msg_rb);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Google::Protobuf.decode(class, bytes) => msg
|
|
*
|
|
* Decodes the given bytes as protocol buffers wire format under the
|
|
* interpretation given by the given class's message definition. This is an
|
|
* alternative to the #decode method on the given class.
|
|
*/
|
|
VALUE Google_Protobuf_decode(VALUE self, VALUE klass, VALUE msg_rb) {
|
|
return Message_decode(klass, msg_rb);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Google::Protobuf.decode_json(class, json_string) => msg
|
|
*
|
|
* Decodes the given JSON string under the interpretation given by the given
|
|
* class's message definition. This is an alternative to the #decode_json method
|
|
* on the given class.
|
|
*/
|
|
VALUE Google_Protobuf_decode_json(VALUE self, VALUE klass, VALUE msg_rb) {
|
|
return Message_decode_json(klass, msg_rb);
|
|
}
|