protobuf/conformance/conformance_test.cc
Thomas Van Lenten 80f65d2df8 Add note about JSON tests maybe being wrong. (#1992)
Add note about JSON tests maybe being wrong.

- Add note about the JSON test maybe not being correct yet.
- Add test to checks the generated names for double underscores to be sure they
  are what is expected.
2016-08-23 08:19:45 -04:00

2244 lines
73 KiB
C++

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdarg.h>
#include <string>
#include <fstream>
#include "conformance.pb.h"
#include "conformance_test.h"
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/util/json_util.h>
#include <google/protobuf/util/field_comparator.h>
#include <google/protobuf/util/message_differencer.h>
#include <google/protobuf/util/type_resolver_util.h>
#include <google/protobuf/wire_format_lite.h>
#include "third_party/jsoncpp/json.h"
using conformance::ConformanceRequest;
using conformance::ConformanceResponse;
using conformance::TestAllTypes;
using conformance::WireFormat;
using google::protobuf::Descriptor;
using google::protobuf::FieldDescriptor;
using google::protobuf::internal::WireFormatLite;
using google::protobuf::TextFormat;
using google::protobuf::util::DefaultFieldComparator;
using google::protobuf::util::JsonToBinaryString;
using google::protobuf::util::MessageDifferencer;
using google::protobuf::util::NewTypeResolverForDescriptorPool;
using google::protobuf::util::Status;
using std::string;
namespace {
static const char kTypeUrlPrefix[] = "type.googleapis.com";
static string GetTypeUrl(const Descriptor* message) {
return string(kTypeUrlPrefix) + "/" + message->full_name();
}
/* Routines for building arbitrary protos *************************************/
// We would use CodedOutputStream except that we want more freedom to build
// arbitrary protos (even invalid ones).
const string empty;
string cat(const string& a, const string& b,
const string& c = empty,
const string& d = empty,
const string& e = empty,
const string& f = empty,
const string& g = empty,
const string& h = empty,
const string& i = empty,
const string& j = empty,
const string& k = empty,
const string& l = empty) {
string ret;
ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() +
g.size() + h.size() + i.size() + j.size() + k.size() + l.size());
ret.append(a);
ret.append(b);
ret.append(c);
ret.append(d);
ret.append(e);
ret.append(f);
ret.append(g);
ret.append(h);
ret.append(i);
ret.append(j);
ret.append(k);
ret.append(l);
return ret;
}
// The maximum number of bytes that it takes to encode a 64-bit varint.
#define VARINT_MAX_LEN 10
size_t vencode64(uint64_t val, char *buf) {
if (val == 0) { buf[0] = 0; return 1; }
size_t i = 0;
while (val) {
uint8_t byte = val & 0x7fU;
val >>= 7;
if (val) byte |= 0x80U;
buf[i++] = byte;
}
return i;
}
string varint(uint64_t x) {
char buf[VARINT_MAX_LEN];
size_t len = vencode64(x, buf);
return string(buf, len);
}
// TODO: proper byte-swapping for big-endian machines.
string fixed32(void *data) { return string(static_cast<char*>(data), 4); }
string fixed64(void *data) { return string(static_cast<char*>(data), 8); }
string delim(const string& buf) { return cat(varint(buf.size()), buf); }
string uint32(uint32_t u32) { return fixed32(&u32); }
string uint64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); }
string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); }
string tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
string submsg(uint32_t fn, const string& buf) {
return cat( tag(fn, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(buf) );
}
#define UNKNOWN_FIELD 666
uint32_t GetFieldNumberForType(FieldDescriptor::Type type, bool repeated) {
const Descriptor* d = TestAllTypes().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->type() == type && f->is_repeated() == repeated) {
return f->number();
}
}
GOOGLE_LOG(FATAL) << "Couldn't find field with type " << (int)type;
return 0;
}
string UpperCase(string str) {
for (int i = 0; i < str.size(); i++) {
str[i] = toupper(str[i]);
}
return str;
}
} // anonymous namespace
namespace google {
namespace protobuf {
void ConformanceTestSuite::ReportSuccess(const string& test_name) {
if (expected_to_fail_.erase(test_name) != 0) {
StringAppendF(&output_,
"ERROR: test %s is in the failure list, but test succeeded. "
"Remove it from the failure list.\n",
test_name.c_str());
unexpected_succeeding_tests_.insert(test_name);
}
successes_++;
}
void ConformanceTestSuite::ReportFailure(const string& test_name,
const ConformanceRequest& request,
const ConformanceResponse& response,
const char* fmt, ...) {
if (expected_to_fail_.erase(test_name) == 1) {
expected_failures_++;
if (!verbose_)
return;
} else {
StringAppendF(&output_, "ERROR, test=%s: ", test_name.c_str());
unexpected_failing_tests_.insert(test_name);
}
va_list args;
va_start(args, fmt);
StringAppendV(&output_, fmt, args);
va_end(args);
StringAppendF(&output_, " request=%s, response=%s\n",
request.ShortDebugString().c_str(),
response.ShortDebugString().c_str());
}
void ConformanceTestSuite::ReportSkip(const string& test_name,
const ConformanceRequest& request,
const ConformanceResponse& response) {
if (verbose_) {
StringAppendF(&output_, "SKIPPED, test=%s request=%s, response=%s\n",
test_name.c_str(), request.ShortDebugString().c_str(),
response.ShortDebugString().c_str());
}
skipped_.insert(test_name);
}
void ConformanceTestSuite::RunTest(const string& test_name,
const ConformanceRequest& request,
ConformanceResponse* response) {
if (test_names_.insert(test_name).second == false) {
GOOGLE_LOG(FATAL) << "Duplicated test name: " << test_name;
}
string serialized_request;
string serialized_response;
request.SerializeToString(&serialized_request);
runner_->RunTest(test_name, serialized_request, &serialized_response);
if (!response->ParseFromString(serialized_response)) {
response->Clear();
response->set_runtime_error("response proto could not be parsed.");
}
if (verbose_) {
StringAppendF(&output_, "conformance test: name=%s, request=%s, response=%s\n",
test_name.c_str(),
request.ShortDebugString().c_str(),
response->ShortDebugString().c_str());
}
}
void ConformanceTestSuite::RunValidInputTest(
const string& test_name, const string& input, WireFormat input_format,
const string& equivalent_text_format, WireFormat requested_output) {
TestAllTypes reference_message;
GOOGLE_CHECK(
TextFormat::ParseFromString(equivalent_text_format, &reference_message))
<< "Failed to parse data for test case: " << test_name
<< ", data: " << equivalent_text_format;
ConformanceRequest request;
ConformanceResponse response;
switch (input_format) {
case conformance::PROTOBUF:
request.set_protobuf_payload(input);
break;
case conformance::JSON:
request.set_json_payload(input);
break;
default:
GOOGLE_LOG(FATAL) << "Unspecified input format";
}
request.set_requested_output_format(requested_output);
RunTest(test_name, request, &response);
TestAllTypes test_message;
switch (response.result_case()) {
case ConformanceResponse::RESULT_NOT_SET:
ReportFailure(test_name, request, response,
"Response didn't have any field in the Response.");
return;
case ConformanceResponse::kParseError:
case ConformanceResponse::kRuntimeError:
case ConformanceResponse::kSerializeError:
ReportFailure(test_name, request, response,
"Failed to parse input or produce output.");
return;
case ConformanceResponse::kSkipped:
ReportSkip(test_name, request, response);
return;
case ConformanceResponse::kJsonPayload: {
if (requested_output != conformance::JSON) {
ReportFailure(
test_name, request, response,
"Test was asked for protobuf output but provided JSON instead.");
return;
}
string binary_protobuf;
Status status =
JsonToBinaryString(type_resolver_.get(), type_url_,
response.json_payload(), &binary_protobuf);
if (!status.ok()) {
ReportFailure(test_name, request, response,
"JSON output we received from test was unparseable.");
return;
}
if (!test_message.ParseFromString(binary_protobuf)) {
ReportFailure(test_name, request, response,
"INTERNAL ERROR: internal JSON->protobuf transcode "
"yielded unparseable proto.");
return;
}
break;
}
case ConformanceResponse::kProtobufPayload: {
if (requested_output != conformance::PROTOBUF) {
ReportFailure(
test_name, request, response,
"Test was asked for JSON output but provided protobuf instead.");
return;
}
if (!test_message.ParseFromString(response.protobuf_payload())) {
ReportFailure(test_name, request, response,
"Protobuf output we received from test was unparseable.");
return;
}
break;
}
default:
GOOGLE_LOG(FATAL) << test_name << ": unknown payload type: "
<< response.result_case();
}
MessageDifferencer differencer;
DefaultFieldComparator field_comparator;
field_comparator.set_treat_nan_as_equal(true);
differencer.set_field_comparator(&field_comparator);
string differences;
differencer.ReportDifferencesToString(&differences);
if (differencer.Compare(reference_message, test_message)) {
ReportSuccess(test_name);
} else {
ReportFailure(test_name, request, response,
"Output was not equivalent to reference message: %s.",
differences.c_str());
}
}
// Expect that this precise protobuf will cause a parse error.
void ConformanceTestSuite::ExpectParseFailureForProto(
const string& proto, const string& test_name) {
ConformanceRequest request;
ConformanceResponse response;
request.set_protobuf_payload(proto);
string effective_test_name = "ProtobufInput." + test_name;
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
request.set_requested_output_format(conformance::PROTOBUF);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, request, response,
"Should have failed to parse, but didn't.");
}
}
// Expect that this protobuf will cause a parse error, even if it is followed
// by valid protobuf data. We can try running this twice: once with this
// data verbatim and once with this data followed by some valid data.
//
// TODO(haberman): implement the second of these.
void ConformanceTestSuite::ExpectHardParseFailureForProto(
const string& proto, const string& test_name) {
return ExpectParseFailureForProto(proto, test_name);
}
void ConformanceTestSuite::RunValidJsonTest(
const string& test_name, const string& input_json,
const string& equivalent_text_format) {
RunValidInputTest("JsonInput." + test_name + ".ProtobufOutput", input_json,
conformance::JSON, equivalent_text_format,
conformance::PROTOBUF);
RunValidInputTest("JsonInput." + test_name + ".JsonOutput", input_json,
conformance::JSON, equivalent_text_format,
conformance::JSON);
}
void ConformanceTestSuite::RunValidJsonTestWithProtobufInput(
const string& test_name, const TestAllTypes& input,
const string& equivalent_text_format) {
RunValidInputTest("ProtobufInput." + test_name + ".JsonOutput",
input.SerializeAsString(), conformance::PROTOBUF,
equivalent_text_format, conformance::JSON);
}
void ConformanceTestSuite::RunValidProtobufTest(
const string& test_name, const TestAllTypes& input,
const string& equivalent_text_format) {
RunValidInputTest("ProtobufInput." + test_name + ".ProtobufOutput",
input.SerializeAsString(), conformance::PROTOBUF,
equivalent_text_format, conformance::PROTOBUF);
RunValidInputTest("ProtobufInput." + test_name + ".JsonOutput",
input.SerializeAsString(), conformance::PROTOBUF,
equivalent_text_format, conformance::JSON);
}
// According to proto3 JSON specification, JSON serializers follow more strict
// rules than parsers (e.g., a serializer must serialize int32 values as JSON
// numbers while the parser is allowed to accept them as JSON strings). This
// method allows strict checking on a proto3 JSON serializer by inspecting
// the JSON output directly.
void ConformanceTestSuite::RunValidJsonTestWithValidator(
const string& test_name, const string& input_json,
const Validator& validator) {
ConformanceRequest request;
ConformanceResponse response;
request.set_json_payload(input_json);
request.set_requested_output_format(conformance::JSON);
string effective_test_name = "JsonInput." + test_name + ".Validator";
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
return;
}
if (response.result_case() != ConformanceResponse::kJsonPayload) {
ReportFailure(effective_test_name, request, response,
"Expected JSON payload but got type %d.",
response.result_case());
return;
}
Json::Reader reader;
Json::Value value;
if (!reader.parse(response.json_payload(), value)) {
ReportFailure(effective_test_name, request, response,
"JSON payload cannot be parsed as valid JSON: %s",
reader.getFormattedErrorMessages().c_str());
return;
}
if (!validator(value)) {
ReportFailure(effective_test_name, request, response,
"JSON payload validation failed.");
return;
}
ReportSuccess(effective_test_name);
}
void ConformanceTestSuite::ExpectParseFailureForJson(
const string& test_name, const string& input_json) {
ConformanceRequest request;
ConformanceResponse response;
request.set_json_payload(input_json);
string effective_test_name = "JsonInput." + test_name;
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
request.set_requested_output_format(conformance::JSON);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, request, response,
"Should have failed to parse, but didn't.");
}
}
void ConformanceTestSuite::ExpectSerializeFailureForJson(
const string& test_name, const string& text_format) {
TestAllTypes payload_message;
GOOGLE_CHECK(
TextFormat::ParseFromString(text_format, &payload_message))
<< "Failed to parse: " << text_format;
ConformanceRequest request;
ConformanceResponse response;
request.set_protobuf_payload(payload_message.SerializeAsString());
string effective_test_name = test_name + ".JsonOutput";
request.set_requested_output_format(conformance::JSON);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSerializeError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, request, response,
"Should have failed to serialize, but didn't.");
}
}
void ConformanceTestSuite::TestPrematureEOFForType(FieldDescriptor::Type type) {
// Incomplete values for each wire type.
static const string incompletes[6] = {
string("\x80"), // VARINT
string("abcdefg"), // 64BIT
string("\x80"), // DELIMITED (partial length)
string(), // START_GROUP (no value required)
string(), // END_GROUP (no value required)
string("abc") // 32BIT
};
uint32_t fieldnum = GetFieldNumberForType(type, false);
uint32_t rep_fieldnum = GetFieldNumberForType(type, true);
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
const string& incomplete = incompletes[wire_type];
const string type_name =
UpperCase(string(".") + FieldDescriptor::TypeName(type));
ExpectParseFailureForProto(
tag(fieldnum, wire_type),
"PrematureEofBeforeKnownNonRepeatedValue" + type_name);
ExpectParseFailureForProto(
tag(rep_fieldnum, wire_type),
"PrematureEofBeforeKnownRepeatedValue" + type_name);
ExpectParseFailureForProto(
tag(UNKNOWN_FIELD, wire_type),
"PrematureEofBeforeUnknownValue" + type_name);
ExpectParseFailureForProto(
cat( tag(fieldnum, wire_type), incomplete ),
"PrematureEofInsideKnownNonRepeatedValue" + type_name);
ExpectParseFailureForProto(
cat( tag(rep_fieldnum, wire_type), incomplete ),
"PrematureEofInsideKnownRepeatedValue" + type_name);
ExpectParseFailureForProto(
cat( tag(UNKNOWN_FIELD, wire_type), incomplete ),
"PrematureEofInsideUnknownValue" + type_name);
if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
ExpectParseFailureForProto(
cat( tag(fieldnum, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForKnownNonRepeatedValue" + type_name);
ExpectParseFailureForProto(
cat( tag(rep_fieldnum, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForKnownRepeatedValue" + type_name);
// EOF in the middle of delimited data for unknown value.
ExpectParseFailureForProto(
cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForUnknownValue" + type_name);
if (type == FieldDescriptor::TYPE_MESSAGE) {
// Submessage ends in the middle of a value.
string incomplete_submsg =
cat( tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT),
incompletes[WireFormatLite::WIRETYPE_VARINT] );
ExpectHardParseFailureForProto(
cat( tag(fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete_submsg.size()),
incomplete_submsg ),
"PrematureEofInSubmessageValue" + type_name);
}
} else if (type != FieldDescriptor::TYPE_GROUP) {
// Non-delimited, non-group: eligible for packing.
// Packed region ends in the middle of a value.
ExpectHardParseFailureForProto(
cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete.size()),
incomplete ),
"PrematureEofInPackedFieldValue" + type_name);
// EOF in the middle of packed region.
ExpectParseFailureForProto(
cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(1) ),
"PrematureEofInPackedField" + type_name);
}
}
void ConformanceTestSuite::SetFailureList(const string& filename,
const vector<string>& failure_list) {
failure_list_filename_ = filename;
expected_to_fail_.clear();
std::copy(failure_list.begin(), failure_list.end(),
std::inserter(expected_to_fail_, expected_to_fail_.end()));
}
bool ConformanceTestSuite::CheckSetEmpty(const set<string>& set_to_check,
const std::string& write_to_file,
const std::string& msg) {
if (set_to_check.empty()) {
return true;
} else {
StringAppendF(&output_, "\n");
StringAppendF(&output_, "%s\n\n", msg.c_str());
for (set<string>::const_iterator iter = set_to_check.begin();
iter != set_to_check.end(); ++iter) {
StringAppendF(&output_, " %s\n", iter->c_str());
}
StringAppendF(&output_, "\n");
if (!write_to_file.empty()) {
std::ofstream os(write_to_file);
if (os) {
for (set<string>::const_iterator iter = set_to_check.begin();
iter != set_to_check.end(); ++iter) {
os << *iter << "\n";
}
} else {
StringAppendF(&output_, "Failed to open file: %s\n",
write_to_file.c_str());
}
}
return false;
}
}
bool ConformanceTestSuite::RunSuite(ConformanceTestRunner* runner,
std::string* output) {
runner_ = runner;
successes_ = 0;
expected_failures_ = 0;
skipped_.clear();
test_names_.clear();
unexpected_failing_tests_.clear();
unexpected_succeeding_tests_.clear();
type_resolver_.reset(NewTypeResolverForDescriptorPool(
kTypeUrlPrefix, DescriptorPool::generated_pool()));
type_url_ = GetTypeUrl(TestAllTypes::descriptor());
output_ = "\nCONFORMANCE TEST BEGIN ====================================\n\n";
for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) {
if (i == FieldDescriptor::TYPE_GROUP) continue;
TestPrematureEOFForType(static_cast<FieldDescriptor::Type>(i));
}
RunValidJsonTest("HelloWorld", "{\"optionalString\":\"Hello, World!\"}",
"optional_string: 'Hello, World!'");
// NOTE: The spec for JSON support is still being sorted out, these may not
// all be correct.
// Test field name conventions.
RunValidJsonTest(
"FieldNameInSnakeCase",
R"({
"fieldname1": 1,
"fieldName2": 2,
"fieldName3": 3,
"fieldName4": 4
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field__name4_: 4
)");
RunValidJsonTest(
"FieldNameWithNumbers",
R"({
"field0name5": 5,
"field0Name6": 6
})",
R"(
field0name5: 5
field_0_name6: 6
)");
RunValidJsonTest(
"FieldNameWithMixedCases",
R"({
"fieldName7": 7,
"fieldName8": 8,
"fieldName9": 9,
"fieldName10": 10,
"fIELDNAME11": 11,
"fIELDName12": 12
})",
R"(
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
)");
RunValidJsonTest(
"FieldNameWithDoubleUnderscores",
R"({
"fieldName13": 13,
"fieldName14": 14,
"fieldName15": 15,
"fieldName16": 16,
"fieldName17": 17,
"fieldName18": 18
})",
R"(
__field_name13: 13
__Field_name14: 14
field__name15: 15
field__Name16: 16
field_name17__: 17
Field_name18__: 18
)");
// Using the original proto field name in JSON is also allowed.
RunValidJsonTest(
"OriginalProtoFieldName",
R"({
"fieldname1": 1,
"field_name2": 2,
"_field_name3": 3,
"field__name4_": 4,
"field0name5": 5,
"field_0_name6": 6,
"fieldName7": 7,
"FieldName8": 8,
"field_Name9": 9,
"Field_Name10": 10,
"FIELD_NAME11": 11,
"FIELD_name12": 12,
"__field_name13": 13,
"__Field_name14": 14,
"field__name15": 15,
"field__Name16": 16,
"field_name17__": 17,
"Field_name18__": 18
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field__name4_: 4
field0name5: 5
field_0_name6: 6
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
__field_name13: 13
__Field_name14: 14
field__name15: 15
field__Name16: 16
field_name17__: 17
Field_name18__: 18
)");
// Field names can be escaped.
RunValidJsonTest(
"FieldNameEscaped",
R"({"fieldn\u0061me1": 1})",
"fieldname1: 1");
// String ends with escape character.
ExpectParseFailureForJson(
"StringEndsWithEscapeChar",
"{\"optionalString\": \"abc\\");
// Field names must be quoted (or it's not valid JSON).
ExpectParseFailureForJson(
"FieldNameNotQuoted",
"{fieldname1: 1}");
// Trailing comma is not allowed (not valid JSON).
ExpectParseFailureForJson(
"TrailingCommaInAnObject",
R"({"fieldname1":1,})");
ExpectParseFailureForJson(
"TrailingCommaInAnObjectWithSpace",
R"({"fieldname1":1 ,})");
ExpectParseFailureForJson(
"TrailingCommaInAnObjectWithSpaceCommaSpace",
R"({"fieldname1":1 , })");
ExpectParseFailureForJson(
"TrailingCommaInAnObjectWithNewlines",
R"({
"fieldname1":1,
})");
// JSON doesn't support comments.
ExpectParseFailureForJson(
"JsonWithComments",
R"({
// This is a comment.
"fieldname1": 1
})");
// JSON spec says whitespace doesn't matter, so try a few spacings to be sure.
RunValidJsonTest(
"OneLineNoSpaces",
"{\"optionalInt32\":1,\"optionalInt64\":2}",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"OneLineWithSpaces",
"{ \"optionalInt32\" : 1 , \"optionalInt64\" : 2 }",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"MultilineNoSpaces",
"{\n\"optionalInt32\"\n:\n1\n,\n\"optionalInt64\"\n:\n2\n}",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"MultilineWithSpaces",
"{\n \"optionalInt32\" : 1\n ,\n \"optionalInt64\" : 2\n}\n",
R"(
optional_int32: 1
optional_int64: 2
)");
// Missing comma between key/value pairs.
ExpectParseFailureForJson(
"MissingCommaOneLine",
"{ \"optionalInt32\": 1 \"optionalInt64\": 2 }");
ExpectParseFailureForJson(
"MissingCommaMultiline",
"{\n \"optionalInt32\": 1\n \"optionalInt64\": 2\n}");
// Duplicated field names are not allowed.
ExpectParseFailureForJson(
"FieldNameDuplicate",
R"({
"optionalNestedMessage": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson(
"FieldNameDuplicateDifferentCasing1",
R"({
"optional_nested_message": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson(
"FieldNameDuplicateDifferentCasing2",
R"({
"optionalNestedMessage": {a: 1},
"optional_nested_message": {}
})");
// NOTE: The spec for JSON support is still being sorted out, these may not
// all be correct.
// Serializers should use lowerCamelCase by default.
RunValidJsonTestWithValidator(
"FieldNameInLowerCamelCase",
R"({
"fieldname1": 1,
"fieldName2": 2,
"fieldName3": 3,
"fieldName4": 4
})",
[](const Json::Value& value) {
return value.isMember("fieldname1") &&
value.isMember("fieldName2") &&
value.isMember("fieldName3") &&
value.isMember("fieldName4");
});
RunValidJsonTestWithValidator(
"FieldNameWithNumbers",
R"({
"field0name5": 5,
"field0Name6": 6
})",
[](const Json::Value& value) {
return value.isMember("field0name5") &&
value.isMember("field0Name6");
});
RunValidJsonTestWithValidator(
"FieldNameWithMixedCases",
R"({
"fieldName7": 7,
"fieldName8": 8,
"fieldName9": 9,
"fieldName10": 10,
"fIELDNAME11": 11,
"fIELDName12": 12
})",
[](const Json::Value& value) {
return value.isMember("fieldName7") &&
value.isMember("fieldName8") &&
value.isMember("fieldName9") &&
value.isMember("fieldName10") &&
value.isMember("fIELDNAME11") &&
value.isMember("fIELDName12");
});
RunValidJsonTestWithValidator(
"FieldNameWithDoubleUnderscores",
R"({
"fieldName13": 13,
"fieldName14": 14,
"fieldName15": 15,
"fieldName16": 16,
"fieldName17": 17,
"fieldName18": 18
})",
[](const Json::Value& value) {
return value.isMember("fieldName13") &&
value.isMember("fieldName14") &&
value.isMember("fieldName15") &&
value.isMember("fieldName16") &&
value.isMember("fieldName17") &&
value.isMember("fieldName18");
});
// Integer fields.
RunValidJsonTest(
"Int32FieldMaxValue",
R"({"optionalInt32": 2147483647})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldMinValue",
R"({"optionalInt32": -2147483648})",
"optional_int32: -2147483648");
RunValidJsonTest(
"Uint32FieldMaxValue",
R"({"optionalUint32": 4294967295})",
"optional_uint32: 4294967295");
RunValidJsonTest(
"Int64FieldMaxValue",
R"({"optionalInt64": "9223372036854775807"})",
"optional_int64: 9223372036854775807");
RunValidJsonTest(
"Int64FieldMinValue",
R"({"optionalInt64": "-9223372036854775808"})",
"optional_int64: -9223372036854775808");
RunValidJsonTest(
"Uint64FieldMaxValue",
R"({"optionalUint64": "18446744073709551615"})",
"optional_uint64: 18446744073709551615");
// While not the largest Int64, this is the largest
// Int64 which can be exactly represented within an
// IEEE-754 64-bit float, which is the expected level
// of interoperability guarantee. Larger values may
// work in some implementations, but should not be
// relied upon.
RunValidJsonTest(
"Int64FieldMaxValueNotQuoted",
R"({"optionalInt64": 9223372036854774784})",
"optional_int64: 9223372036854774784");
RunValidJsonTest(
"Int64FieldMinValueNotQuoted",
R"({"optionalInt64": -9223372036854775808})",
"optional_int64: -9223372036854775808");
// Largest interoperable Uint64; see comment above
// for Int64FieldMaxValueNotQuoted.
RunValidJsonTest(
"Uint64FieldMaxValueNotQuoted",
R"({"optionalUint64": 18446744073709549568})",
"optional_uint64: 18446744073709549568");
// Values can be represented as JSON strings.
RunValidJsonTest(
"Int32FieldStringValue",
R"({"optionalInt32": "2147483647"})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldStringValueEscaped",
R"({"optionalInt32": "2\u003147483647"})",
"optional_int32: 2147483647");
// Parsers reject out-of-bound integer values.
ExpectParseFailureForJson(
"Int32FieldTooLarge",
R"({"optionalInt32": 2147483648})");
ExpectParseFailureForJson(
"Int32FieldTooSmall",
R"({"optionalInt32": -2147483649})");
ExpectParseFailureForJson(
"Uint32FieldTooLarge",
R"({"optionalUint32": 4294967296})");
ExpectParseFailureForJson(
"Int64FieldTooLarge",
R"({"optionalInt64": "9223372036854775808"})");
ExpectParseFailureForJson(
"Int64FieldTooSmall",
R"({"optionalInt64": "-9223372036854775809"})");
ExpectParseFailureForJson(
"Uint64FieldTooLarge",
R"({"optionalUint64": "18446744073709551616"})");
// Parser reject non-integer numeric values as well.
ExpectParseFailureForJson(
"Int32FieldNotInteger",
R"({"optionalInt32": 0.5})");
ExpectParseFailureForJson(
"Uint32FieldNotInteger",
R"({"optionalUint32": 0.5})");
ExpectParseFailureForJson(
"Int64FieldNotInteger",
R"({"optionalInt64": "0.5"})");
ExpectParseFailureForJson(
"Uint64FieldNotInteger",
R"({"optionalUint64": "0.5"})");
// Integers but represented as float values are accepted.
RunValidJsonTest(
"Int32FieldFloatTrailingZero",
R"({"optionalInt32": 100000.000})",
"optional_int32: 100000");
RunValidJsonTest(
"Int32FieldExponentialFormat",
R"({"optionalInt32": 1e5})",
"optional_int32: 100000");
RunValidJsonTest(
"Int32FieldMaxFloatValue",
R"({"optionalInt32": 2.147483647e9})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldMinFloatValue",
R"({"optionalInt32": -2.147483648e9})",
"optional_int32: -2147483648");
RunValidJsonTest(
"Uint32FieldMaxFloatValue",
R"({"optionalUint32": 4.294967295e9})",
"optional_uint32: 4294967295");
// Parser reject non-numeric values.
ExpectParseFailureForJson(
"Int32FieldNotNumber",
R"({"optionalInt32": "3x3"})");
ExpectParseFailureForJson(
"Uint32FieldNotNumber",
R"({"optionalUint32": "3x3"})");
ExpectParseFailureForJson(
"Int64FieldNotNumber",
R"({"optionalInt64": "3x3"})");
ExpectParseFailureForJson(
"Uint64FieldNotNumber",
R"({"optionalUint64": "3x3"})");
// JSON does not allow "+" on numric values.
ExpectParseFailureForJson(
"Int32FieldPlusSign",
R"({"optionalInt32": +1})");
// JSON doesn't allow leading 0s.
ExpectParseFailureForJson(
"Int32FieldLeadingZero",
R"({"optionalInt32": 01})");
ExpectParseFailureForJson(
"Int32FieldNegativeWithLeadingZero",
R"({"optionalInt32": -01})");
// String values must follow the same syntax rule. Specifically leading
// or traling spaces are not allowed.
ExpectParseFailureForJson(
"Int32FieldLeadingSpace",
R"({"optionalInt32": " 1"})");
ExpectParseFailureForJson(
"Int32FieldTrailingSpace",
R"({"optionalInt32": "1 "})");
// 64-bit values are serialized as strings.
RunValidJsonTestWithValidator(
"Int64FieldBeString",
R"({"optionalInt64": 1})",
[](const Json::Value& value) {
return value["optionalInt64"].type() == Json::stringValue &&
value["optionalInt64"].asString() == "1";
});
RunValidJsonTestWithValidator(
"Uint64FieldBeString",
R"({"optionalUint64": 1})",
[](const Json::Value& value) {
return value["optionalUint64"].type() == Json::stringValue &&
value["optionalUint64"].asString() == "1";
});
// Bool fields.
RunValidJsonTest(
"BoolFieldTrue",
R"({"optionalBool":true})",
"optional_bool: true");
RunValidJsonTest(
"BoolFieldFalse",
R"({"optionalBool":false})",
"optional_bool: false");
// Other forms are not allowed.
ExpectParseFailureForJson(
"BoolFieldIntegerZero",
R"({"optionalBool":0})");
ExpectParseFailureForJson(
"BoolFieldIntegerOne",
R"({"optionalBool":1})");
ExpectParseFailureForJson(
"BoolFieldCamelCaseTrue",
R"({"optionalBool":True})");
ExpectParseFailureForJson(
"BoolFieldCamelCaseFalse",
R"({"optionalBool":False})");
ExpectParseFailureForJson(
"BoolFieldAllCapitalTrue",
R"({"optionalBool":TRUE})");
ExpectParseFailureForJson(
"BoolFieldAllCapitalFalse",
R"({"optionalBool":FALSE})");
ExpectParseFailureForJson(
"BoolFieldDoubleQuotedTrue",
R"({"optionalBool":"true"})");
ExpectParseFailureForJson(
"BoolFieldDoubleQuotedFalse",
R"({"optionalBool":"false"})");
// Float fields.
RunValidJsonTest(
"FloatFieldMinPositiveValue",
R"({"optionalFloat": 1.175494e-38})",
"optional_float: 1.175494e-38");
RunValidJsonTest(
"FloatFieldMaxNegativeValue",
R"({"optionalFloat": -1.175494e-38})",
"optional_float: -1.175494e-38");
RunValidJsonTest(
"FloatFieldMaxPositiveValue",
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
RunValidJsonTest(
"FloatFieldMinNegativeValue",
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
// Values can be quoted.
RunValidJsonTest(
"FloatFieldQuotedValue",
R"({"optionalFloat": "1"})",
"optional_float: 1");
// Special values.
RunValidJsonTest(
"FloatFieldNan",
R"({"optionalFloat": "NaN"})",
"optional_float: nan");
RunValidJsonTest(
"FloatFieldInfinity",
R"({"optionalFloat": "Infinity"})",
"optional_float: inf");
RunValidJsonTest(
"FloatFieldNegativeInfinity",
R"({"optionalFloat": "-Infinity"})",
"optional_float: -inf");
// Non-cannonical Nan will be correctly normalized.
{
TestAllTypes message;
// IEEE floating-point standard 32-bit quiet NaN:
// 0111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(
WireFormatLite::DecodeFloat(0x7FA12345));
RunValidJsonTestWithProtobufInput(
"FloatFieldNormalizeQuietNan", message,
"optional_float: nan");
// IEEE floating-point standard 64-bit signaling NaN:
// 1111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(
WireFormatLite::DecodeFloat(0xFFB54321));
RunValidJsonTestWithProtobufInput(
"FloatFieldNormalizeSignalingNan", message,
"optional_float: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson(
"FloatFieldNanNotQuoted",
R"({"optionalFloat": NaN})");
ExpectParseFailureForJson(
"FloatFieldInfinityNotQuoted",
R"({"optionalFloat": Infinity})");
ExpectParseFailureForJson(
"FloatFieldNegativeInfinityNotQuoted",
R"({"optionalFloat": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson(
"FloatFieldTooSmall",
R"({"optionalFloat": -3.502823e+38})");
ExpectParseFailureForJson(
"FloatFieldTooLarge",
R"({"optionalFloat": 3.502823e+38})");
// Double fields.
RunValidJsonTest(
"DoubleFieldMinPositiveValue",
R"({"optionalDouble": 2.22507e-308})",
"optional_double: 2.22507e-308");
RunValidJsonTest(
"DoubleFieldMaxNegativeValue",
R"({"optionalDouble": -2.22507e-308})",
"optional_double: -2.22507e-308");
RunValidJsonTest(
"DoubleFieldMaxPositiveValue",
R"({"optionalDouble": 1.79769e+308})",
"optional_double: 1.79769e+308");
RunValidJsonTest(
"DoubleFieldMinNegativeValue",
R"({"optionalDouble": -1.79769e+308})",
"optional_double: -1.79769e+308");
// Values can be quoted.
RunValidJsonTest(
"DoubleFieldQuotedValue",
R"({"optionalDouble": "1"})",
"optional_double: 1");
// Speical values.
RunValidJsonTest(
"DoubleFieldNan",
R"({"optionalDouble": "NaN"})",
"optional_double: nan");
RunValidJsonTest(
"DoubleFieldInfinity",
R"({"optionalDouble": "Infinity"})",
"optional_double: inf");
RunValidJsonTest(
"DoubleFieldNegativeInfinity",
R"({"optionalDouble": "-Infinity"})",
"optional_double: -inf");
// Non-cannonical Nan will be correctly normalized.
{
TestAllTypes message;
message.set_optional_double(
WireFormatLite::DecodeDouble(0x7FFA123456789ABCLL));
RunValidJsonTestWithProtobufInput(
"DoubleFieldNormalizeQuietNan", message,
"optional_double: nan");
message.set_optional_double(
WireFormatLite::DecodeDouble(0xFFFBCBA987654321LL));
RunValidJsonTestWithProtobufInput(
"DoubleFieldNormalizeSignalingNan", message,
"optional_double: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson(
"DoubleFieldNanNotQuoted",
R"({"optionalDouble": NaN})");
ExpectParseFailureForJson(
"DoubleFieldInfinityNotQuoted",
R"({"optionalDouble": Infinity})");
ExpectParseFailureForJson(
"DoubleFieldNegativeInfinityNotQuoted",
R"({"optionalDouble": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson(
"DoubleFieldTooSmall",
R"({"optionalDouble": -1.89769e+308})");
ExpectParseFailureForJson(
"DoubleFieldTooLarge",
R"({"optionalDouble": +1.89769e+308})");
// Enum fields.
RunValidJsonTest(
"EnumField",
R"({"optionalNestedEnum": "FOO"})",
"optional_nested_enum: FOO");
// Enum values must be represented as strings.
ExpectParseFailureForJson(
"EnumFieldNotQuoted",
R"({"optionalNestedEnum": FOO})");
// Numeric values are allowed.
RunValidJsonTest(
"EnumFieldNumericValueZero",
R"({"optionalNestedEnum": 0})",
"optional_nested_enum: FOO");
RunValidJsonTest(
"EnumFieldNumericValueNonZero",
R"({"optionalNestedEnum": 1})",
"optional_nested_enum: BAR");
// Unknown enum values are represented as numeric values.
RunValidJsonTestWithValidator(
"EnumFieldUnknownValue",
R"({"optionalNestedEnum": 123})",
[](const Json::Value& value) {
return value["optionalNestedEnum"].type() == Json::intValue &&
value["optionalNestedEnum"].asInt() == 123;
});
// String fields.
RunValidJsonTest(
"StringField",
R"({"optionalString": "Hello world!"})",
"optional_string: \"Hello world!\"");
RunValidJsonTest(
"StringFieldUnicode",
// Google in Chinese.
R"({"optionalString": ""})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldEscape",
R"({"optionalString": "\"\\\/\b\f\n\r\t"})",
R"(optional_string: "\"\\/\b\f\n\r\t")");
RunValidJsonTest(
"StringFieldUnicodeEscape",
R"({"optionalString": "\u8C37\u6B4C"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldUnicodeEscapeWithLowercaseHexLetters",
R"({"optionalString": "\u8c37\u6b4c"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldSurrogatePair",
// The character is an emoji: grinning face with smiling eyes. 😁
R"({"optionalString": "\uD83D\uDE01"})",
R"(optional_string: "\xF0\x9F\x98\x81")");
// Unicode escapes must start with "\u" (lowercase u).
ExpectParseFailureForJson(
"StringFieldUppercaseEscapeLetter",
R"({"optionalString": "\U8C37\U6b4C"})");
ExpectParseFailureForJson(
"StringFieldInvalidEscape",
R"({"optionalString": "\uXXXX\u6B4C"})");
ExpectParseFailureForJson(
"StringFieldUnterminatedEscape",
R"({"optionalString": "\u8C3"})");
ExpectParseFailureForJson(
"StringFieldUnpairedHighSurrogate",
R"({"optionalString": "\uD800"})");
ExpectParseFailureForJson(
"StringFieldUnpairedLowSurrogate",
R"({"optionalString": "\uDC00"})");
ExpectParseFailureForJson(
"StringFieldSurrogateInWrongOrder",
R"({"optionalString": "\uDE01\uD83D"})");
ExpectParseFailureForJson(
"StringFieldNotAString",
R"({"optionalString": 12345})");
// Bytes fields.
RunValidJsonTest(
"BytesField",
R"({"optionalBytes": "AQI="})",
R"(optional_bytes: "\x01\x02")");
ExpectParseFailureForJson(
"BytesFieldNoPadding",
R"({"optionalBytes": "AQI"})");
ExpectParseFailureForJson(
"BytesFieldInvalidBase64Characters",
R"({"optionalBytes": "-_=="})");
// Message fields.
RunValidJsonTest(
"MessageField",
R"({"optionalNestedMessage": {"a": 1234}})",
"optional_nested_message: {a: 1234}");
// Oneof fields.
ExpectParseFailureForJson(
"OneofFieldDuplicate",
R"({"oneofUint32": 1, "oneofString": "test"})");
// Ensure zero values for oneof make it out/backs.
{
TestAllTypes message;
message.set_oneof_uint32(0);
RunValidProtobufTest(
"OneofZeroUint32", message, "oneof_uint32: 0");
message.mutable_oneof_nested_message()->set_a(0);
RunValidProtobufTest(
"OneofZeroMessage", message, "oneof_nested_message: {}");
message.set_oneof_string("");
RunValidProtobufTest(
"OneofZeroString", message, "oneof_string: \"\"");
message.set_oneof_bytes("");
RunValidProtobufTest(
"OneofZeroBytes", message, "oneof_bytes: \"\"");
message.set_oneof_bool(false);
RunValidProtobufTest(
"OneofZeroBool", message, "oneof_bool: false");
message.set_oneof_uint64(0);
RunValidProtobufTest(
"OneofZeroUint64", message, "oneof_uint64: 0");
message.set_oneof_float(0.0f);
RunValidProtobufTest(
"OneofZeroFloat", message, "oneof_float: 0");
message.set_oneof_double(0.0);
RunValidProtobufTest(
"OneofZeroDouble", message, "oneof_double: 0");
message.set_oneof_enum(TestAllTypes::FOO);
RunValidProtobufTest(
"OneofZeroEnum", message, "oneof_enum: FOO");
}
RunValidJsonTest(
"OneofZeroUint32",
R"({"oneofUint32": 0})", "oneof_uint32: 0");
RunValidJsonTest(
"OneofZeroMessage",
R"({"oneofNestedMessage": {}})", "oneof_nested_message: {}");
RunValidJsonTest(
"OneofZeroString",
R"({"oneofString": ""})", "oneof_string: \"\"");
RunValidJsonTest(
"OneofZeroBytes",
R"({"oneofBytes": ""})", "oneof_bytes: \"\"");
RunValidJsonTest(
"OneofZeroBool",
R"({"oneofBool": false})", "oneof_bool: false");
RunValidJsonTest(
"OneofZeroUint64",
R"({"oneofUint64": 0})", "oneof_uint64: 0");
RunValidJsonTest(
"OneofZeroFloat",
R"({"oneofFloat": 0.0})", "oneof_float: 0");
RunValidJsonTest(
"OneofZeroDouble",
R"({"oneofDouble": 0.0})", "oneof_double: 0");
RunValidJsonTest(
"OneofZeroEnum",
R"({"oneofEnum":"FOO"})", "oneof_enum: FOO");
// Repeated fields.
RunValidJsonTest(
"PrimitiveRepeatedField",
R"({"repeatedInt32": [1, 2, 3, 4]})",
"repeated_int32: [1, 2, 3, 4]");
RunValidJsonTest(
"EnumRepeatedField",
R"({"repeatedNestedEnum": ["FOO", "BAR", "BAZ"]})",
"repeated_nested_enum: [FOO, BAR, BAZ]");
RunValidJsonTest(
"StringRepeatedField",
R"({"repeatedString": ["Hello", "world"]})",
R"(repeated_string: ["Hello", "world"])");
RunValidJsonTest(
"BytesRepeatedField",
R"({"repeatedBytes": ["AAEC", "AQI="]})",
R"(repeated_bytes: ["\x00\x01\x02", "\x01\x02"])");
RunValidJsonTest(
"MessageRepeatedField",
R"({"repeatedNestedMessage": [{"a": 1234}, {"a": 5678}]})",
"repeated_nested_message: {a: 1234}"
"repeated_nested_message: {a: 5678}");
// Repeated field elements are of incorrect type.
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotBool",
R"({"repeatedInt32": [1, false, 3, 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotString",
R"({"repeatedInt32": [1, 2, "name", 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotMessage",
R"({"repeatedInt32": [1, 2, 3, {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotInt",
R"({"repeatedString": ["1", 2, "3", "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotBool",
R"({"repeatedString": ["1", "2", false, "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotMessage",
R"({"repeatedString": ["1", 2, "3", {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotInt",
R"({"repeatedNestedMessage": [{"a": 1}, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotBool",
R"({"repeatedNestedMessage": [{"a": 1}, false]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotString",
R"({"repeatedNestedMessage": [{"a": 1}, "2"]})");
// Trailing comma in the repeated field is not allowed.
ExpectParseFailureForJson(
"RepeatedFieldTrailingComma",
R"({"repeatedInt32": [1, 2, 3, 4,]})");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithSpace",
"{\"repeatedInt32\": [1, 2, 3, 4 ,]}");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithSpaceCommaSpace",
"{\"repeatedInt32\": [1, 2, 3, 4 , ]}");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithNewlines",
"{\"repeatedInt32\": [\n 1,\n 2,\n 3,\n 4,\n]}");
// Map fields.
RunValidJsonTest(
"Int32MapField",
R"({"mapInt32Int32": {"1": 2, "3": 4}})",
"map_int32_int32: {key: 1 value: 2}"
"map_int32_int32: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Int32MapFieldKeyNotQuoted",
R"({"mapInt32Int32": {1: 2, 3: 4}})");
RunValidJsonTest(
"Uint32MapField",
R"({"mapUint32Uint32": {"1": 2, "3": 4}})",
"map_uint32_uint32: {key: 1 value: 2}"
"map_uint32_uint32: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Uint32MapFieldKeyNotQuoted",
R"({"mapUint32Uint32": {1: 2, 3: 4}})");
RunValidJsonTest(
"Int64MapField",
R"({"mapInt64Int64": {"1": 2, "3": 4}})",
"map_int64_int64: {key: 1 value: 2}"
"map_int64_int64: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Int64MapFieldKeyNotQuoted",
R"({"mapInt64Int64": {1: 2, 3: 4}})");
RunValidJsonTest(
"Uint64MapField",
R"({"mapUint64Uint64": {"1": 2, "3": 4}})",
"map_uint64_uint64: {key: 1 value: 2}"
"map_uint64_uint64: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Uint64MapFieldKeyNotQuoted",
R"({"mapUint64Uint64": {1: 2, 3: 4}})");
RunValidJsonTest(
"BoolMapField",
R"({"mapBoolBool": {"true": true, "false": false}})",
"map_bool_bool: {key: true value: true}"
"map_bool_bool: {key: false value: false}");
ExpectParseFailureForJson(
"BoolMapFieldKeyNotQuoted",
R"({"mapBoolBool": {true: true, false: false}})");
RunValidJsonTest(
"MessageMapField",
R"({
"mapStringNestedMessage": {
"hello": {"a": 1234},
"world": {"a": 5678}
}
})",
R"(
map_string_nested_message: {
key: "hello"
value: {a: 1234}
}
map_string_nested_message: {
key: "world"
value: {a: 5678}
}
)");
// Since Map keys are represented as JSON strings, escaping should be allowed.
RunValidJsonTest(
"Int32MapEscapedKey",
R"({"mapInt32Int32": {"\u0031": 2}})",
"map_int32_int32: {key: 1 value: 2}");
RunValidJsonTest(
"Int64MapEscapedKey",
R"({"mapInt64Int64": {"\u0031": 2}})",
"map_int64_int64: {key: 1 value: 2}");
RunValidJsonTest(
"BoolMapEscapedKey",
R"({"mapBoolBool": {"tr\u0075e": true}})",
"map_bool_bool: {key: true value: true}");
// "null" is accepted for all fields types.
RunValidJsonTest(
"AllFieldAcceptNull",
R"({
"optionalInt32": null,
"optionalInt64": null,
"optionalUint32": null,
"optionalUint64": null,
"optionalBool": null,
"optionalString": null,
"optionalBytes": null,
"optionalNestedEnum": null,
"optionalNestedMessage": null,
"repeatedInt32": null,
"repeatedInt64": null,
"repeatedUint32": null,
"repeatedUint64": null,
"repeatedBool": null,
"repeatedString": null,
"repeatedBytes": null,
"repeatedNestedEnum": null,
"repeatedNestedMessage": null,
"mapInt32Int32": null,
"mapBoolBool": null,
"mapStringNestedMessage": null
})",
"");
// Repeated field elements cannot be null.
ExpectParseFailureForJson(
"RepeatedFieldPrimitiveElementIsNull",
R"({"repeatedInt32": [1, null, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldMessageElementIsNull",
R"({"repeatedNestedMessage": [{"a":1}, null, {"a":2}]})");
// Map field keys cannot be null.
ExpectParseFailureForJson(
"MapFieldKeyIsNull",
R"({"mapInt32Int32": {null: 1}})");
// Map field values cannot be null.
ExpectParseFailureForJson(
"MapFieldValueIsNull",
R"({"mapInt32Int32": {"0": null}})");
// http://www.rfc-editor.org/rfc/rfc7159.txt says strings have to use double
// quotes.
ExpectParseFailureForJson(
"StringFieldSingleQuoteKey",
R"({'optionalString': "Hello world!"})");
ExpectParseFailureForJson(
"StringFieldSingleQuoteValue",
R"({"optionalString": 'Hello world!'})");
ExpectParseFailureForJson(
"StringFieldSingleQuoteBoth",
R"({'optionalString': 'Hello world!'})");
// Wrapper types.
RunValidJsonTest(
"OptionalBoolWrapper",
R"({"optionalBoolWrapper": false})",
"optional_bool_wrapper: {value: false}");
RunValidJsonTest(
"OptionalInt32Wrapper",
R"({"optionalInt32Wrapper": 0})",
"optional_int32_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalUint32Wrapper",
R"({"optionalUint32Wrapper": 0})",
"optional_uint32_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalInt64Wrapper",
R"({"optionalInt64Wrapper": 0})",
"optional_int64_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalUint64Wrapper",
R"({"optionalUint64Wrapper": 0})",
"optional_uint64_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalFloatWrapper",
R"({"optionalFloatWrapper": 0})",
"optional_float_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalDoubleWrapper",
R"({"optionalDoubleWrapper": 0})",
"optional_double_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalStringWrapper",
R"({"optionalStringWrapper": ""})",
R"(optional_string_wrapper: {value: ""})");
RunValidJsonTest(
"OptionalBytesWrapper",
R"({"optionalBytesWrapper": ""})",
R"(optional_bytes_wrapper: {value: ""})");
RunValidJsonTest(
"OptionalWrapperTypesWithNonDefaultValue",
R"({
"optionalBoolWrapper": true,
"optionalInt32Wrapper": 1,
"optionalUint32Wrapper": 1,
"optionalInt64Wrapper": "1",
"optionalUint64Wrapper": "1",
"optionalFloatWrapper": 1,
"optionalDoubleWrapper": 1,
"optionalStringWrapper": "1",
"optionalBytesWrapper": "AQI="
})",
R"(
optional_bool_wrapper: {value: true}
optional_int32_wrapper: {value: 1}
optional_uint32_wrapper: {value: 1}
optional_int64_wrapper: {value: 1}
optional_uint64_wrapper: {value: 1}
optional_float_wrapper: {value: 1}
optional_double_wrapper: {value: 1}
optional_string_wrapper: {value: "1"}
optional_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest(
"RepeatedBoolWrapper",
R"({"repeatedBoolWrapper": [true, false]})",
"repeated_bool_wrapper: {value: true}"
"repeated_bool_wrapper: {value: false}");
RunValidJsonTest(
"RepeatedInt32Wrapper",
R"({"repeatedInt32Wrapper": [0, 1]})",
"repeated_int32_wrapper: {value: 0}"
"repeated_int32_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedUint32Wrapper",
R"({"repeatedUint32Wrapper": [0, 1]})",
"repeated_uint32_wrapper: {value: 0}"
"repeated_uint32_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedInt64Wrapper",
R"({"repeatedInt64Wrapper": [0, 1]})",
"repeated_int64_wrapper: {value: 0}"
"repeated_int64_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedUint64Wrapper",
R"({"repeatedUint64Wrapper": [0, 1]})",
"repeated_uint64_wrapper: {value: 0}"
"repeated_uint64_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedFloatWrapper",
R"({"repeatedFloatWrapper": [0, 1]})",
"repeated_float_wrapper: {value: 0}"
"repeated_float_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedDoubleWrapper",
R"({"repeatedDoubleWrapper": [0, 1]})",
"repeated_double_wrapper: {value: 0}"
"repeated_double_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedStringWrapper",
R"({"repeatedStringWrapper": ["", "AQI="]})",
R"(
repeated_string_wrapper: {value: ""}
repeated_string_wrapper: {value: "AQI="}
)");
RunValidJsonTest(
"RepeatedBytesWrapper",
R"({"repeatedBytesWrapper": ["", "AQI="]})",
R"(
repeated_bytes_wrapper: {value: ""}
repeated_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest(
"WrapperTypesWithNullValue",
R"({
"optionalBoolWrapper": null,
"optionalInt32Wrapper": null,
"optionalUint32Wrapper": null,
"optionalInt64Wrapper": null,
"optionalUint64Wrapper": null,
"optionalFloatWrapper": null,
"optionalDoubleWrapper": null,
"optionalStringWrapper": null,
"optionalBytesWrapper": null,
"repeatedBoolWrapper": null,
"repeatedInt32Wrapper": null,
"repeatedUint32Wrapper": null,
"repeatedInt64Wrapper": null,
"repeatedUint64Wrapper": null,
"repeatedFloatWrapper": null,
"repeatedDoubleWrapper": null,
"repeatedStringWrapper": null,
"repeatedBytesWrapper": null
})",
"");
// Duration
RunValidJsonTest(
"DurationMinValue",
R"({"optionalDuration": "-315576000000.999999999s"})",
"optional_duration: {seconds: -315576000000 nanos: -999999999}");
RunValidJsonTest(
"DurationMaxValue",
R"({"optionalDuration": "315576000000.999999999s"})",
"optional_duration: {seconds: 315576000000 nanos: 999999999}");
RunValidJsonTest(
"DurationRepeatedValue",
R"({"repeatedDuration": ["1.5s", "-1.5s"]})",
"repeated_duration: {seconds: 1 nanos: 500000000}"
"repeated_duration: {seconds: -1 nanos: -500000000}");
ExpectParseFailureForJson(
"DurationMissingS",
R"({"optionalDuration": "1"})");
ExpectParseFailureForJson(
"DurationJsonInputTooSmall",
R"({"optionalDuration": "-315576000001.000000000s"})");
ExpectParseFailureForJson(
"DurationJsonInputTooLarge",
R"({"optionalDuration": "315576000001.000000000s"})");
ExpectSerializeFailureForJson(
"DurationProtoInputTooSmall",
"optional_duration: {seconds: -315576000001 nanos: 0}");
ExpectSerializeFailureForJson(
"DurationProtoInputTooLarge",
"optional_duration: {seconds: 315576000001 nanos: 0}");
RunValidJsonTestWithValidator(
"DurationHasZeroFractionalDigit",
R"({"optionalDuration": "1.000000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1s";
});
RunValidJsonTestWithValidator(
"DurationHas3FractionalDigits",
R"({"optionalDuration": "1.010000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.010s";
});
RunValidJsonTestWithValidator(
"DurationHas6FractionalDigits",
R"({"optionalDuration": "1.000010000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000010s";
});
RunValidJsonTestWithValidator(
"DurationHas9FractionalDigits",
R"({"optionalDuration": "1.000000010s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000000010s";
});
// Timestamp
RunValidJsonTest(
"TimestampMinValue",
R"({"optionalTimestamp": "0001-01-01T00:00:00Z"})",
"optional_timestamp: {seconds: -62135596800}");
RunValidJsonTest(
"TimestampMaxValue",
R"({"optionalTimestamp": "9999-12-31T23:59:59.999999999Z"})",
"optional_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest(
"TimestampRepeatedValue",
R"({
"repeatedTimestamp": [
"0001-01-01T00:00:00Z",
"9999-12-31T23:59:59.999999999Z"
]
})",
"repeated_timestamp: {seconds: -62135596800}"
"repeated_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest(
"TimestampWithPositiveOffset",
R"({"optionalTimestamp": "1970-01-01T08:00:00+08:00"})",
"optional_timestamp: {seconds: 0}");
RunValidJsonTest(
"TimestampWithNegativeOffset",
R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
"optional_timestamp: {seconds: 0}");
ExpectParseFailureForJson(
"TimestampJsonInputTooSmall",
R"({"optionalTimestamp": "0000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputTooLarge",
R"({"optionalTimestamp": "10000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputMissingZ",
R"({"optionalTimestamp": "0001-01-01T00:00:00"})");
ExpectParseFailureForJson(
"TimestampJsonInputMissingT",
R"({"optionalTimestamp": "0001-01-01 00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputLowercaseZ",
R"({"optionalTimestamp": "0001-01-01T00:00:00z"})");
ExpectParseFailureForJson(
"TimestampJsonInputLowercaseT",
R"({"optionalTimestamp": "0001-01-01t00:00:00Z"})");
ExpectSerializeFailureForJson(
"TimestampProtoInputTooSmall",
"optional_timestamp: {seconds: -62135596801}");
ExpectSerializeFailureForJson(
"TimestampProtoInputTooLarge",
"optional_timestamp: {seconds: 253402300800}");
RunValidJsonTestWithValidator(
"TimestampZeroNormalized",
R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00Z";
});
RunValidJsonTestWithValidator(
"TimestampHasZeroFractionalDigit",
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00Z";
});
RunValidJsonTestWithValidator(
"TimestampHas3FractionalDigits",
R"({"optionalTimestamp": "1970-01-01T00:00:00.010000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.010Z";
});
RunValidJsonTestWithValidator(
"TimestampHas6FractionalDigits",
R"({"optionalTimestamp": "1970-01-01T00:00:00.000010000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000010Z";
});
RunValidJsonTestWithValidator(
"TimestampHas9FractionalDigits",
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000010Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000000010Z";
});
// FieldMask
RunValidJsonTest(
"FieldMask",
R"({"optionalFieldMask": "foo,barBaz"})",
R"(optional_field_mask: {paths: "foo" paths: "bar_baz"})");
ExpectParseFailureForJson(
"FieldMaskInvalidCharacter",
R"({"optionalFieldMask": "foo,bar_bar"})");
ExpectSerializeFailureForJson(
"FieldMaskPathsDontRoundTrip",
R"(optional_field_mask: {paths: "fooBar"})");
ExpectSerializeFailureForJson(
"FieldMaskNumbersDontRoundTrip",
R"(optional_field_mask: {paths: "foo_3_bar"})");
ExpectSerializeFailureForJson(
"FieldMaskTooManyUnderscore",
R"(optional_field_mask: {paths: "foo__bar"})");
// Struct
RunValidJsonTest(
"Struct",
R"({
"optionalStruct": {
"nullValue": null,
"intValue": 1234,
"boolValue": true,
"doubleValue": 1234.5678,
"stringValue": "Hello world!",
"listValue": [1234, "5678"],
"objectValue": {
"value": 0
}
}
})",
R"(
optional_struct: {
fields: {
key: "nullValue"
value: {null_value: NULL_VALUE}
}
fields: {
key: "intValue"
value: {number_value: 1234}
}
fields: {
key: "boolValue"
value: {bool_value: true}
}
fields: {
key: "doubleValue"
value: {number_value: 1234.5678}
}
fields: {
key: "stringValue"
value: {string_value: "Hello world!"}
}
fields: {
key: "listValue"
value: {
list_value: {
values: {
number_value: 1234
}
values: {
string_value: "5678"
}
}
}
}
fields: {
key: "objectValue"
value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 0
}
}
}
}
}
}
)");
// Value
RunValidJsonTest(
"ValueAcceptInteger",
R"({"optionalValue": 1})",
"optional_value: { number_value: 1}");
RunValidJsonTest(
"ValueAcceptFloat",
R"({"optionalValue": 1.5})",
"optional_value: { number_value: 1.5}");
RunValidJsonTest(
"ValueAcceptBool",
R"({"optionalValue": false})",
"optional_value: { bool_value: false}");
RunValidJsonTest(
"ValueAcceptNull",
R"({"optionalValue": null})",
"optional_value: { null_value: NULL_VALUE}");
RunValidJsonTest(
"ValueAcceptString",
R"({"optionalValue": "hello"})",
R"(optional_value: { string_value: "hello"})");
RunValidJsonTest(
"ValueAcceptList",
R"({"optionalValue": [0, "hello"]})",
R"(
optional_value: {
list_value: {
values: {
number_value: 0
}
values: {
string_value: "hello"
}
}
}
)");
RunValidJsonTest(
"ValueAcceptObject",
R"({"optionalValue": {"value": 1}})",
R"(
optional_value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 1
}
}
}
}
)");
// Any
RunValidJsonTest(
"Any",
R"({
"optionalAny": {
"@type": "type.googleapis.com/conformance.TestAllTypes",
"optionalInt32": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/conformance.TestAllTypes] {
optional_int32: 12345
}
}
)");
RunValidJsonTest(
"AnyNested",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Any",
"value": {
"@type": "type.googleapis.com/conformance.TestAllTypes",
"optionalInt32": 12345
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Any] {
[type.googleapis.com/conformance.TestAllTypes] {
optional_int32: 12345
}
}
}
)");
// The special "@type" tag is not required to appear first.
RunValidJsonTest(
"AnyUnorderedTypeTag",
R"({
"optionalAny": {
"optionalInt32": 12345,
"@type": "type.googleapis.com/conformance.TestAllTypes"
}
})",
R"(
optional_any: {
[type.googleapis.com/conformance.TestAllTypes] {
optional_int32: 12345
}
}
)");
// Well-known types in Any.
RunValidJsonTest(
"AnyWithInt32ValueWrapper",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Int32Value",
"value": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Int32Value] {
value: 12345
}
}
)");
RunValidJsonTest(
"AnyWithDuration",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.5s"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Duration] {
seconds: 1
nanos: 500000000
}
}
)");
RunValidJsonTest(
"AnyWithTimestamp",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Timestamp",
"value": "1970-01-01T00:00:00Z"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Timestamp] {
seconds: 0
nanos: 0
}
}
)");
RunValidJsonTest(
"AnyWithFieldMask",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.FieldMask",
"value": "foo,barBaz"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.FieldMask] {
paths: ["foo", "bar_baz"]
}
}
)");
RunValidJsonTest(
"AnyWithStruct",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Struct",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Struct] {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
)");
RunValidJsonTest(
"AnyWithValueForJsonObject",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
struct_value: {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
}
)");
RunValidJsonTest(
"AnyWithValueForInteger",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": 1
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
number_value: 1
}
}
)");
bool ok = true;
if (!CheckSetEmpty(expected_to_fail_, "nonexistent_tests.txt",
"These tests were listed in the failure list, but they "
"don't exist. Remove them from the failure list by "
"running:\n"
" ./update_failure_list.py " + failure_list_filename_ +
" --remove nonexistent_tests.txt")) {
ok = false;
}
if (!CheckSetEmpty(unexpected_failing_tests_, "failing_tests.txt",
"These tests failed. If they can't be fixed right now, "
"you can add them to the failure list so the overall "
"suite can succeed. Add them to the failure list by "
"running:\n"
" ./update_failure_list.py " + failure_list_filename_ +
" --add failing_tests.txt")) {
ok = false;
}
if (!CheckSetEmpty(unexpected_succeeding_tests_, "succeeding_tests.txt",
"These tests succeeded, even though they were listed in "
"the failure list. Remove them from the failure list "
"by running:\n"
" ./update_failure_list.py " + failure_list_filename_ +
" --remove succeeding_tests.txt")) {
ok = false;
}
if (verbose_) {
CheckSetEmpty(skipped_, "",
"These tests were skipped (probably because support for some "
"features is not implemented)");
}
StringAppendF(&output_,
"CONFORMANCE SUITE %s: %d successes, %d skipped, "
"%d expected failures, %d unexpected failures.\n",
ok ? "PASSED" : "FAILED", successes_, skipped_.size(),
expected_failures_, unexpected_failing_tests_.size());
StringAppendF(&output_, "\n");
output->assign(output_);
return ok;
}
} // namespace protobuf
} // namespace google