protobuf/conformance/conformance_test.cc
Josh Haberman ef7894e2dc Make conformance tests more strict about the failure list.
The failure lists were falling out of date because the
tests would pass even if people forgot to remove failures
from the list.
2016-06-03 09:39:38 -07:00

2032 lines
66 KiB
C++

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdarg.h>
#include <string>
#include <fstream>
#include "conformance.pb.h"
#include "conformance_test.h"
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/util/json_util.h>
#include <google/protobuf/util/field_comparator.h>
#include <google/protobuf/util/message_differencer.h>
#include <google/protobuf/util/type_resolver_util.h>
#include <google/protobuf/wire_format_lite.h>
#include "third_party/jsoncpp/json.h"
using conformance::ConformanceRequest;
using conformance::ConformanceResponse;
using conformance::TestAllTypes;
using conformance::WireFormat;
using google::protobuf::Descriptor;
using google::protobuf::FieldDescriptor;
using google::protobuf::internal::WireFormatLite;
using google::protobuf::TextFormat;
using google::protobuf::util::DefaultFieldComparator;
using google::protobuf::util::JsonToBinaryString;
using google::protobuf::util::MessageDifferencer;
using google::protobuf::util::NewTypeResolverForDescriptorPool;
using google::protobuf::util::Status;
using std::string;
namespace {
static const char kTypeUrlPrefix[] = "type.googleapis.com";
static string GetTypeUrl(const Descriptor* message) {
return string(kTypeUrlPrefix) + "/" + message->full_name();
}
/* Routines for building arbitrary protos *************************************/
// We would use CodedOutputStream except that we want more freedom to build
// arbitrary protos (even invalid ones).
const string empty;
string cat(const string& a, const string& b,
const string& c = empty,
const string& d = empty,
const string& e = empty,
const string& f = empty,
const string& g = empty,
const string& h = empty,
const string& i = empty,
const string& j = empty,
const string& k = empty,
const string& l = empty) {
string ret;
ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() +
g.size() + h.size() + i.size() + j.size() + k.size() + l.size());
ret.append(a);
ret.append(b);
ret.append(c);
ret.append(d);
ret.append(e);
ret.append(f);
ret.append(g);
ret.append(h);
ret.append(i);
ret.append(j);
ret.append(k);
ret.append(l);
return ret;
}
// The maximum number of bytes that it takes to encode a 64-bit varint.
#define VARINT_MAX_LEN 10
size_t vencode64(uint64_t val, char *buf) {
if (val == 0) { buf[0] = 0; return 1; }
size_t i = 0;
while (val) {
uint8_t byte = val & 0x7fU;
val >>= 7;
if (val) byte |= 0x80U;
buf[i++] = byte;
}
return i;
}
string varint(uint64_t x) {
char buf[VARINT_MAX_LEN];
size_t len = vencode64(x, buf);
return string(buf, len);
}
// TODO: proper byte-swapping for big-endian machines.
string fixed32(void *data) { return string(static_cast<char*>(data), 4); }
string fixed64(void *data) { return string(static_cast<char*>(data), 8); }
string delim(const string& buf) { return cat(varint(buf.size()), buf); }
string uint32(uint32_t u32) { return fixed32(&u32); }
string uint64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); }
string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); }
string tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
string submsg(uint32_t fn, const string& buf) {
return cat( tag(fn, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(buf) );
}
#define UNKNOWN_FIELD 666
uint32_t GetFieldNumberForType(FieldDescriptor::Type type, bool repeated) {
const Descriptor* d = TestAllTypes().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->type() == type && f->is_repeated() == repeated) {
return f->number();
}
}
GOOGLE_LOG(FATAL) << "Couldn't find field with type " << (int)type;
return 0;
}
string UpperCase(string str) {
for (int i = 0; i < str.size(); i++) {
str[i] = toupper(str[i]);
}
return str;
}
} // anonymous namespace
namespace google {
namespace protobuf {
void ConformanceTestSuite::ReportSuccess(const string& test_name) {
if (expected_to_fail_.erase(test_name) != 0) {
StringAppendF(&output_,
"ERROR: test %s is in the failure list, but test succeeded. "
"Remove it from the failure list.\n",
test_name.c_str());
unexpected_succeeding_tests_.insert(test_name);
}
successes_++;
}
void ConformanceTestSuite::ReportFailure(const string& test_name,
const ConformanceRequest& request,
const ConformanceResponse& response,
const char* fmt, ...) {
if (expected_to_fail_.erase(test_name) == 1) {
expected_failures_++;
if (!verbose_)
return;
} else {
StringAppendF(&output_, "ERROR, test=%s: ", test_name.c_str());
unexpected_failing_tests_.insert(test_name);
}
va_list args;
va_start(args, fmt);
StringAppendV(&output_, fmt, args);
va_end(args);
StringAppendF(&output_, " request=%s, response=%s\n",
request.ShortDebugString().c_str(),
response.ShortDebugString().c_str());
}
void ConformanceTestSuite::ReportSkip(const string& test_name,
const ConformanceRequest& request,
const ConformanceResponse& response) {
if (verbose_) {
StringAppendF(&output_, "SKIPPED, test=%s request=%s, response=%s\n",
test_name.c_str(), request.ShortDebugString().c_str(),
response.ShortDebugString().c_str());
}
skipped_.insert(test_name);
}
void ConformanceTestSuite::RunTest(const string& test_name,
const ConformanceRequest& request,
ConformanceResponse* response) {
if (test_names_.insert(test_name).second == false) {
GOOGLE_LOG(FATAL) << "Duplicated test name: " << test_name;
}
string serialized_request;
string serialized_response;
request.SerializeToString(&serialized_request);
runner_->RunTest(test_name, serialized_request, &serialized_response);
if (!response->ParseFromString(serialized_response)) {
response->Clear();
response->set_runtime_error("response proto could not be parsed.");
}
if (verbose_) {
StringAppendF(&output_, "conformance test: name=%s, request=%s, response=%s\n",
test_name.c_str(),
request.ShortDebugString().c_str(),
response->ShortDebugString().c_str());
}
}
void ConformanceTestSuite::RunValidInputTest(
const string& test_name, const string& input, WireFormat input_format,
const string& equivalent_text_format, WireFormat requested_output) {
TestAllTypes reference_message;
GOOGLE_CHECK(
TextFormat::ParseFromString(equivalent_text_format, &reference_message))
<< "Failed to parse data for test case: " << test_name
<< ", data: " << equivalent_text_format;
ConformanceRequest request;
ConformanceResponse response;
switch (input_format) {
case conformance::PROTOBUF:
request.set_protobuf_payload(input);
break;
case conformance::JSON:
request.set_json_payload(input);
break;
default:
GOOGLE_LOG(FATAL) << "Unspecified input format";
}
request.set_requested_output_format(requested_output);
RunTest(test_name, request, &response);
TestAllTypes test_message;
switch (response.result_case()) {
case ConformanceResponse::kParseError:
case ConformanceResponse::kRuntimeError:
case ConformanceResponse::kSerializeError:
ReportFailure(test_name, request, response,
"Failed to parse JSON input or produce JSON output.");
return;
case ConformanceResponse::kSkipped:
ReportSkip(test_name, request, response);
return;
case ConformanceResponse::kJsonPayload: {
if (requested_output != conformance::JSON) {
ReportFailure(
test_name, request, response,
"Test was asked for protobuf output but provided JSON instead.");
return;
}
string binary_protobuf;
Status status =
JsonToBinaryString(type_resolver_.get(), type_url_,
response.json_payload(), &binary_protobuf);
if (!status.ok()) {
ReportFailure(test_name, request, response,
"JSON output we received from test was unparseable.");
return;
}
if (!test_message.ParseFromString(binary_protobuf)) {
ReportFailure(test_name, request, response,
"INTERNAL ERROR: internal JSON->protobuf transcode "
"yielded unparseable proto.");
return;
}
break;
}
case ConformanceResponse::kProtobufPayload: {
if (requested_output != conformance::PROTOBUF) {
ReportFailure(
test_name, request, response,
"Test was asked for JSON output but provided protobuf instead.");
return;
}
if (!test_message.ParseFromString(response.protobuf_payload())) {
ReportFailure(test_name, request, response,
"Protobuf output we received from test was unparseable.");
return;
}
break;
}
default:
GOOGLE_LOG(FATAL) << test_name << ": unknown payload type: "
<< response.result_case();
}
MessageDifferencer differencer;
DefaultFieldComparator field_comparator;
field_comparator.set_treat_nan_as_equal(true);
differencer.set_field_comparator(&field_comparator);
string differences;
differencer.ReportDifferencesToString(&differences);
if (differencer.Compare(reference_message, test_message)) {
ReportSuccess(test_name);
} else {
ReportFailure(test_name, request, response,
"Output was not equivalent to reference message: %s.",
differences.c_str());
}
}
// Expect that this precise protobuf will cause a parse error.
void ConformanceTestSuite::ExpectParseFailureForProto(
const string& proto, const string& test_name) {
ConformanceRequest request;
ConformanceResponse response;
request.set_protobuf_payload(proto);
string effective_test_name = "ProtobufInput." + test_name;
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
request.set_requested_output_format(conformance::PROTOBUF);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, request, response,
"Should have failed to parse, but didn't.");
}
}
// Expect that this protobuf will cause a parse error, even if it is followed
// by valid protobuf data. We can try running this twice: once with this
// data verbatim and once with this data followed by some valid data.
//
// TODO(haberman): implement the second of these.
void ConformanceTestSuite::ExpectHardParseFailureForProto(
const string& proto, const string& test_name) {
return ExpectParseFailureForProto(proto, test_name);
}
void ConformanceTestSuite::RunValidJsonTest(
const string& test_name, const string& input_json,
const string& equivalent_text_format) {
RunValidInputTest("JsonInput." + test_name + ".ProtobufOutput", input_json,
conformance::JSON, equivalent_text_format,
conformance::PROTOBUF);
RunValidInputTest("JsonInput." + test_name + ".JsonOutput", input_json,
conformance::JSON, equivalent_text_format,
conformance::JSON);
}
void ConformanceTestSuite::RunValidJsonTestWithProtobufInput(
const string& test_name, const TestAllTypes& input,
const string& equivalent_text_format) {
RunValidInputTest("ProtobufInput." + test_name + ".JsonOutput",
input.SerializeAsString(), conformance::PROTOBUF,
equivalent_text_format, conformance::JSON);
}
// According to proto3 JSON specification, JSON serializers follow more strict
// rules than parsers (e.g., a serializer must serialize int32 values as JSON
// numbers while the parser is allowed to accept them as JSON strings). This
// method allows strict checking on a proto3 JSON serializer by inspecting
// the JSON output directly.
void ConformanceTestSuite::RunValidJsonTestWithValidator(
const string& test_name, const string& input_json,
const Validator& validator) {
ConformanceRequest request;
ConformanceResponse response;
request.set_json_payload(input_json);
request.set_requested_output_format(conformance::JSON);
string effective_test_name = "JsonInput." + test_name + ".Validator";
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
return;
}
if (response.result_case() != ConformanceResponse::kJsonPayload) {
ReportFailure(effective_test_name, request, response,
"Expected JSON payload but got type %d.",
response.result_case());
return;
}
Json::Reader reader;
Json::Value value;
if (!reader.parse(response.json_payload(), value)) {
ReportFailure(effective_test_name, request, response,
"JSON payload cannot be parsed as valid JSON: %s",
reader.getFormattedErrorMessages().c_str());
return;
}
if (!validator(value)) {
ReportFailure(effective_test_name, request, response,
"JSON payload validation failed.");
return;
}
ReportSuccess(effective_test_name);
}
void ConformanceTestSuite::ExpectParseFailureForJson(
const string& test_name, const string& input_json) {
ConformanceRequest request;
ConformanceResponse response;
request.set_json_payload(input_json);
string effective_test_name = "JsonInput." + test_name;
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
request.set_requested_output_format(conformance::JSON);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, request, response,
"Should have failed to parse, but didn't.");
}
}
void ConformanceTestSuite::ExpectSerializeFailureForJson(
const string& test_name, const string& text_format) {
TestAllTypes payload_message;
GOOGLE_CHECK(
TextFormat::ParseFromString(text_format, &payload_message))
<< "Failed to parse: " << text_format;
ConformanceRequest request;
ConformanceResponse response;
request.set_protobuf_payload(payload_message.SerializeAsString());
string effective_test_name = test_name + ".JsonOutput";
request.set_requested_output_format(conformance::JSON);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSerializeError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, request, response,
"Should have failed to serialize, but didn't.");
}
}
void ConformanceTestSuite::TestPrematureEOFForType(FieldDescriptor::Type type) {
// Incomplete values for each wire type.
static const string incompletes[6] = {
string("\x80"), // VARINT
string("abcdefg"), // 64BIT
string("\x80"), // DELIMITED (partial length)
string(), // START_GROUP (no value required)
string(), // END_GROUP (no value required)
string("abc") // 32BIT
};
uint32_t fieldnum = GetFieldNumberForType(type, false);
uint32_t rep_fieldnum = GetFieldNumberForType(type, true);
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
const string& incomplete = incompletes[wire_type];
const string type_name =
UpperCase(string(".") + FieldDescriptor::TypeName(type));
ExpectParseFailureForProto(
tag(fieldnum, wire_type),
"PrematureEofBeforeKnownNonRepeatedValue" + type_name);
ExpectParseFailureForProto(
tag(rep_fieldnum, wire_type),
"PrematureEofBeforeKnownRepeatedValue" + type_name);
ExpectParseFailureForProto(
tag(UNKNOWN_FIELD, wire_type),
"PrematureEofBeforeUnknownValue" + type_name);
ExpectParseFailureForProto(
cat( tag(fieldnum, wire_type), incomplete ),
"PrematureEofInsideKnownNonRepeatedValue" + type_name);
ExpectParseFailureForProto(
cat( tag(rep_fieldnum, wire_type), incomplete ),
"PrematureEofInsideKnownRepeatedValue" + type_name);
ExpectParseFailureForProto(
cat( tag(UNKNOWN_FIELD, wire_type), incomplete ),
"PrematureEofInsideUnknownValue" + type_name);
if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
ExpectParseFailureForProto(
cat( tag(fieldnum, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForKnownNonRepeatedValue" + type_name);
ExpectParseFailureForProto(
cat( tag(rep_fieldnum, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForKnownRepeatedValue" + type_name);
// EOF in the middle of delimited data for unknown value.
ExpectParseFailureForProto(
cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForUnknownValue" + type_name);
if (type == FieldDescriptor::TYPE_MESSAGE) {
// Submessage ends in the middle of a value.
string incomplete_submsg =
cat( tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT),
incompletes[WireFormatLite::WIRETYPE_VARINT] );
ExpectHardParseFailureForProto(
cat( tag(fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete_submsg.size()),
incomplete_submsg ),
"PrematureEofInSubmessageValue" + type_name);
}
} else if (type != FieldDescriptor::TYPE_GROUP) {
// Non-delimited, non-group: eligible for packing.
// Packed region ends in the middle of a value.
ExpectHardParseFailureForProto(
cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete.size()),
incomplete ),
"PrematureEofInPackedFieldValue" + type_name);
// EOF in the middle of packed region.
ExpectParseFailureForProto(
cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(1) ),
"PrematureEofInPackedField" + type_name);
}
}
void ConformanceTestSuite::SetFailureList(const string& filename,
const vector<string>& failure_list) {
failure_list_filename_ = filename;
expected_to_fail_.clear();
std::copy(failure_list.begin(), failure_list.end(),
std::inserter(expected_to_fail_, expected_to_fail_.end()));
}
bool ConformanceTestSuite::CheckSetEmpty(const set<string>& set_to_check,
const std::string& write_to_file,
const std::string& msg) {
if (set_to_check.empty()) {
return true;
} else {
StringAppendF(&output_, "\n");
StringAppendF(&output_, "%s\n\n", msg.c_str());
for (set<string>::const_iterator iter = set_to_check.begin();
iter != set_to_check.end(); ++iter) {
StringAppendF(&output_, " %s\n", iter->c_str());
}
StringAppendF(&output_, "\n");
if (!write_to_file.empty()) {
std::ofstream os(write_to_file);
if (os) {
for (set<string>::const_iterator iter = set_to_check.begin();
iter != set_to_check.end(); ++iter) {
os << *iter << "\n";
}
} else {
StringAppendF(&output_, "Failed to open file: %s\n",
write_to_file.c_str());
}
}
return false;
}
}
bool ConformanceTestSuite::RunSuite(ConformanceTestRunner* runner,
std::string* output) {
runner_ = runner;
successes_ = 0;
expected_failures_ = 0;
skipped_.clear();
test_names_.clear();
unexpected_failing_tests_.clear();
unexpected_succeeding_tests_.clear();
type_resolver_.reset(NewTypeResolverForDescriptorPool(
kTypeUrlPrefix, DescriptorPool::generated_pool()));
type_url_ = GetTypeUrl(TestAllTypes::descriptor());
output_ = "\nCONFORMANCE TEST BEGIN ====================================\n\n";
for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) {
if (i == FieldDescriptor::TYPE_GROUP) continue;
TestPrematureEOFForType(static_cast<FieldDescriptor::Type>(i));
}
RunValidJsonTest("HelloWorld", "{\"optionalString\":\"Hello, World!\"}",
"optional_string: 'Hello, World!'");
// Test field name conventions.
RunValidJsonTest(
"FieldNameInSnakeCase",
R"({
"fieldname1": 1,
"fieldName2": 2,
"FieldName3": 3
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
)");
RunValidJsonTest(
"FieldNameWithNumbers",
R"({
"field0name5": 5,
"field0Name6": 6
})",
R"(
field0name5: 5
field_0_name6: 6
)");
RunValidJsonTest(
"FieldNameWithMixedCases",
R"({
"fieldName7": 7,
"fieldName8": 8,
"fieldName9": 9,
"fieldName10": 10,
"fIELDNAME11": 11,
"fIELDName12": 12
})",
R"(
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
)");
// Using the original proto field name in JSON is also allowed.
RunValidJsonTest(
"OriginalProtoFieldName",
R"({
"fieldname1": 1,
"field_name2": 2,
"_field_name3": 3,
"field0name5": 5,
"field_0_name6": 6,
"fieldName7": 7,
"FieldName8": 8,
"field_Name9": 9,
"Field_Name10": 10,
"FIELD_NAME11": 11,
"FIELD_name12": 12
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field0name5: 5
field_0_name6: 6
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
)");
// Field names can be escaped.
RunValidJsonTest(
"FieldNameEscaped",
R"({"fieldn\u0061me1": 1})",
"fieldname1: 1");
// Field names must be quoted (or it's not valid JSON).
ExpectParseFailureForJson(
"FieldNameNotQuoted",
"{fieldname1: 1}");
// Trailing comma is not allowed (not valid JSON).
ExpectParseFailureForJson(
"TrailingCommaInAnObject",
R"({"fieldname1":1,})");
// JSON doesn't support comments.
ExpectParseFailureForJson(
"JsonWithComments",
R"({
// This is a comment.
"fieldname1": 1
})");
// Duplicated field names are not allowed.
ExpectParseFailureForJson(
"FieldNameDuplicate",
R"({
"optionalNestedMessage": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson(
"FieldNameDuplicateDifferentCasing1",
R"({
"optional_nested_message": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson(
"FieldNameDuplicateDifferentCasing2",
R"({
"optionalNestedMessage": {a: 1},
"optional_nested_message": {}
})");
// Serializers should use lowerCamelCase by default.
RunValidJsonTestWithValidator(
"FieldNameInLowerCamelCase",
R"({
"fieldname1": 1,
"fieldName2": 2,
"FieldName3": 3
})",
[](const Json::Value& value) {
return value.isMember("fieldname1") &&
value.isMember("fieldName2") &&
value.isMember("FieldName3");
});
RunValidJsonTestWithValidator(
"FieldNameWithNumbers",
R"({
"field0name5": 5,
"field0Name6": 6
})",
[](const Json::Value& value) {
return value.isMember("field0name5") &&
value.isMember("field0Name6");
});
RunValidJsonTestWithValidator(
"FieldNameWithMixedCases",
R"({
"fieldName7": 7,
"fieldName8": 8,
"fieldName9": 9,
"fieldName10": 10,
"fIELDNAME11": 11,
"fIELDName12": 12
})",
[](const Json::Value& value) {
return value.isMember("fieldName7") &&
value.isMember("fieldName8") &&
value.isMember("fieldName9") &&
value.isMember("fieldName10") &&
value.isMember("fIELDNAME11") &&
value.isMember("fIELDName12");
});
// Integer fields.
RunValidJsonTest(
"Int32FieldMaxValue",
R"({"optionalInt32": 2147483647})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldMinValue",
R"({"optionalInt32": -2147483648})",
"optional_int32: -2147483648");
RunValidJsonTest(
"Uint32FieldMaxValue",
R"({"optionalUint32": 4294967295})",
"optional_uint32: 4294967295");
RunValidJsonTest(
"Int64FieldMaxValue",
R"({"optionalInt64": "9223372036854775807"})",
"optional_int64: 9223372036854775807");
RunValidJsonTest(
"Int64FieldMinValue",
R"({"optionalInt64": "-9223372036854775808"})",
"optional_int64: -9223372036854775808");
RunValidJsonTest(
"Uint64FieldMaxValue",
R"({"optionalUint64": "18446744073709551615"})",
"optional_uint64: 18446744073709551615");
RunValidJsonTest(
"Int64FieldMaxValueNotQuoted",
R"({"optionalInt64": 9223372036854775807})",
"optional_int64: 9223372036854775807");
RunValidJsonTest(
"Int64FieldMinValueNotQuoted",
R"({"optionalInt64": -9223372036854775808})",
"optional_int64: -9223372036854775808");
RunValidJsonTest(
"Uint64FieldMaxValueNotQuoted",
R"({"optionalUint64": 18446744073709551615})",
"optional_uint64: 18446744073709551615");
// Values can be represented as JSON strings.
RunValidJsonTest(
"Int32FieldStringValue",
R"({"optionalInt32": "2147483647"})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldStringValueEscaped",
R"({"optionalInt32": "2\u003147483647"})",
"optional_int32: 2147483647");
// Parsers reject out-of-bound integer values.
ExpectParseFailureForJson(
"Int32FieldTooLarge",
R"({"optionalInt32": 2147483648})");
ExpectParseFailureForJson(
"Int32FieldTooSmall",
R"({"optionalInt32": -2147483649})");
ExpectParseFailureForJson(
"Uint32FieldTooLarge",
R"({"optionalUint32": 4294967296})");
ExpectParseFailureForJson(
"Int64FieldTooLarge",
R"({"optionalInt64": "9223372036854775808"})");
ExpectParseFailureForJson(
"Int64FieldTooSmall",
R"({"optionalInt64": "-9223372036854775809"})");
ExpectParseFailureForJson(
"Uint64FieldTooLarge",
R"({"optionalUint64": "18446744073709551616"})");
// Parser reject non-integer numeric values as well.
ExpectParseFailureForJson(
"Int32FieldNotInteger",
R"({"optionalInt32": 0.5})");
ExpectParseFailureForJson(
"Uint32FieldNotInteger",
R"({"optionalUint32": 0.5})");
ExpectParseFailureForJson(
"Int64FieldNotInteger",
R"({"optionalInt64": "0.5"})");
ExpectParseFailureForJson(
"Uint64FieldNotInteger",
R"({"optionalUint64": "0.5"})");
// Integers but represented as float values are accepted.
RunValidJsonTest(
"Int32FieldFloatTrailingZero",
R"({"optionalInt32": 100000.000})",
"optional_int32: 100000");
RunValidJsonTest(
"Int32FieldExponentialFormat",
R"({"optionalInt32": 1e5})",
"optional_int32: 100000");
RunValidJsonTest(
"Int32FieldMaxFloatValue",
R"({"optionalInt32": 2.147483647e9})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldMinFloatValue",
R"({"optionalInt32": -2.147483648e9})",
"optional_int32: -2147483648");
RunValidJsonTest(
"Uint32FieldMaxFloatValue",
R"({"optionalUint32": 4.294967295e9})",
"optional_uint32: 4294967295");
// Parser reject non-numeric values.
ExpectParseFailureForJson(
"Int32FieldNotNumber",
R"({"optionalInt32": "3x3"})");
ExpectParseFailureForJson(
"Uint32FieldNotNumber",
R"({"optionalUint32": "3x3"})");
ExpectParseFailureForJson(
"Int64FieldNotNumber",
R"({"optionalInt64": "3x3"})");
ExpectParseFailureForJson(
"Uint64FieldNotNumber",
R"({"optionalUint64": "3x3"})");
// JSON does not allow "+" on numric values.
ExpectParseFailureForJson(
"Int32FieldPlusSign",
R"({"optionalInt32": +1})");
// JSON doesn't allow leading 0s.
ExpectParseFailureForJson(
"Int32FieldLeadingZero",
R"({"optionalInt32": 01})");
ExpectParseFailureForJson(
"Int32FieldNegativeWithLeadingZero",
R"({"optionalInt32": -01})");
// String values must follow the same syntax rule. Specifically leading
// or traling spaces are not allowed.
ExpectParseFailureForJson(
"Int32FieldLeadingSpace",
R"({"optionalInt32": " 1"})");
ExpectParseFailureForJson(
"Int32FieldTrailingSpace",
R"({"optionalInt32": "1 "})");
// 64-bit values are serialized as strings.
RunValidJsonTestWithValidator(
"Int64FieldBeString",
R"({"optionalInt64": 1})",
[](const Json::Value& value) {
return value["optionalInt64"].type() == Json::stringValue &&
value["optionalInt64"].asString() == "1";
});
RunValidJsonTestWithValidator(
"Uint64FieldBeString",
R"({"optionalUint64": 1})",
[](const Json::Value& value) {
return value["optionalUint64"].type() == Json::stringValue &&
value["optionalUint64"].asString() == "1";
});
// Bool fields.
RunValidJsonTest(
"BoolFieldTrue",
R"({"optionalBool":true})",
"optional_bool: true");
RunValidJsonTest(
"BoolFieldFalse",
R"({"optionalBool":false})",
"optional_bool: false");
// Other forms are not allowed.
ExpectParseFailureForJson(
"BoolFieldIntegerZero",
R"({"optionalBool":0})");
ExpectParseFailureForJson(
"BoolFieldIntegerOne",
R"({"optionalBool":1})");
ExpectParseFailureForJson(
"BoolFieldCamelCaseTrue",
R"({"optionalBool":True})");
ExpectParseFailureForJson(
"BoolFieldCamelCaseFalse",
R"({"optionalBool":False})");
ExpectParseFailureForJson(
"BoolFieldAllCapitalTrue",
R"({"optionalBool":TRUE})");
ExpectParseFailureForJson(
"BoolFieldAllCapitalFalse",
R"({"optionalBool":FALSE})");
ExpectParseFailureForJson(
"BoolFieldDoubleQuotedTrue",
R"({"optionalBool":"true"})");
ExpectParseFailureForJson(
"BoolFieldDoubleQuotedFalse",
R"({"optionalBool":"false"})");
// Float fields.
RunValidJsonTest(
"FloatFieldMinPositiveValue",
R"({"optionalFloat": 1.175494e-38})",
"optional_float: 1.175494e-38");
RunValidJsonTest(
"FloatFieldMaxNegativeValue",
R"({"optionalFloat": -1.175494e-38})",
"optional_float: -1.175494e-38");
RunValidJsonTest(
"FloatFieldMaxPositiveValue",
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
RunValidJsonTest(
"FloatFieldMinNegativeValue",
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
// Values can be quoted.
RunValidJsonTest(
"FloatFieldQuotedValue",
R"({"optionalFloat": "1"})",
"optional_float: 1");
// Special values.
RunValidJsonTest(
"FloatFieldNan",
R"({"optionalFloat": "NaN"})",
"optional_float: nan");
RunValidJsonTest(
"FloatFieldInfinity",
R"({"optionalFloat": "Infinity"})",
"optional_float: inf");
RunValidJsonTest(
"FloatFieldNegativeInfinity",
R"({"optionalFloat": "-Infinity"})",
"optional_float: -inf");
// Non-cannonical Nan will be correctly normalized.
{
TestAllTypes message;
// IEEE floating-point standard 32-bit quiet NaN:
// 0111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(
WireFormatLite::DecodeFloat(0x7FA12345));
RunValidJsonTestWithProtobufInput(
"FloatFieldNormalizeQuietNan", message,
"optional_float: nan");
// IEEE floating-point standard 64-bit signaling NaN:
// 1111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(
WireFormatLite::DecodeFloat(0xFFB54321));
RunValidJsonTestWithProtobufInput(
"FloatFieldNormalizeSignalingNan", message,
"optional_float: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson(
"FloatFieldNanNotQuoted",
R"({"optionalFloat": NaN})");
ExpectParseFailureForJson(
"FloatFieldInfinityNotQuoted",
R"({"optionalFloat": Infinity})");
ExpectParseFailureForJson(
"FloatFieldNegativeInfinityNotQuoted",
R"({"optionalFloat": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson(
"FloatFieldTooSmall",
R"({"optionalFloat": -3.502823e+38})");
ExpectParseFailureForJson(
"FloatFieldTooLarge",
R"({"optionalFloat": 3.502823e+38})");
// Double fields.
RunValidJsonTest(
"DoubleFieldMinPositiveValue",
R"({"optionalDouble": 2.22507e-308})",
"optional_double: 2.22507e-308");
RunValidJsonTest(
"DoubleFieldMaxNegativeValue",
R"({"optionalDouble": -2.22507e-308})",
"optional_double: -2.22507e-308");
RunValidJsonTest(
"DoubleFieldMaxPositiveValue",
R"({"optionalDouble": 1.79769e+308})",
"optional_double: 1.79769e+308");
RunValidJsonTest(
"DoubleFieldMinNegativeValue",
R"({"optionalDouble": -1.79769e+308})",
"optional_double: -1.79769e+308");
// Values can be quoted.
RunValidJsonTest(
"DoubleFieldQuotedValue",
R"({"optionalDouble": "1"})",
"optional_double: 1");
// Speical values.
RunValidJsonTest(
"DoubleFieldNan",
R"({"optionalDouble": "NaN"})",
"optional_double: nan");
RunValidJsonTest(
"DoubleFieldInfinity",
R"({"optionalDouble": "Infinity"})",
"optional_double: inf");
RunValidJsonTest(
"DoubleFieldNegativeInfinity",
R"({"optionalDouble": "-Infinity"})",
"optional_double: -inf");
// Non-cannonical Nan will be correctly normalized.
{
TestAllTypes message;
message.set_optional_double(
WireFormatLite::DecodeDouble(0x7FFA123456789ABCLL));
RunValidJsonTestWithProtobufInput(
"DoubleFieldNormalizeQuietNan", message,
"optional_double: nan");
message.set_optional_double(
WireFormatLite::DecodeDouble(0xFFFBCBA987654321LL));
RunValidJsonTestWithProtobufInput(
"DoubleFieldNormalizeSignalingNan", message,
"optional_double: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson(
"DoubleFieldNanNotQuoted",
R"({"optionalDouble": NaN})");
ExpectParseFailureForJson(
"DoubleFieldInfinityNotQuoted",
R"({"optionalDouble": Infinity})");
ExpectParseFailureForJson(
"DoubleFieldNegativeInfinityNotQuoted",
R"({"optionalDouble": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson(
"DoubleFieldTooSmall",
R"({"optionalDouble": -1.89769e+308})");
ExpectParseFailureForJson(
"DoubleFieldTooLarge",
R"({"optionalDouble": +1.89769e+308})");
// Enum fields.
RunValidJsonTest(
"EnumField",
R"({"optionalNestedEnum": "FOO"})",
"optional_nested_enum: FOO");
// Enum values must be represented as strings.
ExpectParseFailureForJson(
"EnumFieldNotQuoted",
R"({"optionalNestedEnum": FOO})");
// Numeric values are allowed.
RunValidJsonTest(
"EnumFieldNumericValueZero",
R"({"optionalNestedEnum": 0})",
"optional_nested_enum: FOO");
RunValidJsonTest(
"EnumFieldNumericValueNonZero",
R"({"optionalNestedEnum": 1})",
"optional_nested_enum: BAR");
// Unknown enum values are represented as numeric values.
RunValidJsonTestWithValidator(
"EnumFieldUnknownValue",
R"({"optionalNestedEnum": 123})",
[](const Json::Value& value) {
return value["optionalNestedEnum"].type() == Json::intValue &&
value["optionalNestedEnum"].asInt() == 123;
});
// String fields.
RunValidJsonTest(
"StringField",
R"({"optionalString": "Hello world!"})",
"optional_string: \"Hello world!\"");
RunValidJsonTest(
"StringFieldUnicode",
// Google in Chinese.
R"({"optionalString": ""})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldEscape",
R"({"optionalString": "\"\\\/\b\f\n\r\t"})",
R"(optional_string: "\"\\/\b\f\n\r\t")");
RunValidJsonTest(
"StringFieldUnicodeEscape",
R"({"optionalString": "\u8C37\u6B4C"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldUnicodeEscapeWithLowercaseHexLetters",
R"({"optionalString": "\u8c37\u6b4c"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldSurrogatePair",
// The character is an emoji: grinning face with smiling eyes. 😁
R"({"optionalString": "\uD83D\uDE01"})",
R"(optional_string: "\xF0\x9F\x98\x81")");
// Unicode escapes must start with "\u" (lowercase u).
ExpectParseFailureForJson(
"StringFieldUppercaseEscapeLetter",
R"({"optionalString": "\U8C37\U6b4C"})");
ExpectParseFailureForJson(
"StringFieldInvalidEscape",
R"({"optionalString": "\uXXXX\u6B4C"})");
ExpectParseFailureForJson(
"StringFieldUnterminatedEscape",
R"({"optionalString": "\u8C3"})");
ExpectParseFailureForJson(
"StringFieldUnpairedHighSurrogate",
R"({"optionalString": "\uD800"})");
ExpectParseFailureForJson(
"StringFieldUnpairedLowSurrogate",
R"({"optionalString": "\uDC00"})");
ExpectParseFailureForJson(
"StringFieldSurrogateInWrongOrder",
R"({"optionalString": "\uDE01\uD83D"})");
ExpectParseFailureForJson(
"StringFieldNotAString",
R"({"optionalString": 12345})");
// Bytes fields.
RunValidJsonTest(
"BytesField",
R"({"optionalBytes": "AQI="})",
R"(optional_bytes: "\x01\x02")");
ExpectParseFailureForJson(
"BytesFieldNoPadding",
R"({"optionalBytes": "AQI"})");
ExpectParseFailureForJson(
"BytesFieldInvalidBase64Characters",
R"({"optionalBytes": "-_=="})");
// Message fields.
RunValidJsonTest(
"MessageField",
R"({"optionalNestedMessage": {"a": 1234}})",
"optional_nested_message: {a: 1234}");
// Oneof fields.
ExpectParseFailureForJson(
"OneofFieldDuplicate",
R"({"oneofUint32": 1, "oneofString": "test"})");
// Repeated fields.
RunValidJsonTest(
"PrimitiveRepeatedField",
R"({"repeatedInt32": [1, 2, 3, 4]})",
"repeated_int32: [1, 2, 3, 4]");
RunValidJsonTest(
"EnumRepeatedField",
R"({"repeatedNestedEnum": ["FOO", "BAR", "BAZ"]})",
"repeated_nested_enum: [FOO, BAR, BAZ]");
RunValidJsonTest(
"StringRepeatedField",
R"({"repeatedString": ["Hello", "world"]})",
R"(repeated_string: ["Hello", "world"])");
RunValidJsonTest(
"BytesRepeatedField",
R"({"repeatedBytes": ["AAEC", "AQI="]})",
R"(repeated_bytes: ["\x00\x01\x02", "\x01\x02"])");
RunValidJsonTest(
"MessageRepeatedField",
R"({"repeatedNestedMessage": [{"a": 1234}, {"a": 5678}]})",
"repeated_nested_message: {a: 1234}"
"repeated_nested_message: {a: 5678}");
// Repeated field elements are of incorrect type.
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotBool",
R"({"repeatedInt32": [1, false, 3, 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotString",
R"({"repeatedInt32": [1, 2, "name", 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotMessage",
R"({"repeatedInt32": [1, 2, 3, {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotInt",
R"({"repeatedString": ["1", 2, "3", "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotBool",
R"({"repeatedString": ["1", "2", false, "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotMessage",
R"({"repeatedString": ["1", 2, "3", {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotInt",
R"({"repeatedNestedMessage": [{"a": 1}, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotBool",
R"({"repeatedNestedMessage": [{"a": 1}, false]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotString",
R"({"repeatedNestedMessage": [{"a": 1}, "2"]})");
// Trailing comma in the repeated field is not allowed.
ExpectParseFailureForJson(
"RepeatedFieldTrailingComma",
R"({"repeatedInt32": [1, 2, 3, 4,]})");
// Map fields.
RunValidJsonTest(
"Int32MapField",
R"({"mapInt32Int32": {"1": 2, "3": 4}})",
"map_int32_int32: {key: 1 value: 2}"
"map_int32_int32: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Int32MapFieldKeyNotQuoted",
R"({"mapInt32Int32": {1: 2, 3: 4}})");
RunValidJsonTest(
"Uint32MapField",
R"({"mapUint32Uint32": {"1": 2, "3": 4}})",
"map_uint32_uint32: {key: 1 value: 2}"
"map_uint32_uint32: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Uint32MapFieldKeyNotQuoted",
R"({"mapUint32Uint32": {1: 2, 3: 4}})");
RunValidJsonTest(
"Int64MapField",
R"({"mapInt64Int64": {"1": 2, "3": 4}})",
"map_int64_int64: {key: 1 value: 2}"
"map_int64_int64: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Int64MapFieldKeyNotQuoted",
R"({"mapInt64Int64": {1: 2, 3: 4}})");
RunValidJsonTest(
"Uint64MapField",
R"({"mapUint64Uint64": {"1": 2, "3": 4}})",
"map_uint64_uint64: {key: 1 value: 2}"
"map_uint64_uint64: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Uint64MapFieldKeyNotQuoted",
R"({"mapUint64Uint64": {1: 2, 3: 4}})");
RunValidJsonTest(
"BoolMapField",
R"({"mapBoolBool": {"true": true, "false": false}})",
"map_bool_bool: {key: true value: true}"
"map_bool_bool: {key: false value: false}");
ExpectParseFailureForJson(
"BoolMapFieldKeyNotQuoted",
R"({"mapBoolBool": {true: true, false: false}})");
RunValidJsonTest(
"MessageMapField",
R"({
"mapStringNestedMessage": {
"hello": {"a": 1234},
"world": {"a": 5678}
}
})",
R"(
map_string_nested_message: {
key: "hello"
value: {a: 1234}
}
map_string_nested_message: {
key: "world"
value: {a: 5678}
}
)");
// Since Map keys are represented as JSON strings, escaping should be allowed.
RunValidJsonTest(
"Int32MapEscapedKey",
R"({"mapInt32Int32": {"\u0031": 2}})",
"map_int32_int32: {key: 1 value: 2}");
RunValidJsonTest(
"Int64MapEscapedKey",
R"({"mapInt64Int64": {"\u0031": 2}})",
"map_int64_int64: {key: 1 value: 2}");
RunValidJsonTest(
"BoolMapEscapedKey",
R"({"mapBoolBool": {"tr\u0075e": true}})",
"map_bool_bool: {key: true value: true}");
// "null" is accepted for all fields types.
RunValidJsonTest(
"AllFieldAcceptNull",
R"({
"optionalInt32": null,
"optionalInt64": null,
"optionalUint32": null,
"optionalUint64": null,
"optionalBool": null,
"optionalString": null,
"optionalBytes": null,
"optionalNestedEnum": null,
"optionalNestedMessage": null,
"repeatedInt32": null,
"repeatedInt64": null,
"repeatedUint32": null,
"repeatedUint64": null,
"repeatedBool": null,
"repeatedString": null,
"repeatedBytes": null,
"repeatedNestedEnum": null,
"repeatedNestedMessage": null,
"mapInt32Int32": null,
"mapBoolBool": null,
"mapStringNestedMessage": null
})",
"");
// Repeated field elements cannot be null.
ExpectParseFailureForJson(
"RepeatedFieldPrimitiveElementIsNull",
R"({"repeatedInt32": [1, null, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldMessageElementIsNull",
R"({"repeatedNestedMessage": [{"a":1}, null, {"a":2}]})");
// Map field keys cannot be null.
ExpectParseFailureForJson(
"MapFieldKeyIsNull",
R"({"mapInt32Int32": {null: 1}})");
// Map field values cannot be null.
ExpectParseFailureForJson(
"MapFieldValueIsNull",
R"({"mapInt32Int32": {"0": null}})");
// Wrapper types.
RunValidJsonTest(
"OptionalBoolWrapper",
R"({"optionalBoolWrapper": false})",
"optional_bool_wrapper: {value: false}");
RunValidJsonTest(
"OptionalInt32Wrapper",
R"({"optionalInt32Wrapper": 0})",
"optional_int32_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalUint32Wrapper",
R"({"optionalUint32Wrapper": 0})",
"optional_uint32_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalInt64Wrapper",
R"({"optionalInt64Wrapper": 0})",
"optional_int64_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalUint64Wrapper",
R"({"optionalUint64Wrapper": 0})",
"optional_uint64_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalFloatWrapper",
R"({"optionalFloatWrapper": 0})",
"optional_float_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalDoubleWrapper",
R"({"optionalDoubleWrapper": 0})",
"optional_double_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalStringWrapper",
R"({"optionalStringWrapper": ""})",
R"(optional_string_wrapper: {value: ""})");
RunValidJsonTest(
"OptionalBytesWrapper",
R"({"optionalBytesWrapper": ""})",
R"(optional_bytes_wrapper: {value: ""})");
RunValidJsonTest(
"OptionalWrapperTypesWithNonDefaultValue",
R"({
"optionalBoolWrapper": true,
"optionalInt32Wrapper": 1,
"optionalUint32Wrapper": 1,
"optionalInt64Wrapper": "1",
"optionalUint64Wrapper": "1",
"optionalFloatWrapper": 1,
"optionalDoubleWrapper": 1,
"optionalStringWrapper": "1",
"optionalBytesWrapper": "AQI="
})",
R"(
optional_bool_wrapper: {value: true}
optional_int32_wrapper: {value: 1}
optional_uint32_wrapper: {value: 1}
optional_int64_wrapper: {value: 1}
optional_uint64_wrapper: {value: 1}
optional_float_wrapper: {value: 1}
optional_double_wrapper: {value: 1}
optional_string_wrapper: {value: "1"}
optional_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest(
"RepeatedBoolWrapper",
R"({"repeatedBoolWrapper": [true, false]})",
"repeated_bool_wrapper: {value: true}"
"repeated_bool_wrapper: {value: false}");
RunValidJsonTest(
"RepeatedInt32Wrapper",
R"({"repeatedInt32Wrapper": [0, 1]})",
"repeated_int32_wrapper: {value: 0}"
"repeated_int32_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedUint32Wrapper",
R"({"repeatedUint32Wrapper": [0, 1]})",
"repeated_uint32_wrapper: {value: 0}"
"repeated_uint32_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedInt64Wrapper",
R"({"repeatedInt64Wrapper": [0, 1]})",
"repeated_int64_wrapper: {value: 0}"
"repeated_int64_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedUint64Wrapper",
R"({"repeatedUint64Wrapper": [0, 1]})",
"repeated_uint64_wrapper: {value: 0}"
"repeated_uint64_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedFloatWrapper",
R"({"repeatedFloatWrapper": [0, 1]})",
"repeated_float_wrapper: {value: 0}"
"repeated_float_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedDoubleWrapper",
R"({"repeatedDoubleWrapper": [0, 1]})",
"repeated_double_wrapper: {value: 0}"
"repeated_double_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedStringWrapper",
R"({"repeatedStringWrapper": ["", "AQI="]})",
R"(
repeated_string_wrapper: {value: ""}
repeated_string_wrapper: {value: "AQI="}
)");
RunValidJsonTest(
"RepeatedBytesWrapper",
R"({"repeatedBytesWrapper": ["", "AQI="]})",
R"(
repeated_bytes_wrapper: {value: ""}
repeated_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest(
"WrapperTypesWithNullValue",
R"({
"optionalBoolWrapper": null,
"optionalInt32Wrapper": null,
"optionalUint32Wrapper": null,
"optionalInt64Wrapper": null,
"optionalUint64Wrapper": null,
"optionalFloatWrapper": null,
"optionalDoubleWrapper": null,
"optionalStringWrapper": null,
"optionalBytesWrapper": null,
"repeatedBoolWrapper": null,
"repeatedInt32Wrapper": null,
"repeatedUint32Wrapper": null,
"repeatedInt64Wrapper": null,
"repeatedUint64Wrapper": null,
"repeatedFloatWrapper": null,
"repeatedDoubleWrapper": null,
"repeatedStringWrapper": null,
"repeatedBytesWrapper": null
})",
"");
// Duration
RunValidJsonTest(
"DurationMinValue",
R"({"optionalDuration": "-315576000000.999999999s"})",
"optional_duration: {seconds: -315576000000 nanos: -999999999}");
RunValidJsonTest(
"DurationMaxValue",
R"({"optionalDuration": "315576000000.999999999s"})",
"optional_duration: {seconds: 315576000000 nanos: 999999999}");
RunValidJsonTest(
"DurationRepeatedValue",
R"({"repeatedDuration": ["1.5s", "-1.5s"]})",
"repeated_duration: {seconds: 1 nanos: 500000000}"
"repeated_duration: {seconds: -1 nanos: -500000000}");
ExpectParseFailureForJson(
"DurationMissingS",
R"({"optionalDuration": "1"})");
ExpectParseFailureForJson(
"DurationJsonInputTooSmall",
R"({"optionalDuration": "-315576000001.000000000s"})");
ExpectParseFailureForJson(
"DurationJsonInputTooLarge",
R"({"optionalDuration": "315576000001.000000000s"})");
ExpectSerializeFailureForJson(
"DurationProtoInputTooSmall",
"optional_duration: {seconds: -315576000001 nanos: 0}");
ExpectSerializeFailureForJson(
"DurationProtoInputTooLarge",
"optional_duration: {seconds: 315576000001 nanos: 0}");
RunValidJsonTestWithValidator(
"DurationHasZeroFractionalDigit",
R"({"optionalDuration": "1.000000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1s";
});
RunValidJsonTestWithValidator(
"DurationHas3FractionalDigits",
R"({"optionalDuration": "1.010000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.010s";
});
RunValidJsonTestWithValidator(
"DurationHas6FractionalDigits",
R"({"optionalDuration": "1.000010000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000010s";
});
RunValidJsonTestWithValidator(
"DurationHas9FractionalDigits",
R"({"optionalDuration": "1.000000010s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000000010s";
});
// Timestamp
RunValidJsonTest(
"TimestampMinValue",
R"({"optionalTimestamp": "0001-01-01T00:00:00Z"})",
"optional_timestamp: {seconds: -62135596800}");
RunValidJsonTest(
"TimestampMaxValue",
R"({"optionalTimestamp": "9999-12-31T23:59:59.999999999Z"})",
"optional_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest(
"TimestampRepeatedValue",
R"({
"repeatedTimestamp": [
"0001-01-01T00:00:00Z",
"9999-12-31T23:59:59.999999999Z"
]
})",
"repeated_timestamp: {seconds: -62135596800}"
"repeated_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest(
"TimestampWithPositiveOffset",
R"({"optionalTimestamp": "1970-01-01T08:00:00+08:00"})",
"optional_timestamp: {seconds: 0}");
RunValidJsonTest(
"TimestampWithNegativeOffset",
R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
"optional_timestamp: {seconds: 0}");
ExpectParseFailureForJson(
"TimestampJsonInputTooSmall",
R"({"optionalTimestamp": "0000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputTooLarge",
R"({"optionalTimestamp": "10000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputMissingZ",
R"({"optionalTimestamp": "0001-01-01T00:00:00"})");
ExpectParseFailureForJson(
"TimestampJsonInputMissingT",
R"({"optionalTimestamp": "0001-01-01 00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputLowercaseZ",
R"({"optionalTimestamp": "0001-01-01T00:00:00z"})");
ExpectParseFailureForJson(
"TimestampJsonInputLowercaseT",
R"({"optionalTimestamp": "0001-01-01t00:00:00Z"})");
ExpectSerializeFailureForJson(
"TimestampProtoInputTooSmall",
"optional_timestamp: {seconds: -62135596801}");
ExpectSerializeFailureForJson(
"TimestampProtoInputTooLarge",
"optional_timestamp: {seconds: 253402300800}");
RunValidJsonTestWithValidator(
"TimestampZeroNormalized",
R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00Z";
});
RunValidJsonTestWithValidator(
"TimestampHasZeroFractionalDigit",
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00Z";
});
RunValidJsonTestWithValidator(
"TimestampHas3FractionalDigits",
R"({"optionalTimestamp": "1970-01-01T00:00:00.010000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.010Z";
});
RunValidJsonTestWithValidator(
"TimestampHas6FractionalDigits",
R"({"optionalTimestamp": "1970-01-01T00:00:00.000010000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000010Z";
});
RunValidJsonTestWithValidator(
"TimestampHas9FractionalDigits",
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000010Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000000010Z";
});
// FieldMask
RunValidJsonTest(
"FieldMask",
R"({"optionalFieldMask": "foo,barBaz"})",
R"(optional_field_mask: {paths: "foo" paths: "bar_baz"})");
ExpectParseFailureForJson(
"FieldMaskInvalidCharacter",
R"({"optionalFieldMask": "foo,bar_bar"})");
ExpectSerializeFailureForJson(
"FieldMaskPathsDontRoundTrip",
R"(optional_field_mask: {paths: "fooBar"})");
ExpectSerializeFailureForJson(
"FieldMaskNumbersDontRoundTrip",
R"(optional_field_mask: {paths: "foo_3_bar"})");
ExpectSerializeFailureForJson(
"FieldMaskTooManyUnderscore",
R"(optional_field_mask: {paths: "foo__bar"})");
// Struct
RunValidJsonTest(
"Struct",
R"({
"optionalStruct": {
"nullValue": null,
"intValue": 1234,
"boolValue": true,
"doubleValue": 1234.5678,
"stringValue": "Hello world!",
"listValue": [1234, "5678"],
"objectValue": {
"value": 0
}
}
})",
R"(
optional_struct: {
fields: {
key: "nullValue"
value: {null_value: NULL_VALUE}
}
fields: {
key: "intValue"
value: {number_value: 1234}
}
fields: {
key: "boolValue"
value: {bool_value: true}
}
fields: {
key: "doubleValue"
value: {number_value: 1234.5678}
}
fields: {
key: "stringValue"
value: {string_value: "Hello world!"}
}
fields: {
key: "listValue"
value: {
list_value: {
values: {
number_value: 1234
}
values: {
string_value: "5678"
}
}
}
}
fields: {
key: "objectValue"
value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 0
}
}
}
}
}
}
)");
// Value
RunValidJsonTest(
"ValueAcceptInteger",
R"({"optionalValue": 1})",
"optional_value: { number_value: 1}");
RunValidJsonTest(
"ValueAcceptFloat",
R"({"optionalValue": 1.5})",
"optional_value: { number_value: 1.5}");
RunValidJsonTest(
"ValueAcceptBool",
R"({"optionalValue": false})",
"optional_value: { bool_value: false}");
RunValidJsonTest(
"ValueAcceptNull",
R"({"optionalValue": null})",
"optional_value: { null_value: NULL_VALUE}");
RunValidJsonTest(
"ValueAcceptString",
R"({"optionalValue": "hello"})",
R"(optional_value: { string_value: "hello"})");
RunValidJsonTest(
"ValueAcceptList",
R"({"optionalValue": [0, "hello"]})",
R"(
optional_value: {
list_value: {
values: {
number_value: 0
}
values: {
string_value: "hello"
}
}
}
)");
RunValidJsonTest(
"ValueAcceptObject",
R"({"optionalValue": {"value": 1}})",
R"(
optional_value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 1
}
}
}
}
)");
// Any
RunValidJsonTest(
"Any",
R"({
"optionalAny": {
"@type": "type.googleapis.com/conformance.TestAllTypes",
"optionalInt32": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/conformance.TestAllTypes] {
optional_int32: 12345
}
}
)");
RunValidJsonTest(
"AnyNested",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Any",
"value": {
"@type": "type.googleapis.com/conformance.TestAllTypes",
"optionalInt32": 12345
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Any] {
[type.googleapis.com/conformance.TestAllTypes] {
optional_int32: 12345
}
}
}
)");
// The special "@type" tag is not required to appear first.
RunValidJsonTest(
"AnyUnorderedTypeTag",
R"({
"optionalAny": {
"optionalInt32": 12345,
"@type": "type.googleapis.com/conformance.TestAllTypes"
}
})",
R"(
optional_any: {
[type.googleapis.com/conformance.TestAllTypes] {
optional_int32: 12345
}
}
)");
// Well-known types in Any.
RunValidJsonTest(
"AnyWithInt32ValueWrapper",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Int32Value",
"value": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Int32Value] {
value: 12345
}
}
)");
RunValidJsonTest(
"AnyWithDuration",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.5s"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Duration] {
seconds: 1
nanos: 500000000
}
}
)");
RunValidJsonTest(
"AnyWithTimestamp",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Timestamp",
"value": "1970-01-01T00:00:00Z"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Timestamp] {
seconds: 0
nanos: 0
}
}
)");
RunValidJsonTest(
"AnyWithFieldMask",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.FieldMask",
"value": "foo,barBaz"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.FieldMask] {
paths: ["foo", "bar_baz"]
}
}
)");
RunValidJsonTest(
"AnyWithStruct",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Struct",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Struct] {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
)");
RunValidJsonTest(
"AnyWithValueForJsonObject",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
struct_value: {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
}
)");
RunValidJsonTest(
"AnyWithValueForInteger",
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": 1
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
number_value: 1
}
}
)");
bool ok = true;
if (!CheckSetEmpty(expected_to_fail_, "nonexistent_tests.txt",
"These tests were listed in the failure list, but they "
"don't exist. Remove them from the failure list by "
"running:\n"
" ./update_failure_list.py " + failure_list_filename_ +
" --remove nonexistent_tests.txt")) {
ok = false;
}
if (!CheckSetEmpty(unexpected_failing_tests_, "failing_tests.txt",
"These tests failed. If they can't be fixed right now, "
"you can add them to the failure list so the overall "
"suite can succeed. Add them to the failure list by "
"running:\n"
" ./update_failure_list.py " + failure_list_filename_ +
" --add failing_tests.txt")) {
ok = false;
}
if (!CheckSetEmpty(unexpected_succeeding_tests_, "succeeding_tests.txt",
"These tests succeeded, even though they were listed in "
"the failure list. Remove them from the failure list "
"by running:\n"
" ./update_failure_list.py " + failure_list_filename_ +
" --remove succeeding_tests.txt")) {
ok = false;
}
if (verbose_) {
CheckSetEmpty(skipped_, "",
"These tests were skipped (probably because support for some "
"features is not implemented)");
}
StringAppendF(&output_,
"CONFORMANCE SUITE %s: %d successes, %d skipped, "
"%d expected failures, %d unexpected failures.\n",
ok ? "PASSED" : "FAILED", successes_, skipped_.size(),
expected_failures_, unexpected_failing_tests_.size());
StringAppendF(&output_, "\n");
output->assign(output_);
return ok;
}
} // namespace protobuf
} // namespace google