protobuf/ruby/ext/google/protobuf_c/upb.c
Chris Fallin d326277397 Update MRI C Ruby extension to use new version of upb.
- Alter encode/decode paths to use the `upb_env` (environment)
  abstraction.
- Update upb amalgamation to upstream `93791bfe`.
- Fix a compilation warning (void*->char* cast).
- Modify build flags so that upb doesn't produce warnings -- the Travis
  build logs were pretty cluttered previously.
2015-05-15 11:36:12 -07:00

11795 lines
389 KiB
C

// Amalgamated source file
#include "upb.h"
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2008-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include <stdlib.h>
#include <string.h>
typedef struct {
size_t len;
char str[1]; // Null-terminated string data follows.
} str_t;
static str_t *newstr(const char *data, size_t len) {
str_t *ret = malloc(sizeof(*ret) + len);
if (!ret) return NULL;
ret->len = len;
memcpy(ret->str, data, len);
ret->str[len] = '\0';
return ret;
}
static void freestr(str_t *s) { free(s); }
// isalpha() etc. from <ctype.h> are locale-dependent, which we don't want.
static bool upb_isbetween(char c, char low, char high) {
return c >= low && c <= high;
}
static bool upb_isletter(char c) {
return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_';
}
static bool upb_isalphanum(char c) {
return upb_isletter(c) || upb_isbetween(c, '0', '9');
}
static bool upb_isident(const char *str, size_t len, bool full, upb_status *s) {
bool start = true;
for (size_t i = 0; i < len; i++) {
char c = str[i];
if (c == '.') {
if (start || !full) {
upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str);
return false;
}
start = true;
} else if (start) {
if (!upb_isletter(c)) {
upb_status_seterrf(
s, "invalid name: path components must start with a letter (%s)",
str);
return false;
}
start = false;
} else {
if (!upb_isalphanum(c)) {
upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)",
str);
return false;
}
}
}
return !start;
}
/* upb_def ********************************************************************/
upb_deftype_t upb_def_type(const upb_def *d) { return d->type; }
const char *upb_def_fullname(const upb_def *d) { return d->fullname; }
bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s) {
assert(!upb_def_isfrozen(def));
if (!upb_isident(fullname, strlen(fullname), true, s)) return false;
free((void*)def->fullname);
def->fullname = upb_strdup(fullname);
return true;
}
upb_def *upb_def_dup(const upb_def *def, const void *o) {
switch (def->type) {
case UPB_DEF_MSG:
return UPB_UPCAST(upb_msgdef_dup(upb_downcast_msgdef(def), o));
case UPB_DEF_FIELD:
return UPB_UPCAST(upb_fielddef_dup(upb_downcast_fielddef(def), o));
case UPB_DEF_ENUM:
return UPB_UPCAST(upb_enumdef_dup(upb_downcast_enumdef(def), o));
default: assert(false); return NULL;
}
}
bool upb_def_isfrozen(const upb_def *def) {
return upb_refcounted_isfrozen(UPB_UPCAST(def));
}
void upb_def_ref(const upb_def *def, const void *owner) {
upb_refcounted_ref(UPB_UPCAST(def), owner);
}
void upb_def_unref(const upb_def *def, const void *owner) {
upb_refcounted_unref(UPB_UPCAST(def), owner);
}
void upb_def_donateref(const upb_def *def, const void *from, const void *to) {
upb_refcounted_donateref(UPB_UPCAST(def), from, to);
}
void upb_def_checkref(const upb_def *def, const void *owner) {
upb_refcounted_checkref(UPB_UPCAST(def), owner);
}
static bool upb_def_init(upb_def *def, upb_deftype_t type,
const struct upb_refcounted_vtbl *vtbl,
const void *owner) {
if (!upb_refcounted_init(UPB_UPCAST(def), vtbl, owner)) return false;
def->type = type;
def->fullname = NULL;
def->came_from_user = false;
return true;
}
static void upb_def_uninit(upb_def *def) {
free((void*)def->fullname);
}
static const char *msgdef_name(const upb_msgdef *m) {
const char *name = upb_def_fullname(UPB_UPCAST(m));
return name ? name : "(anonymous)";
}
static bool upb_validate_field(upb_fielddef *f, upb_status *s) {
if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) {
upb_status_seterrmsg(s, "fielddef must have name and number set");
return false;
}
if (!f->type_is_set_) {
upb_status_seterrmsg(s, "fielddef type was not initialized");
return false;
}
if (upb_fielddef_lazy(f) &&
upb_fielddef_descriptortype(f) != UPB_DESCRIPTOR_TYPE_MESSAGE) {
upb_status_seterrmsg(s,
"only length-delimited submessage fields may be lazy");
return false;
}
if (upb_fielddef_hassubdef(f)) {
if (f->subdef_is_symbolic) {
upb_status_seterrf(s, "field '%s.%s' has not been resolved",
msgdef_name(f->msg.def), upb_fielddef_name(f));
return false;
}
const upb_def *subdef = upb_fielddef_subdef(f);
if (subdef == NULL) {
upb_status_seterrf(s, "field %s.%s is missing required subdef",
msgdef_name(f->msg.def), upb_fielddef_name(f));
return false;
}
if (!upb_def_isfrozen(subdef) && !subdef->came_from_user) {
upb_status_seterrf(s,
"subdef of field %s.%s is not frozen or being frozen",
msgdef_name(f->msg.def), upb_fielddef_name(f));
return false;
}
}
if (upb_fielddef_type(f) == UPB_TYPE_ENUM) {
bool has_default_name = upb_fielddef_enumhasdefaultstr(f);
bool has_default_number = upb_fielddef_enumhasdefaultint32(f);
// Previously verified by upb_validate_enumdef().
assert(upb_enumdef_numvals(upb_fielddef_enumsubdef(f)) > 0);
// We've already validated that we have an associated enumdef and that it
// has at least one member, so at least one of these should be true.
// Because if the user didn't set anything, we'll pick up the enum's
// default, but if the user *did* set something we should at least pick up
// the one they set (int32 or string).
assert(has_default_name || has_default_number);
if (!has_default_name) {
upb_status_seterrf(s,
"enum default for field %s.%s (%d) is not in the enum",
msgdef_name(f->msg.def), upb_fielddef_name(f),
upb_fielddef_defaultint32(f));
return false;
}
if (!has_default_number) {
upb_status_seterrf(s,
"enum default for field %s.%s (%s) is not in the enum",
msgdef_name(f->msg.def), upb_fielddef_name(f),
upb_fielddef_defaultstr(f, NULL));
return false;
}
// Lift the effective numeric default into the field's default slot, in case
// we were only getting it "by reference" from the enumdef.
upb_fielddef_setdefaultint32(f, upb_fielddef_defaultint32(f));
}
// Ensure that MapEntry submessages only appear as repeated fields, not
// optional/required (singular) fields.
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE &&
upb_fielddef_msgsubdef(f) != NULL) {
const upb_msgdef *subdef = upb_fielddef_msgsubdef(f);
if (upb_msgdef_mapentry(subdef) && !upb_fielddef_isseq(f)) {
upb_status_seterrf(s,
"Field %s refers to mapentry message but is not "
"a repeated field",
upb_fielddef_name(f) ? upb_fielddef_name(f) :
"(unnamed)");
return false;
}
}
return true;
}
static bool upb_validate_enumdef(const upb_enumdef *e, upb_status *s) {
if (upb_enumdef_numvals(e) == 0) {
upb_status_seterrf(s, "enum %s has no members (must have at least one)",
upb_enumdef_fullname(e));
return false;
}
return true;
}
// All submessage fields are lower than all other fields.
// Secondly, fields are increasing in order.
uint32_t field_rank(const upb_fielddef *f) {
uint32_t ret = upb_fielddef_number(f);
const uint32_t high_bit = 1 << 30;
assert(ret < high_bit);
if (!upb_fielddef_issubmsg(f))
ret |= high_bit;
return ret;
}
int cmp_fields(const void *p1, const void *p2) {
const upb_fielddef *f1 = *(upb_fielddef*const*)p1;
const upb_fielddef *f2 = *(upb_fielddef*const*)p2;
return field_rank(f1) - field_rank(f2);
}
static bool assign_msg_indices(upb_msgdef *m, upb_status *s) {
// Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the
// lowest indexes, but we do not publicly guarantee this.
int n = upb_msgdef_numfields(m);
upb_fielddef **fields = malloc(n * sizeof(*fields));
if (!fields) return false;
upb_msg_field_iter j;
int i;
m->submsg_field_count = 0;
for(i = 0, upb_msg_field_begin(&j, m);
!upb_msg_field_done(&j);
upb_msg_field_next(&j), i++) {
upb_fielddef *f = upb_msg_iter_field(&j);
assert(f->msg.def == m);
if (!upb_validate_field(f, s)) {
free(fields);
return false;
}
if (upb_fielddef_issubmsg(f)) {
m->submsg_field_count++;
}
fields[i] = f;
}
qsort(fields, n, sizeof(*fields), cmp_fields);
uint32_t selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count;
for (i = 0; i < n; i++) {
upb_fielddef *f = fields[i];
f->index_ = i;
f->selector_base = selector + upb_handlers_selectorbaseoffset(f);
selector += upb_handlers_selectorcount(f);
}
m->selector_count = selector;
#ifndef NDEBUG
// Verify that all selectors for the message are distinct.
//
#define TRY(type) \
if (upb_handlers_getselector(f, type, &sel)) upb_inttable_insert(&t, sel, v);
upb_inttable t;
upb_inttable_init(&t, UPB_CTYPE_BOOL);
upb_value v = upb_value_bool(true);
upb_selector_t sel;
upb_inttable_insert(&t, UPB_STARTMSG_SELECTOR, v);
upb_inttable_insert(&t, UPB_ENDMSG_SELECTOR, v);
for(upb_msg_field_begin(&j, m);
!upb_msg_field_done(&j);
upb_msg_field_next(&j)) {
upb_fielddef *f = upb_msg_iter_field(&j);
// These calls will assert-fail in upb_table if the value already exists.
TRY(UPB_HANDLER_INT32);
TRY(UPB_HANDLER_INT64)
TRY(UPB_HANDLER_UINT32)
TRY(UPB_HANDLER_UINT64)
TRY(UPB_HANDLER_FLOAT)
TRY(UPB_HANDLER_DOUBLE)
TRY(UPB_HANDLER_BOOL)
TRY(UPB_HANDLER_STARTSTR)
TRY(UPB_HANDLER_STRING)
TRY(UPB_HANDLER_ENDSTR)
TRY(UPB_HANDLER_STARTSUBMSG)
TRY(UPB_HANDLER_ENDSUBMSG)
TRY(UPB_HANDLER_STARTSEQ)
TRY(UPB_HANDLER_ENDSEQ)
}
upb_inttable_uninit(&t);
#undef TRY
#endif
free(fields);
return true;
}
bool upb_def_freeze(upb_def *const* defs, int n, upb_status *s) {
upb_status_clear(s);
// First perform validation, in two passes so we can check that we have a
// transitive closure without needing to search.
for (int i = 0; i < n; i++) {
upb_def *def = defs[i];
if (upb_def_isfrozen(def)) {
// Could relax this requirement if it's annoying.
upb_status_seterrmsg(s, "def is already frozen");
goto err;
} else if (def->type == UPB_DEF_FIELD) {
upb_status_seterrmsg(s, "standalone fielddefs can not be frozen");
goto err;
} else if (def->type == UPB_DEF_ENUM) {
if (!upb_validate_enumdef(upb_dyncast_enumdef(def), s)) {
goto err;
}
} else {
// Set now to detect transitive closure in the second pass.
def->came_from_user = true;
}
}
// Second pass of validation. Also assign selector bases and indexes, and
// compact tables.
for (int i = 0; i < n; i++) {
upb_msgdef *m = upb_dyncast_msgdef_mutable(defs[i]);
upb_enumdef *e = upb_dyncast_enumdef_mutable(defs[i]);
if (m) {
upb_inttable_compact(&m->itof);
if (!assign_msg_indices(m, s)) {
goto err;
}
} else if (e) {
upb_inttable_compact(&e->iton);
}
}
// Def graph contains FieldDefs between each MessageDef, so double the limit.
int maxdepth = UPB_MAX_MESSAGE_DEPTH * 2;
// Validation all passed; freeze the defs.
bool ret =
upb_refcounted_freeze((upb_refcounted * const *)defs, n, s, maxdepth);
assert(!(s && ret != upb_ok(s)));
return ret;
err:
for (int i = 0; i < n; i++) {
defs[i]->came_from_user = false;
}
assert(!(s && upb_ok(s)));
return false;
}
/* upb_enumdef ****************************************************************/
static void upb_enumdef_free(upb_refcounted *r) {
upb_enumdef *e = (upb_enumdef*)r;
upb_inttable_iter i;
upb_inttable_begin(&i, &e->iton);
for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) {
// To clean up the upb_strdup() from upb_enumdef_addval().
free(upb_value_getcstr(upb_inttable_iter_value(&i)));
}
upb_strtable_uninit(&e->ntoi);
upb_inttable_uninit(&e->iton);
upb_def_uninit(UPB_UPCAST(e));
free(e);
}
upb_enumdef *upb_enumdef_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_enumdef_free};
upb_enumdef *e = malloc(sizeof(*e));
if (!e) return NULL;
if (!upb_def_init(UPB_UPCAST(e), UPB_DEF_ENUM, &vtbl, owner)) goto err2;
if (!upb_strtable_init(&e->ntoi, UPB_CTYPE_INT32)) goto err2;
if (!upb_inttable_init(&e->iton, UPB_CTYPE_CSTR)) goto err1;
return e;
err1:
upb_strtable_uninit(&e->ntoi);
err2:
free(e);
return NULL;
}
upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner) {
upb_enumdef *new_e = upb_enumdef_new(owner);
if (!new_e) return NULL;
upb_enum_iter i;
for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
bool success = upb_enumdef_addval(
new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i), NULL);
if (!success) {
upb_enumdef_unref(new_e, owner);
return NULL;
}
}
return new_e;
}
bool upb_enumdef_isfrozen(const upb_enumdef *e) {
return upb_def_isfrozen(UPB_UPCAST(e));
}
void upb_enumdef_ref(const upb_enumdef *e, const void *owner) {
upb_def_ref(UPB_UPCAST(e), owner);
}
void upb_enumdef_unref(const upb_enumdef *e, const void *owner) {
upb_def_unref(UPB_UPCAST(e), owner);
}
void upb_enumdef_donateref(
const upb_enumdef *e, const void *from, const void *to) {
upb_def_donateref(UPB_UPCAST(e), from, to);
}
void upb_enumdef_checkref(const upb_enumdef *e, const void *owner) {
upb_def_checkref(UPB_UPCAST(e), owner);
}
bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status) {
upb_def *d = UPB_UPCAST(e);
return upb_def_freeze(&d, 1, status);
}
const char *upb_enumdef_fullname(const upb_enumdef *e) {
return upb_def_fullname(UPB_UPCAST(e));
}
bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
upb_status *s) {
return upb_def_setfullname(UPB_UPCAST(e), fullname, s);
}
bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
upb_status *status) {
if (!upb_isident(name, strlen(name), false, status)) {
return false;
}
if (upb_enumdef_ntoiz(e, name, NULL)) {
upb_status_seterrf(status, "name '%s' is already defined", name);
return false;
}
if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) {
upb_status_seterrmsg(status, "out of memory");
return false;
}
if (!upb_inttable_lookup(&e->iton, num, NULL) &&
!upb_inttable_insert(&e->iton, num, upb_value_cstr(upb_strdup(name)))) {
upb_status_seterrmsg(status, "out of memory");
upb_strtable_remove(&e->ntoi, name, NULL);
return false;
}
if (upb_enumdef_numvals(e) == 1) {
bool ok = upb_enumdef_setdefault(e, num, NULL);
UPB_ASSERT_VAR(ok, ok);
}
return true;
}
int32_t upb_enumdef_default(const upb_enumdef *e) {
assert(upb_enumdef_iton(e, e->defaultval));
return e->defaultval;
}
bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s) {
assert(!upb_enumdef_isfrozen(e));
if (!upb_enumdef_iton(e, val)) {
upb_status_seterrf(s, "number '%d' is not in the enum.", val);
return false;
}
e->defaultval = val;
return true;
}
int upb_enumdef_numvals(const upb_enumdef *e) {
return upb_strtable_count(&e->ntoi);
}
void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) {
// We iterate over the ntoi table, to account for duplicate numbers.
upb_strtable_begin(i, &e->ntoi);
}
void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); }
bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); }
bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name,
size_t len, int32_t *num) {
upb_value v;
if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) {
return false;
}
if (num) *num = upb_value_getint32(v);
return true;
}
const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) {
upb_value v;
return upb_inttable_lookup32(&def->iton, num, &v) ?
upb_value_getcstr(v) : NULL;
}
const char *upb_enum_iter_name(upb_enum_iter *iter) {
return upb_strtable_iter_key(iter);
}
int32_t upb_enum_iter_number(upb_enum_iter *iter) {
return upb_value_getint32(upb_strtable_iter_value(iter));
}
/* upb_fielddef ***************************************************************/
static void upb_fielddef_init_default(upb_fielddef *f);
static void upb_fielddef_uninit_default(upb_fielddef *f) {
if (f->type_is_set_ && f->default_is_string && f->defaultval.bytes)
freestr(f->defaultval.bytes);
}
static void visitfield(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const upb_fielddef *f = (const upb_fielddef*)r;
if (upb_fielddef_containingtype(f)) {
visit(r, UPB_UPCAST2(upb_fielddef_containingtype(f)), closure);
}
if (upb_fielddef_containingoneof(f)) {
visit(r, UPB_UPCAST2(upb_fielddef_containingoneof(f)), closure);
}
if (upb_fielddef_subdef(f)) {
visit(r, UPB_UPCAST(upb_fielddef_subdef(f)), closure);
}
}
static void freefield(upb_refcounted *r) {
upb_fielddef *f = (upb_fielddef*)r;
upb_fielddef_uninit_default(f);
if (f->subdef_is_symbolic)
free(f->sub.name);
upb_def_uninit(UPB_UPCAST(f));
free(f);
}
static const char *enumdefaultstr(const upb_fielddef *f) {
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
const upb_enumdef *e = upb_fielddef_enumsubdef(f);
if (f->default_is_string && f->defaultval.bytes) {
// Default was explicitly set as a string.
str_t *s = f->defaultval.bytes;
return s->str;
} else if (e) {
if (!f->default_is_string) {
// Default was explicitly set as an integer; look it up in enumdef.
const char *name = upb_enumdef_iton(e, f->defaultval.sint);
if (name) {
return name;
}
} else {
// Default is completely unset; pull enumdef default.
if (upb_enumdef_numvals(e) > 0) {
const char *name = upb_enumdef_iton(e, upb_enumdef_default(e));
assert(name);
return name;
}
}
}
return NULL;
}
static bool enumdefaultint32(const upb_fielddef *f, int32_t *val) {
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
const upb_enumdef *e = upb_fielddef_enumsubdef(f);
if (!f->default_is_string) {
// Default was explicitly set as an integer.
*val = f->defaultval.sint;
return true;
} else if (e) {
if (f->defaultval.bytes) {
// Default was explicitly set as a str; try to lookup corresponding int.
str_t *s = f->defaultval.bytes;
if (upb_enumdef_ntoiz(e, s->str, val)) {
return true;
}
} else {
// Default is unset; try to pull in enumdef default.
if (upb_enumdef_numvals(e) > 0) {
*val = upb_enumdef_default(e);
return true;
}
}
}
return false;
}
upb_fielddef *upb_fielddef_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {visitfield, freefield};
upb_fielddef *f = malloc(sizeof(*f));
if (!f) return NULL;
if (!upb_def_init(UPB_UPCAST(f), UPB_DEF_FIELD, &vtbl, owner)) {
free(f);
return NULL;
}
f->msg.def = NULL;
f->sub.def = NULL;
f->oneof = NULL;
f->subdef_is_symbolic = false;
f->msg_is_symbolic = false;
f->label_ = UPB_LABEL_OPTIONAL;
f->type_ = UPB_TYPE_INT32;
f->number_ = 0;
f->type_is_set_ = false;
f->tagdelim = false;
f->is_extension_ = false;
f->lazy_ = false;
f->packed_ = true;
// For the moment we default this to UPB_INTFMT_VARIABLE, since it will work
// with all integer types and is in some since more "default" since the most
// normal-looking proto2 types int32/int64/uint32/uint64 use variable.
//
// Other options to consider:
// - there is no default; users must set this manually (like type).
// - default signed integers to UPB_INTFMT_ZIGZAG, since it's more likely to
// be an optimal default for signed integers.
f->intfmt = UPB_INTFMT_VARIABLE;
return f;
}
upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner) {
upb_fielddef *newf = upb_fielddef_new(owner);
if (!newf) return NULL;
upb_fielddef_settype(newf, upb_fielddef_type(f));
upb_fielddef_setlabel(newf, upb_fielddef_label(f));
upb_fielddef_setnumber(newf, upb_fielddef_number(f), NULL);
upb_fielddef_setname(newf, upb_fielddef_name(f), NULL);
if (f->default_is_string && f->defaultval.bytes) {
str_t *s = f->defaultval.bytes;
upb_fielddef_setdefaultstr(newf, s->str, s->len, NULL);
} else {
newf->default_is_string = f->default_is_string;
newf->defaultval = f->defaultval;
}
const char *srcname;
if (f->subdef_is_symbolic) {
srcname = f->sub.name; // Might be NULL.
} else {
srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL;
}
if (srcname) {
char *newname = malloc(strlen(f->sub.def->fullname) + 2);
if (!newname) {
upb_fielddef_unref(newf, owner);
return NULL;
}
strcpy(newname, ".");
strcat(newname, f->sub.def->fullname);
upb_fielddef_setsubdefname(newf, newname, NULL);
free(newname);
}
return newf;
}
bool upb_fielddef_isfrozen(const upb_fielddef *f) {
return upb_def_isfrozen(UPB_UPCAST(f));
}
void upb_fielddef_ref(const upb_fielddef *f, const void *owner) {
upb_def_ref(UPB_UPCAST(f), owner);
}
void upb_fielddef_unref(const upb_fielddef *f, const void *owner) {
upb_def_unref(UPB_UPCAST(f), owner);
}
void upb_fielddef_donateref(
const upb_fielddef *f, const void *from, const void *to) {
upb_def_donateref(UPB_UPCAST(f), from, to);
}
void upb_fielddef_checkref(const upb_fielddef *f, const void *owner) {
upb_def_checkref(UPB_UPCAST(f), owner);
}
bool upb_fielddef_typeisset(const upb_fielddef *f) {
return f->type_is_set_;
}
upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) {
assert(f->type_is_set_);
return f->type_;
}
uint32_t upb_fielddef_index(const upb_fielddef *f) {
return f->index_;
}
upb_label_t upb_fielddef_label(const upb_fielddef *f) {
return f->label_;
}
upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f) {
return f->intfmt;
}
bool upb_fielddef_istagdelim(const upb_fielddef *f) {
return f->tagdelim;
}
uint32_t upb_fielddef_number(const upb_fielddef *f) {
return f->number_;
}
bool upb_fielddef_isextension(const upb_fielddef *f) {
return f->is_extension_;
}
bool upb_fielddef_lazy(const upb_fielddef *f) {
return f->lazy_;
}
bool upb_fielddef_packed(const upb_fielddef *f) {
return f->packed_;
}
const char *upb_fielddef_name(const upb_fielddef *f) {
return upb_def_fullname(UPB_UPCAST(f));
}
const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) {
return f->msg_is_symbolic ? NULL : f->msg.def;
}
const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) {
return f->oneof;
}
upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f) {
return (upb_msgdef*)upb_fielddef_containingtype(f);
}
const char *upb_fielddef_containingtypename(upb_fielddef *f) {
return f->msg_is_symbolic ? f->msg.name : NULL;
}
static void release_containingtype(upb_fielddef *f) {
if (f->msg_is_symbolic) free(f->msg.name);
}
bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
upb_status *s) {
assert(!upb_fielddef_isfrozen(f));
if (upb_fielddef_containingtype(f)) {
upb_status_seterrmsg(s, "field has already been added to a message.");
return false;
}
// TODO: validate name (upb_isident() doesn't quite work atm because this name
// may have a leading ".").
release_containingtype(f);
f->msg.name = upb_strdup(name);
f->msg_is_symbolic = true;
return true;
}
bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s) {
if (upb_fielddef_containingtype(f) || upb_fielddef_containingoneof(f)) {
upb_status_seterrmsg(s, "Already added to message or oneof");
return false;
}
return upb_def_setfullname(UPB_UPCAST(f), name, s);
}
static void chkdefaulttype(const upb_fielddef *f, upb_fieldtype_t type) {
UPB_UNUSED(f);
UPB_UNUSED(type);
assert(f->type_is_set_ && upb_fielddef_type(f) == type);
}
int64_t upb_fielddef_defaultint64(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_INT64);
return f->defaultval.sint;
}
int32_t upb_fielddef_defaultint32(const upb_fielddef *f) {
if (f->type_is_set_ && upb_fielddef_type(f) == UPB_TYPE_ENUM) {
int32_t val;
bool ok = enumdefaultint32(f, &val);
UPB_ASSERT_VAR(ok, ok);
return val;
} else {
chkdefaulttype(f, UPB_TYPE_INT32);
return f->defaultval.sint;
}
}
uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_UINT64);
return f->defaultval.uint;
}
uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_UINT32);
return f->defaultval.uint;
}
bool upb_fielddef_defaultbool(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_BOOL);
return f->defaultval.uint;
}
float upb_fielddef_defaultfloat(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_FLOAT);
return f->defaultval.flt;
}
double upb_fielddef_defaultdouble(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_DOUBLE);
return f->defaultval.dbl;
}
const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) {
assert(f->type_is_set_);
assert(upb_fielddef_type(f) == UPB_TYPE_STRING ||
upb_fielddef_type(f) == UPB_TYPE_BYTES ||
upb_fielddef_type(f) == UPB_TYPE_ENUM);
if (upb_fielddef_type(f) == UPB_TYPE_ENUM) {
const char *ret = enumdefaultstr(f);
assert(ret);
// Enum defaults can't have embedded NULLs.
if (len) *len = strlen(ret);
return ret;
}
if (f->default_is_string) {
str_t *str = f->defaultval.bytes;
if (len) *len = str->len;
return str->str;
}
return NULL;
}
static void upb_fielddef_init_default(upb_fielddef *f) {
f->default_is_string = false;
switch (upb_fielddef_type(f)) {
case UPB_TYPE_DOUBLE: f->defaultval.dbl = 0; break;
case UPB_TYPE_FLOAT: f->defaultval.flt = 0; break;
case UPB_TYPE_INT32:
case UPB_TYPE_INT64: f->defaultval.sint = 0; break;
case UPB_TYPE_UINT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_BOOL: f->defaultval.uint = 0; break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
f->defaultval.bytes = newstr("", 0);
f->default_is_string = true;
break;
case UPB_TYPE_MESSAGE: break;
case UPB_TYPE_ENUM:
// This is our special sentinel that indicates "not set" for an enum.
f->default_is_string = true;
f->defaultval.bytes = NULL;
break;
}
}
const upb_def *upb_fielddef_subdef(const upb_fielddef *f) {
return f->subdef_is_symbolic ? NULL : f->sub.def;
}
const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) {
const upb_def *def = upb_fielddef_subdef(f);
return def ? upb_dyncast_msgdef(def) : NULL;
}
const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) {
const upb_def *def = upb_fielddef_subdef(f);
return def ? upb_dyncast_enumdef(def) : NULL;
}
upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) {
return (upb_def*)upb_fielddef_subdef(f);
}
const char *upb_fielddef_subdefname(const upb_fielddef *f) {
if (f->subdef_is_symbolic) {
return f->sub.name;
} else if (f->sub.def) {
return upb_def_fullname(f->sub.def);
} else {
return NULL;
}
}
bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s) {
if (upb_fielddef_containingtype(f)) {
upb_status_seterrmsg(
s, "cannot change field number after adding to a message");
return false;
}
if (number == 0 || number > UPB_MAX_FIELDNUMBER) {
upb_status_seterrf(s, "invalid field number (%u)", number);
return false;
}
f->number_ = number;
return true;
}
void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) {
assert(!upb_fielddef_isfrozen(f));
assert(upb_fielddef_checktype(type));
upb_fielddef_uninit_default(f);
f->type_ = type;
f->type_is_set_ = true;
upb_fielddef_init_default(f);
}
void upb_fielddef_setdescriptortype(upb_fielddef *f, int type) {
assert(!upb_fielddef_isfrozen(f));
switch (type) {
case UPB_DESCRIPTOR_TYPE_DOUBLE:
upb_fielddef_settype(f, UPB_TYPE_DOUBLE);
break;
case UPB_DESCRIPTOR_TYPE_FLOAT:
upb_fielddef_settype(f, UPB_TYPE_FLOAT);
break;
case UPB_DESCRIPTOR_TYPE_INT64:
case UPB_DESCRIPTOR_TYPE_SFIXED64:
case UPB_DESCRIPTOR_TYPE_SINT64:
upb_fielddef_settype(f, UPB_TYPE_INT64);
break;
case UPB_DESCRIPTOR_TYPE_UINT64:
case UPB_DESCRIPTOR_TYPE_FIXED64:
upb_fielddef_settype(f, UPB_TYPE_UINT64);
break;
case UPB_DESCRIPTOR_TYPE_INT32:
case UPB_DESCRIPTOR_TYPE_SFIXED32:
case UPB_DESCRIPTOR_TYPE_SINT32:
upb_fielddef_settype(f, UPB_TYPE_INT32);
break;
case UPB_DESCRIPTOR_TYPE_UINT32:
case UPB_DESCRIPTOR_TYPE_FIXED32:
upb_fielddef_settype(f, UPB_TYPE_UINT32);
break;
case UPB_DESCRIPTOR_TYPE_BOOL:
upb_fielddef_settype(f, UPB_TYPE_BOOL);
break;
case UPB_DESCRIPTOR_TYPE_STRING:
upb_fielddef_settype(f, UPB_TYPE_STRING);
break;
case UPB_DESCRIPTOR_TYPE_BYTES:
upb_fielddef_settype(f, UPB_TYPE_BYTES);
break;
case UPB_DESCRIPTOR_TYPE_GROUP:
case UPB_DESCRIPTOR_TYPE_MESSAGE:
upb_fielddef_settype(f, UPB_TYPE_MESSAGE);
break;
case UPB_DESCRIPTOR_TYPE_ENUM:
upb_fielddef_settype(f, UPB_TYPE_ENUM);
break;
default: assert(false);
}
if (type == UPB_DESCRIPTOR_TYPE_FIXED64 ||
type == UPB_DESCRIPTOR_TYPE_FIXED32 ||
type == UPB_DESCRIPTOR_TYPE_SFIXED64 ||
type == UPB_DESCRIPTOR_TYPE_SFIXED32) {
upb_fielddef_setintfmt(f, UPB_INTFMT_FIXED);
} else if (type == UPB_DESCRIPTOR_TYPE_SINT64 ||
type == UPB_DESCRIPTOR_TYPE_SINT32) {
upb_fielddef_setintfmt(f, UPB_INTFMT_ZIGZAG);
} else {
upb_fielddef_setintfmt(f, UPB_INTFMT_VARIABLE);
}
upb_fielddef_settagdelim(f, type == UPB_DESCRIPTOR_TYPE_GROUP);
}
upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_FLOAT: return UPB_DESCRIPTOR_TYPE_FLOAT;
case UPB_TYPE_DOUBLE: return UPB_DESCRIPTOR_TYPE_DOUBLE;
case UPB_TYPE_BOOL: return UPB_DESCRIPTOR_TYPE_BOOL;
case UPB_TYPE_STRING: return UPB_DESCRIPTOR_TYPE_STRING;
case UPB_TYPE_BYTES: return UPB_DESCRIPTOR_TYPE_BYTES;
case UPB_TYPE_ENUM: return UPB_DESCRIPTOR_TYPE_ENUM;
case UPB_TYPE_INT32:
switch (upb_fielddef_intfmt(f)) {
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT32;
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED32;
case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT32;
}
case UPB_TYPE_INT64:
switch (upb_fielddef_intfmt(f)) {
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT64;
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED64;
case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT64;
}
case UPB_TYPE_UINT32:
switch (upb_fielddef_intfmt(f)) {
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT32;
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED32;
case UPB_INTFMT_ZIGZAG: return -1;
}
case UPB_TYPE_UINT64:
switch (upb_fielddef_intfmt(f)) {
case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT64;
case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED64;
case UPB_INTFMT_ZIGZAG: return -1;
}
case UPB_TYPE_MESSAGE:
return upb_fielddef_istagdelim(f) ?
UPB_DESCRIPTOR_TYPE_GROUP : UPB_DESCRIPTOR_TYPE_MESSAGE;
}
return 0;
}
void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension) {
assert(!upb_fielddef_isfrozen(f));
f->is_extension_ = is_extension;
}
void upb_fielddef_setlazy(upb_fielddef *f, bool lazy) {
assert(!upb_fielddef_isfrozen(f));
f->lazy_ = lazy;
}
void upb_fielddef_setpacked(upb_fielddef *f, bool packed) {
assert(!upb_fielddef_isfrozen(f));
f->packed_ = packed;
}
void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) {
assert(!upb_fielddef_isfrozen(f));
assert(upb_fielddef_checklabel(label));
f->label_ = label;
}
void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt) {
assert(!upb_fielddef_isfrozen(f));
assert(upb_fielddef_checkintfmt(fmt));
f->intfmt = fmt;
}
void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim) {
assert(!upb_fielddef_isfrozen(f));
f->tagdelim = tag_delim;
f->tagdelim = tag_delim;
}
static bool checksetdefault(upb_fielddef *f, upb_fieldtype_t type) {
if (!f->type_is_set_ || upb_fielddef_isfrozen(f) ||
upb_fielddef_type(f) != type) {
assert(false);
return false;
}
if (f->default_is_string) {
str_t *s = f->defaultval.bytes;
assert(s || type == UPB_TYPE_ENUM);
if (s) freestr(s);
}
f->default_is_string = false;
return true;
}
void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t value) {
if (checksetdefault(f, UPB_TYPE_INT64))
f->defaultval.sint = value;
}
void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t value) {
if ((upb_fielddef_type(f) == UPB_TYPE_ENUM &&
checksetdefault(f, UPB_TYPE_ENUM)) ||
checksetdefault(f, UPB_TYPE_INT32)) {
f->defaultval.sint = value;
}
}
void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t value) {
if (checksetdefault(f, UPB_TYPE_UINT64))
f->defaultval.uint = value;
}
void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t value) {
if (checksetdefault(f, UPB_TYPE_UINT32))
f->defaultval.uint = value;
}
void upb_fielddef_setdefaultbool(upb_fielddef *f, bool value) {
if (checksetdefault(f, UPB_TYPE_BOOL))
f->defaultval.uint = value;
}
void upb_fielddef_setdefaultfloat(upb_fielddef *f, float value) {
if (checksetdefault(f, UPB_TYPE_FLOAT))
f->defaultval.flt = value;
}
void upb_fielddef_setdefaultdouble(upb_fielddef *f, double value) {
if (checksetdefault(f, UPB_TYPE_DOUBLE))
f->defaultval.dbl = value;
}
bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
upb_status *s) {
assert(upb_fielddef_isstring(f) || f->type_ == UPB_TYPE_ENUM);
if (f->type_ == UPB_TYPE_ENUM && !upb_isident(str, len, false, s))
return false;
if (f->default_is_string) {
str_t *s = f->defaultval.bytes;
assert(s || f->type_ == UPB_TYPE_ENUM);
if (s) freestr(s);
} else {
assert(f->type_ == UPB_TYPE_ENUM);
}
str_t *str2 = newstr(str, len);
f->defaultval.bytes = str2;
f->default_is_string = true;
return true;
}
void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
upb_status *s) {
assert(f->type_is_set_);
upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0, s);
}
bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f) {
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
int32_t val;
return enumdefaultint32(f, &val);
}
bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f) {
assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM);
return enumdefaultstr(f) != NULL;
}
static bool upb_subdef_typecheck(upb_fielddef *f, const upb_def *subdef,
upb_status *s) {
if (f->type_ == UPB_TYPE_MESSAGE) {
if (upb_dyncast_msgdef(subdef)) return true;
upb_status_seterrmsg(s, "invalid subdef type for this submessage field");
return false;
} else if (f->type_ == UPB_TYPE_ENUM) {
if (upb_dyncast_enumdef(subdef)) return true;
upb_status_seterrmsg(s, "invalid subdef type for this enum field");
return false;
} else {
upb_status_seterrmsg(s, "only message and enum fields can have a subdef");
return false;
}
}
static void release_subdef(upb_fielddef *f) {
if (f->subdef_is_symbolic) {
free(f->sub.name);
} else if (f->sub.def) {
upb_unref2(f->sub.def, f);
}
}
bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
upb_status *s) {
assert(!upb_fielddef_isfrozen(f));
assert(upb_fielddef_hassubdef(f));
if (subdef && !upb_subdef_typecheck(f, subdef, s)) return false;
release_subdef(f);
f->sub.def = subdef;
f->subdef_is_symbolic = false;
if (f->sub.def) upb_ref2(f->sub.def, f);
return true;
}
bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
upb_status *s) {
return upb_fielddef_setsubdef(f, UPB_UPCAST(subdef), s);
}
bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
upb_status *s) {
return upb_fielddef_setsubdef(f, UPB_UPCAST(subdef), s);
}
bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
upb_status *s) {
assert(!upb_fielddef_isfrozen(f));
if (!upb_fielddef_hassubdef(f)) {
upb_status_seterrmsg(s, "field type does not accept a subdef");
return false;
}
// TODO: validate name (upb_isident() doesn't quite work atm because this name
// may have a leading ".").
release_subdef(f);
f->sub.name = upb_strdup(name);
f->subdef_is_symbolic = true;
return true;
}
bool upb_fielddef_issubmsg(const upb_fielddef *f) {
return upb_fielddef_type(f) == UPB_TYPE_MESSAGE;
}
bool upb_fielddef_isstring(const upb_fielddef *f) {
return upb_fielddef_type(f) == UPB_TYPE_STRING ||
upb_fielddef_type(f) == UPB_TYPE_BYTES;
}
bool upb_fielddef_isseq(const upb_fielddef *f) {
return upb_fielddef_label(f) == UPB_LABEL_REPEATED;
}
bool upb_fielddef_isprimitive(const upb_fielddef *f) {
return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f);
}
bool upb_fielddef_ismap(const upb_fielddef *f) {
return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) &&
upb_msgdef_mapentry(upb_fielddef_msgsubdef(f));
}
bool upb_fielddef_hassubdef(const upb_fielddef *f) {
return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM;
}
static bool between(int32_t x, int32_t low, int32_t high) {
return x >= low && x <= high;
}
bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); }
bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); }
bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); }
bool upb_fielddef_checkdescriptortype(int32_t type) {
return between(type, 1, 18);
}
/* upb_msgdef *****************************************************************/
static void visitmsg(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const upb_msgdef *m = (const upb_msgdef*)r;
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
visit(r, UPB_UPCAST2(f), closure);
}
upb_msg_oneof_iter o;
for(upb_msg_oneof_begin(&o, m);
!upb_msg_oneof_done(&o);
upb_msg_oneof_next(&o)) {
upb_oneofdef *f = upb_msg_iter_oneof(&o);
visit(r, UPB_UPCAST2(f), closure);
}
}
static void freemsg(upb_refcounted *r) {
upb_msgdef *m = (upb_msgdef*)r;
upb_strtable_uninit(&m->ntoo);
upb_strtable_uninit(&m->ntof);
upb_inttable_uninit(&m->itof);
upb_def_uninit(UPB_UPCAST(m));
free(m);
}
upb_msgdef *upb_msgdef_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {visitmsg, freemsg};
upb_msgdef *m = malloc(sizeof(*m));
if (!m) return NULL;
if (!upb_def_init(UPB_UPCAST(m), UPB_DEF_MSG, &vtbl, owner)) goto err2;
if (!upb_inttable_init(&m->itof, UPB_CTYPE_PTR)) goto err3;
if (!upb_strtable_init(&m->ntof, UPB_CTYPE_PTR)) goto err2;
if (!upb_strtable_init(&m->ntoo, UPB_CTYPE_PTR)) goto err1;
m->map_entry = false;
return m;
err1:
upb_strtable_uninit(&m->ntof);
err2:
upb_inttable_uninit(&m->itof);
err3:
free(m);
return NULL;
}
upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner) {
upb_msgdef *newm = upb_msgdef_new(owner);
if (!newm) return NULL;
bool ok = upb_def_setfullname(UPB_UPCAST(newm),
upb_def_fullname(UPB_UPCAST(m)), NULL);
newm->map_entry = m->map_entry;
UPB_ASSERT_VAR(ok, ok);
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f);
// Fields in oneofs are dup'd below.
if (upb_fielddef_containingoneof(f)) continue;
if (!f || !upb_msgdef_addfield(newm, f, &f, NULL)) {
upb_msgdef_unref(newm, owner);
return NULL;
}
}
upb_msg_oneof_iter o;
for(upb_msg_oneof_begin(&o, m);
!upb_msg_oneof_done(&o);
upb_msg_oneof_next(&o)) {
upb_oneofdef *f = upb_oneofdef_dup(upb_msg_iter_oneof(&o), &f);
if (!f || !upb_msgdef_addoneof(newm, f, &f, NULL)) {
upb_msgdef_unref(newm, owner);
return NULL;
}
}
return newm;
}
bool upb_msgdef_isfrozen(const upb_msgdef *m) {
return upb_def_isfrozen(UPB_UPCAST(m));
}
void upb_msgdef_ref(const upb_msgdef *m, const void *owner) {
upb_def_ref(UPB_UPCAST(m), owner);
}
void upb_msgdef_unref(const upb_msgdef *m, const void *owner) {
upb_def_unref(UPB_UPCAST(m), owner);
}
void upb_msgdef_donateref(
const upb_msgdef *m, const void *from, const void *to) {
upb_def_donateref(UPB_UPCAST(m), from, to);
}
void upb_msgdef_checkref(const upb_msgdef *m, const void *owner) {
upb_def_checkref(UPB_UPCAST(m), owner);
}
bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status) {
upb_def *d = UPB_UPCAST(m);
return upb_def_freeze(&d, 1, status);
}
const char *upb_msgdef_fullname(const upb_msgdef *m) {
return upb_def_fullname(UPB_UPCAST(m));
}
bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname,
upb_status *s) {
return upb_def_setfullname(UPB_UPCAST(m), fullname, s);
}
// Helper: check that the field |f| is safe to add to msgdef |m|. Set an error
// on status |s| and return false if not.
static bool check_field_add(const upb_msgdef *m, const upb_fielddef *f,
upb_status *s) {
if (upb_fielddef_containingtype(f) != NULL) {
upb_status_seterrmsg(s, "fielddef already belongs to a message");
return false;
} else if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) {
upb_status_seterrmsg(s, "field name or number were not set");
return false;
} else if (upb_msgdef_ntofz(m, upb_fielddef_name(f)) ||
upb_msgdef_itof(m, upb_fielddef_number(f))) {
upb_status_seterrmsg(s, "duplicate field name or number for field");
return false;
}
return true;
}
static void add_field(upb_msgdef *m, upb_fielddef *f, const void *ref_donor) {
release_containingtype(f);
f->msg.def = m;
f->msg_is_symbolic = false;
upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f));
upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f));
upb_ref2(f, m);
upb_ref2(m, f);
if (ref_donor) upb_fielddef_unref(f, ref_donor);
}
bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
upb_status *s) {
// TODO: extensions need to have a separate namespace, because proto2 allows a
// top-level extension (ie. one not in any package) to have the same name as a
// field from the message.
//
// This also implies that there needs to be a separate lookup-by-name method
// for extensions. It seems desirable for iteration to return both extensions
// and non-extensions though.
//
// We also need to validate that the field number is in an extension range iff
// it is an extension.
// This method is idempotent. Check if |f| is already part of this msgdef and
// return immediately if so.
if (upb_fielddef_containingtype(f) == m) {
return true;
}
// Check constraints for all fields before performing any action.
if (!check_field_add(m, f, s)) {
return false;
} else if (upb_fielddef_containingoneof(f) != NULL) {
// Fields in a oneof can only be added by adding the oneof to the msgdef.
upb_status_seterrmsg(s, "fielddef is part of a oneof");
return false;
}
// Constraint checks ok, perform the action.
add_field(m, f, ref_donor);
return true;
}
bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
upb_status *s) {
// Check various conditions that would prevent this oneof from being added.
if (upb_oneofdef_containingtype(o)) {
upb_status_seterrmsg(s, "oneofdef already belongs to a message");
return false;
} else if (upb_oneofdef_name(o) == NULL) {
upb_status_seterrmsg(s, "oneofdef name was not set");
return false;
} else if (upb_msgdef_ntooz(m, upb_oneofdef_name(o))) {
upb_status_seterrmsg(s, "duplicate oneof name");
return false;
}
// Check that all of the oneof's fields do not conflict with names or numbers
// of fields already in the message.
upb_oneof_iter it;
for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) {
const upb_fielddef *f = upb_oneof_iter_field(&it);
if (!check_field_add(m, f, s)) {
return false;
}
}
// Everything checks out -- commit now.
// Add oneof itself first.
o->parent = m;
upb_strtable_insert(&m->ntoo, upb_oneofdef_name(o), upb_value_ptr(o));
upb_ref2(o, m);
upb_ref2(m, o);
// Add each field of the oneof directly to the msgdef.
for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) {
upb_fielddef *f = upb_oneof_iter_field(&it);
add_field(m, f, NULL);
}
if (ref_donor) upb_oneofdef_unref(o, ref_donor);
return true;
}
const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) {
upb_value val;
return upb_inttable_lookup32(&m->itof, i, &val) ?
upb_value_getptr(val) : NULL;
}
const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
size_t len) {
upb_value val;
return upb_strtable_lookup2(&m->ntof, name, len, &val) ?
upb_value_getptr(val) : NULL;
}
const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
size_t len) {
upb_value val;
return upb_strtable_lookup2(&m->ntoo, name, len, &val) ?
upb_value_getptr(val) : NULL;
}
int upb_msgdef_numfields(const upb_msgdef *m) {
return upb_strtable_count(&m->ntof);
}
int upb_msgdef_numoneofs(const upb_msgdef *m) {
return upb_strtable_count(&m->ntoo);
}
void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry) {
assert(!upb_msgdef_isfrozen(m));
m->map_entry = map_entry;
}
bool upb_msgdef_mapentry(const upb_msgdef *m) {
return m->map_entry;
}
void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) {
upb_inttable_begin(iter, &m->itof);
}
void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); }
bool upb_msg_field_done(const upb_msg_field_iter *iter) {
return upb_inttable_done(iter);
}
upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) {
return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter));
}
void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) {
upb_inttable_iter_setdone(iter);
}
void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) {
upb_strtable_begin(iter, &m->ntoo);
}
void upb_msg_oneof_next(upb_msg_oneof_iter *iter) { upb_strtable_next(iter); }
bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) {
return upb_strtable_done(iter);
}
upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) {
return (upb_oneofdef*)upb_value_getptr(upb_strtable_iter_value(iter));
}
void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) {
upb_strtable_iter_setdone(iter);
}
/* upb_oneofdef ***************************************************************/
static void visitoneof(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const upb_oneofdef *o = (const upb_oneofdef*)r;
upb_oneof_iter i;
for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) {
const upb_fielddef *f = upb_oneof_iter_field(&i);
visit(r, UPB_UPCAST2(f), closure);
}
if (o->parent) {
visit(r, UPB_UPCAST2(o->parent), closure);
}
}
static void freeoneof(upb_refcounted *r) {
upb_oneofdef *o = (upb_oneofdef*)r;
upb_strtable_uninit(&o->ntof);
upb_inttable_uninit(&o->itof);
upb_def_uninit(UPB_UPCAST(o));
free(o);
}
upb_oneofdef *upb_oneofdef_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {visitoneof, freeoneof};
upb_oneofdef *o = malloc(sizeof(*o));
o->parent = NULL;
if (!o) return NULL;
if (!upb_def_init(UPB_UPCAST(o), UPB_DEF_ONEOF, &vtbl, owner)) goto err2;
if (!upb_inttable_init(&o->itof, UPB_CTYPE_PTR)) goto err2;
if (!upb_strtable_init(&o->ntof, UPB_CTYPE_PTR)) goto err1;
return o;
err1:
upb_inttable_uninit(&o->itof);
err2:
free(o);
return NULL;
}
upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner) {
upb_oneofdef *newo = upb_oneofdef_new(owner);
if (!newo) return NULL;
bool ok = upb_def_setfullname(UPB_UPCAST(newo),
upb_def_fullname(UPB_UPCAST(o)), NULL);
UPB_ASSERT_VAR(ok, ok);
upb_oneof_iter i;
for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) {
upb_fielddef *f = upb_fielddef_dup(upb_oneof_iter_field(&i), &f);
if (!f || !upb_oneofdef_addfield(newo, f, &f, NULL)) {
upb_oneofdef_unref(newo, owner);
return NULL;
}
}
return newo;
}
bool upb_oneofdef_isfrozen(const upb_oneofdef *o) {
return upb_def_isfrozen(UPB_UPCAST(o));
}
void upb_oneofdef_ref(const upb_oneofdef *o, const void *owner) {
upb_def_ref(UPB_UPCAST(o), owner);
}
void upb_oneofdef_unref(const upb_oneofdef *o, const void *owner) {
upb_def_unref(UPB_UPCAST(o), owner);
}
void upb_oneofdef_donateref(const upb_oneofdef *o, const void *from,
const void *to) {
upb_def_donateref(UPB_UPCAST(o), from, to);
}
void upb_oneofdef_checkref(const upb_oneofdef *o, const void *owner) {
upb_def_checkref(UPB_UPCAST(o), owner);
}
const char *upb_oneofdef_name(const upb_oneofdef *o) {
return upb_def_fullname(UPB_UPCAST(o));
}
bool upb_oneofdef_setname(upb_oneofdef *o, const char *fullname,
upb_status *s) {
if (upb_oneofdef_containingtype(o)) {
upb_status_seterrmsg(s, "oneof already added to a message");
return false;
}
return upb_def_setfullname(UPB_UPCAST(o), fullname, s);
}
const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) {
return o->parent;
}
int upb_oneofdef_numfields(const upb_oneofdef *o) {
return upb_strtable_count(&o->ntof);
}
bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
const void *ref_donor,
upb_status *s) {
assert(!upb_oneofdef_isfrozen(o));
assert(!o->parent || !upb_msgdef_isfrozen(o->parent));
// This method is idempotent. Check if |f| is already part of this oneofdef
// and return immediately if so.
if (upb_fielddef_containingoneof(f) == o) {
return true;
}
// The field must have an OPTIONAL label.
if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) {
upb_status_seterrmsg(s, "fields in oneof must have OPTIONAL label");
return false;
}
// Check that no field with this name or number exists already in the oneof.
// Also check that the field is not already part of a oneof.
if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) {
upb_status_seterrmsg(s, "field name or number were not set");
return false;
} else if (upb_oneofdef_itof(o, upb_fielddef_number(f)) ||
upb_oneofdef_ntofz(o, upb_fielddef_name(f))) {
upb_status_seterrmsg(s, "duplicate field name or number");
return false;
} else if (upb_fielddef_containingoneof(f) != NULL) {
upb_status_seterrmsg(s, "fielddef already belongs to a oneof");
return false;
}
// We allow adding a field to the oneof either if the field is not part of a
// msgdef, or if it is and we are also part of the same msgdef.
if (o->parent == NULL) {
// If we're not in a msgdef, the field cannot be either. Otherwise we would
// need to magically add this oneof to a msgdef to remain consistent, which
// is surprising behavior.
if (upb_fielddef_containingtype(f) != NULL) {
upb_status_seterrmsg(s, "fielddef already belongs to a message, but "
"oneof does not");
return false;
}
} else {
// If we're in a msgdef, the user can add fields that either aren't in any
// msgdef (in which case they're added to our msgdef) or already a part of
// our msgdef.
if (upb_fielddef_containingtype(f) != NULL &&
upb_fielddef_containingtype(f) != o->parent) {
upb_status_seterrmsg(s, "fielddef belongs to a different message "
"than oneof");
return false;
}
}
// Commit phase. First add the field to our parent msgdef, if any, because
// that may fail; then add the field to our own tables.
if (o->parent != NULL && upb_fielddef_containingtype(f) == NULL) {
if (!upb_msgdef_addfield((upb_msgdef*)o->parent, f, NULL, s)) {
return false;
}
}
release_containingtype(f);
f->oneof = o;
upb_inttable_insert(&o->itof, upb_fielddef_number(f), upb_value_ptr(f));
upb_strtable_insert(&o->ntof, upb_fielddef_name(f), upb_value_ptr(f));
upb_ref2(f, o);
upb_ref2(o, f);
if (ref_donor) upb_fielddef_unref(f, ref_donor);
return true;
}
const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
const char *name, size_t length) {
upb_value val;
return upb_strtable_lookup2(&o->ntof, name, length, &val) ?
upb_value_getptr(val) : NULL;
}
const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) {
upb_value val;
return upb_inttable_lookup32(&o->itof, num, &val) ?
upb_value_getptr(val) : NULL;
}
void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) {
upb_inttable_begin(iter, &o->itof);
}
void upb_oneof_next(upb_oneof_iter *iter) {
upb_inttable_next(iter);
}
bool upb_oneof_done(upb_oneof_iter *iter) {
return upb_inttable_done(iter);
}
upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) {
return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter));
}
void upb_oneof_iter_setdone(upb_oneof_iter *iter) {
upb_inttable_iter_setdone(iter);
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
typedef struct cleanup_ent {
upb_cleanup_func *cleanup;
void *ud;
struct cleanup_ent *next;
} cleanup_ent;
static void *seeded_alloc(void *ud, void *ptr, size_t oldsize, size_t size);
/* Default allocator **********************************************************/
// Just use realloc, keeping all allocated blocks in a linked list to destroy at
// the end.
typedef struct mem_block {
// List is doubly-linked, because in cases where realloc() moves an existing
// block, we need to be able to remove the old pointer from the list
// efficiently.
struct mem_block *prev, *next;
#ifndef NDEBUG
size_t size; // Doesn't include mem_block structure.
#endif
char data[];
} mem_block;
typedef struct {
mem_block *head;
} default_alloc_ud;
static void *default_alloc(void *_ud, void *ptr, size_t oldsize, size_t size) {
UPB_UNUSED(oldsize);
default_alloc_ud *ud = _ud;
mem_block *from = ptr ? (void*)((char*)ptr - sizeof(mem_block)) : NULL;
#ifndef NDEBUG
if (from) {
assert(oldsize <= from->size);
}
#endif
mem_block *block = realloc(from, size + sizeof(mem_block));
if (!block) return NULL;
#ifndef NDEBUG
block->size = size;
#endif
if (from) {
if (block != from) {
// The block was moved, so pointers in next and prev blocks must be
// updated to its new location.
if (block->next) block->next->prev = block;
if (block->prev) block->prev->next = block;
}
} else {
// Insert at head of linked list.
block->prev = NULL;
block->next = ud->head;
if (block->next) block->next->prev = block;
ud->head = block;
}
return &block->data;
}
static void default_alloc_cleanup(void *_ud) {
default_alloc_ud *ud = _ud;
mem_block *block = ud->head;
while (block) {
void *to_free = block;
block = block->next;
free(to_free);
}
}
/* Standard error functions ***************************************************/
static bool default_err(void *ud, const upb_status *status) {
UPB_UNUSED(ud);
fprintf(stderr, "upb error: %s\n", upb_status_errmsg(status));
return false;
}
static bool write_err_to(void *ud, const upb_status *status) {
upb_status *copy_to = ud;
upb_status_copy(copy_to, status);
return false;
}
/* upb_env ********************************************************************/
void upb_env_init(upb_env *e) {
e->ok_ = true;
e->bytes_allocated = 0;
e->cleanup_head = NULL;
default_alloc_ud *ud = (default_alloc_ud*)&e->default_alloc_ud;
ud->head = NULL;
// Set default functions.
upb_env_setallocfunc(e, default_alloc, ud);
upb_env_seterrorfunc(e, default_err, NULL);
}
void upb_env_uninit(upb_env *e) {
cleanup_ent *ent = e->cleanup_head;
while (ent) {
ent->cleanup(ent->ud);
ent = ent->next;
}
// Must do this after running cleanup functions, because this will delete
// the memory we store our cleanup entries in!
if (e->alloc == default_alloc) {
default_alloc_cleanup(e->alloc_ud);
}
}
UPB_FORCEINLINE void upb_env_setallocfunc(upb_env *e, upb_alloc_func *alloc,
void *ud) {
e->alloc = alloc;
e->alloc_ud = ud;
}
UPB_FORCEINLINE void upb_env_seterrorfunc(upb_env *e, upb_error_func *func,
void *ud) {
e->err = func;
e->err_ud = ud;
}
void upb_env_reporterrorsto(upb_env *e, upb_status *status) {
e->err = write_err_to;
e->err_ud = status;
}
bool upb_env_ok(const upb_env *e) {
return e->ok_;
}
bool upb_env_reporterror(upb_env *e, const upb_status *status) {
e->ok_ = false;
return e->err(e->err_ud, status);
}
bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud) {
cleanup_ent *ent = upb_env_malloc(e, sizeof(cleanup_ent));
if (!ent) return false;
ent->cleanup = func;
ent->ud = ud;
ent->next = e->cleanup_head;
e->cleanup_head = ent;
return true;
}
void *upb_env_malloc(upb_env *e, size_t size) {
e->bytes_allocated += size;
if (e->alloc == seeded_alloc) {
// This is equivalent to the next branch, but allows inlining for a
// measurable perf benefit.
return seeded_alloc(e->alloc_ud, NULL, 0, size);
} else {
return e->alloc(e->alloc_ud, NULL, 0, size);
}
}
void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size) {
assert(oldsize <= size);
char *ret = e->alloc(e->alloc_ud, ptr, oldsize, size);
#ifndef NDEBUG
// Overwrite non-preserved memory to ensure callers are passing the oldsize
// that they truly require.
memset(ret + oldsize, 0xff, size - oldsize);
#endif
return ret;
}
size_t upb_env_bytesallocated(const upb_env *e) {
return e->bytes_allocated;
}
/* upb_seededalloc ************************************************************/
// Be conservative and choose 16 in case anyone is using SSE.
static const size_t maxalign = 16;
static size_t align_up(size_t size) {
return ((size + maxalign - 1) / maxalign) * maxalign;
}
UPB_FORCEINLINE static void *seeded_alloc(void *ud, void *ptr, size_t oldsize,
size_t size) {
UPB_UNUSED(ptr);
upb_seededalloc *a = ud;
size = align_up(size);
assert(a->mem_limit >= a->mem_ptr);
if (oldsize == 0 && size <= (size_t)(a->mem_limit - a->mem_ptr)) {
// Fast path: we can satisfy from the initial allocation.
void *ret = a->mem_ptr;
a->mem_ptr += size;
return ret;
} else {
// Slow path: fallback to other allocator.
a->need_cleanup = true;
// Is `ptr` part of the user-provided initial block? Don't pass it to the
// default allocator if so; otherwise, it may try to realloc() the block.
char *chptr = ptr;
if (chptr >= a->mem_base && chptr < a->mem_limit) {
return a->alloc(a->alloc_ud, NULL, 0, size);
} else {
return a->alloc(a->alloc_ud, ptr, oldsize, size);
}
}
}
void upb_seededalloc_init(upb_seededalloc *a, void *mem, size_t len) {
a->mem_base = mem;
a->mem_ptr = mem;
a->mem_limit = (char*)mem + len;
a->need_cleanup = false;
a->returned_allocfunc = false;
default_alloc_ud *ud = (default_alloc_ud*)&a->default_alloc_ud;
ud->head = NULL;
upb_seededalloc_setfallbackalloc(a, default_alloc, ud);
}
void upb_seededalloc_uninit(upb_seededalloc *a) {
if (a->alloc == default_alloc && a->need_cleanup) {
default_alloc_cleanup(a->alloc_ud);
}
}
UPB_FORCEINLINE void upb_seededalloc_setfallbackalloc(upb_seededalloc *a,
upb_alloc_func *alloc,
void *ud) {
assert(!a->returned_allocfunc);
a->alloc = alloc;
a->alloc_ud = ud;
}
upb_alloc_func *upb_seededalloc_getallocfunc(upb_seededalloc *a) {
a->returned_allocfunc = true;
return seeded_alloc;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* TODO(haberman): it's unclear whether a lot of the consistency checks should
* assert() or return false.
*/
#include <stdlib.h>
#include <string.h>
// Defined for the sole purpose of having a unique pointer value for
// UPB_NO_CLOSURE.
char _upb_noclosure;
static void freehandlers(upb_refcounted *r) {
upb_handlers *h = (upb_handlers*)r;
upb_inttable_iter i;
upb_inttable_begin(&i, &h->cleanup_);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
void *val = (void*)upb_inttable_iter_key(&i);
upb_value func_val = upb_inttable_iter_value(&i);
upb_handlerfree *func = upb_value_getfptr(func_val);
func(val);
}
upb_inttable_uninit(&h->cleanup_);
upb_msgdef_unref(h->msg, h);
free(h->sub);
free(h);
}
static void visithandlers(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const upb_handlers *h = (const upb_handlers*)r;
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, h->msg);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (!upb_fielddef_issubmsg(f)) continue;
const upb_handlers *sub = upb_handlers_getsubhandlers(h, f);
if (sub) visit(r, UPB_UPCAST(sub), closure);
}
}
static const struct upb_refcounted_vtbl vtbl = {visithandlers, freehandlers};
typedef struct {
upb_inttable tab; // maps upb_msgdef* -> upb_handlers*.
upb_handlers_callback *callback;
const void *closure;
} dfs_state;
// TODO(haberman): discard upb_handlers* objects that do not actually have any
// handlers set and cannot reach any upb_handlers* object that does. This is
// slightly tricky to do correctly.
static upb_handlers *newformsg(const upb_msgdef *m, const void *owner,
dfs_state *s) {
upb_handlers *h = upb_handlers_new(m, owner);
if (!h) return NULL;
if (!upb_inttable_insertptr(&s->tab, m, upb_value_ptr(h))) goto oom;
s->callback(s->closure, h);
// For each submessage field, get or create a handlers object and set it as
// the subhandlers.
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (!upb_fielddef_issubmsg(f)) continue;
const upb_msgdef *subdef = upb_downcast_msgdef(upb_fielddef_subdef(f));
upb_value subm_ent;
if (upb_inttable_lookupptr(&s->tab, subdef, &subm_ent)) {
upb_handlers_setsubhandlers(h, f, upb_value_getptr(subm_ent));
} else {
upb_handlers *sub_mh = newformsg(subdef, &sub_mh, s);
if (!sub_mh) goto oom;
upb_handlers_setsubhandlers(h, f, sub_mh);
upb_handlers_unref(sub_mh, &sub_mh);
}
}
return h;
oom:
upb_handlers_unref(h, owner);
return NULL;
}
// Given a selector for a STARTSUBMSG handler, resolves to a pointer to the
// subhandlers for this submessage field.
#define SUBH(h, selector) (h->sub[selector])
// The selector for a submessage field is the field index.
#define SUBH_F(h, f) SUBH(h, f->index_)
static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
upb_selector_t sel;
assert(!upb_handlers_isfrozen(h));
if (upb_handlers_msgdef(h) != upb_fielddef_containingtype(f)) {
upb_status_seterrf(
&h->status_, "type mismatch: field %s does not belong to message %s",
upb_fielddef_name(f), upb_msgdef_fullname(upb_handlers_msgdef(h)));
return -1;
}
if (!upb_handlers_getselector(f, type, &sel)) {
upb_status_seterrf(
&h->status_,
"type mismatch: cannot register handler type %d for field %s",
type, upb_fielddef_name(f));
return -1;
}
return sel;
}
static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
int32_t sel = trygetsel(h, f, type);
assert(sel >= 0);
return sel;
}
static const void **returntype(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type_;
}
static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f,
upb_handlertype_t type, upb_func *func,
upb_handlerattr *attr) {
assert(!upb_handlers_isfrozen(h));
if (sel < 0) {
upb_status_seterrmsg(&h->status_,
"incorrect handler type for this field.");
return false;
}
if (h->table[sel].func) {
upb_status_seterrmsg(&h->status_,
"cannot change handler once it has been set.");
return false;
}
upb_handlerattr set_attr = UPB_HANDLERATTR_INITIALIZER;
if (attr) {
set_attr = *attr;
}
// Check that the given closure type matches the closure type that has been
// established for this context (if any).
const void *closure_type = upb_handlerattr_closuretype(&set_attr);
const void **context_closure_type;
if (type == UPB_HANDLER_STRING) {
context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR);
} else if (f && upb_fielddef_isseq(f) &&
type != UPB_HANDLER_STARTSEQ &&
type != UPB_HANDLER_ENDSEQ) {
context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ);
} else {
context_closure_type = &h->top_closure_type;
}
if (closure_type && *context_closure_type &&
closure_type != *context_closure_type) {
// TODO(haberman): better message for debugging.
if (f) {
upb_status_seterrf(&h->status_,
"closure type does not match for field %s",
upb_fielddef_name(f));
} else {
upb_status_seterrmsg(
&h->status_, "closure type does not match for message-level handler");
}
return false;
}
if (closure_type)
*context_closure_type = closure_type;
// If this is a STARTSEQ or STARTSTR handler, check that the returned pointer
// matches any pre-existing expectations about what type is expected.
if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) {
const void *return_type = upb_handlerattr_returnclosuretype(&set_attr);
const void *table_return_type =
upb_handlerattr_returnclosuretype(&h->table[sel].attr);
if (return_type && table_return_type && return_type != table_return_type) {
upb_status_seterrmsg(&h->status_, "closure return type does not match");
return false;
}
if (table_return_type && !return_type)
upb_handlerattr_setreturnclosuretype(&set_attr, table_return_type);
}
h->table[sel].func = (upb_func*)func;
h->table[sel].attr = set_attr;
return true;
}
// Returns the effective closure type for this handler (which will propagate
// from outer frames if this frame has no START* handler). Not implemented for
// UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is
// the effective closure type is unspecified (either no handler was registered
// to specify it or the handler that was registered did not specify the closure
// type).
const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
assert(type != UPB_HANDLER_STRING);
const void *ret = h->top_closure_type;
upb_selector_t sel;
if (upb_fielddef_isseq(f) &&
type != UPB_HANDLER_STARTSEQ &&
type != UPB_HANDLER_ENDSEQ &&
h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) {
ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr);
}
if (type == UPB_HANDLER_STRING &&
h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) {
ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr);
}
// The effective type of the submessage; not used yet.
// if (type == SUBMESSAGE &&
// h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) {
// ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr);
// }
return ret;
}
// Checks whether the START* handler specified by f & type is missing even
// though it is required to convert the established type of an outer frame
// ("closure_type") into the established type of an inner frame (represented in
// the return closure type of this handler's attr.
bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type,
upb_status *status) {
upb_selector_t sel = handlers_getsel(h, f, type);
if (h->table[sel].func) return true;
const void *closure_type = effective_closure_type(h, f, type);
const upb_handlerattr *attr = &h->table[sel].attr;
const void *return_closure_type = upb_handlerattr_returnclosuretype(attr);
if (closure_type && return_closure_type &&
closure_type != return_closure_type) {
upb_status_seterrf(status,
"expected start handler to return sub type for field %f",
upb_fielddef_name(f));
return false;
}
return true;
}
/* Public interface ***********************************************************/
bool upb_handlers_isfrozen(const upb_handlers *h) {
return upb_refcounted_isfrozen(UPB_UPCAST(h));
}
void upb_handlers_ref(const upb_handlers *h, const void *owner) {
upb_refcounted_ref(UPB_UPCAST(h), owner);
}
void upb_handlers_unref(const upb_handlers *h, const void *owner) {
upb_refcounted_unref(UPB_UPCAST(h), owner);
}
void upb_handlers_donateref(
const upb_handlers *h, const void *from, const void *to) {
upb_refcounted_donateref(UPB_UPCAST(h), from, to);
}
void upb_handlers_checkref(const upb_handlers *h, const void *owner) {
upb_refcounted_checkref(UPB_UPCAST(h), owner);
}
upb_handlers *upb_handlers_new(const upb_msgdef *md, const void *owner) {
assert(upb_msgdef_isfrozen(md));
int extra = sizeof(upb_handlers_tabent) * (md->selector_count - 1);
upb_handlers *h = calloc(sizeof(*h) + extra, 1);
if (!h) return NULL;
h->msg = md;
upb_msgdef_ref(h->msg, h);
upb_status_clear(&h->status_);
h->sub = calloc(md->submsg_field_count, sizeof(*h->sub));
if (!h->sub) goto oom;
if (!upb_refcounted_init(UPB_UPCAST(h), &vtbl, owner)) goto oom;
if (!upb_inttable_init(&h->cleanup_, UPB_CTYPE_FPTR)) goto oom;
// calloc() above initialized all handlers to NULL.
return h;
oom:
freehandlers(UPB_UPCAST(h));
return NULL;
}
const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
const void *owner,
upb_handlers_callback *callback,
const void *closure) {
dfs_state state;
state.callback = callback;
state.closure = closure;
if (!upb_inttable_init(&state.tab, UPB_CTYPE_PTR)) return NULL;
upb_handlers *ret = newformsg(m, owner, &state);
upb_inttable_uninit(&state.tab);
if (!ret) return NULL;
upb_refcounted *r = UPB_UPCAST(ret);
bool ok = upb_refcounted_freeze(&r, 1, NULL, UPB_MAX_HANDLER_DEPTH);
UPB_ASSERT_VAR(ok, ok);
return ret;
}
const upb_status *upb_handlers_status(upb_handlers *h) {
assert(!upb_handlers_isfrozen(h));
return &h->status_;
}
void upb_handlers_clearerr(upb_handlers *h) {
assert(!upb_handlers_isfrozen(h));
upb_status_clear(&h->status_);
}
#define SETTER(name, handlerctype, handlertype) \
bool upb_handlers_set ## name(upb_handlers *h, const upb_fielddef *f, \
handlerctype func, upb_handlerattr *attr) { \
int32_t sel = trygetsel(h, f, handlertype); \
return doset(h, sel, f, handlertype, (upb_func*)func, attr); \
}
SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32);
SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64);
SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32);
SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64);
SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT);
SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE);
SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL);
SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR);
SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING);
SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR);
SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ);
SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG);
SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG);
SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ);
#undef SETTER
bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
upb_handlerattr *attr) {
return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32,
(upb_func *)func, attr);
}
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
upb_handlerattr *attr) {
assert(!upb_handlers_isfrozen(h));
return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32,
(upb_func *)func, attr);
}
bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
const upb_handlers *sub) {
assert(sub);
assert(!upb_handlers_isfrozen(h));
assert(upb_fielddef_issubmsg(f));
if (SUBH_F(h, f)) return false; // Can't reset.
if (UPB_UPCAST(upb_handlers_msgdef(sub)) != upb_fielddef_subdef(f)) {
return false;
}
SUBH_F(h, f) = sub;
upb_ref2(sub, h);
return true;
}
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
const upb_fielddef *f) {
assert(upb_fielddef_issubmsg(f));
return SUBH_F(h, f);
}
bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel,
upb_handlerattr *attr) {
if (!upb_handlers_gethandler(h, sel))
return false;
*attr = h->table[sel].attr;
return true;
}
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
upb_selector_t sel) {
// STARTSUBMSG selector in sel is the field's selector base.
return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT);
}
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; }
bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) {
if (upb_inttable_lookupptr(&h->cleanup_, p, NULL)) {
return false;
}
bool ok = upb_inttable_insertptr(&h->cleanup_, p, upb_value_fptr(func));
UPB_ASSERT_VAR(ok, ok);
return true;
}
/* "Static" methods ***********************************************************/
bool upb_handlers_freeze(upb_handlers *const*handlers, int n, upb_status *s) {
// TODO: verify we have a transitive closure.
for (int i = 0; i < n; i++) {
upb_handlers *h = handlers[i];
if (!upb_ok(&h->status_)) {
upb_status_seterrf(s, "handlers for message %s had error status: %s",
upb_msgdef_fullname(upb_handlers_msgdef(h)),
upb_status_errmsg(&h->status_));
return false;
}
// Check that there are no closure mismatches due to missing Start* handlers
// or subhandlers with different type-level types.
upb_msg_field_iter j;
for(upb_msg_field_begin(&j, h->msg);
!upb_msg_field_done(&j);
upb_msg_field_next(&j)) {
const upb_fielddef *f = upb_msg_iter_field(&j);
if (upb_fielddef_isseq(f)) {
if (!checkstart(h, f, UPB_HANDLER_STARTSEQ, s))
return false;
}
if (upb_fielddef_isstring(f)) {
if (!checkstart(h, f, UPB_HANDLER_STARTSTR, s))
return false;
}
if (upb_fielddef_issubmsg(f)) {
bool hashandler = false;
if (upb_handlers_gethandler(
h, handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)) ||
upb_handlers_gethandler(
h, handlers_getsel(h, f, UPB_HANDLER_ENDSUBMSG))) {
hashandler = true;
}
if (upb_fielddef_isseq(f) &&
(upb_handlers_gethandler(
h, handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)) ||
upb_handlers_gethandler(
h, handlers_getsel(h, f, UPB_HANDLER_ENDSEQ)))) {
hashandler = true;
}
if (hashandler && !upb_handlers_getsubhandlers(h, f)) {
// For now we add an empty subhandlers in this case. It makes the
// decoder code generator simpler, because it only has to handle two
// cases (submessage has handlers or not) as opposed to three
// (submessage has handlers in enclosing message but no subhandlers).
//
// This makes parsing less efficient in the case that we want to
// notice a submessage but skip its contents (like if we're testing
// for submessage presence or counting the number of repeated
// submessages). In this case we will end up parsing the submessage
// field by field and throwing away the results for each, instead of
// skipping the whole delimited thing at once. If this is an issue we
// can revisit it, but do remember that this only arises when you have
// handlers (startseq/startsubmsg/endsubmsg/endseq) set for the
// submessage but no subhandlers. The uses cases for this are
// limited.
upb_handlers *sub = upb_handlers_new(upb_fielddef_msgsubdef(f), &sub);
upb_handlers_setsubhandlers(h, f, sub);
upb_handlers_unref(sub, &sub);
}
// TODO(haberman): check type of submessage.
// This is slightly tricky; also consider whether we should check that
// they match at setsubhandlers time.
}
}
}
if (!upb_refcounted_freeze((upb_refcounted*const*)handlers, n, s,
UPB_MAX_HANDLER_DEPTH)) {
return false;
}
return true;
}
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
case UPB_TYPE_ENUM: return UPB_HANDLER_INT32;
case UPB_TYPE_INT64: return UPB_HANDLER_INT64;
case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32;
case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64;
case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT;
case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE;
case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL;
default: assert(false); return -1; // Invalid input.
}
}
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
upb_selector_t *s) {
switch (type) {
case UPB_HANDLER_INT32:
case UPB_HANDLER_INT64:
case UPB_HANDLER_UINT32:
case UPB_HANDLER_UINT64:
case UPB_HANDLER_FLOAT:
case UPB_HANDLER_DOUBLE:
case UPB_HANDLER_BOOL:
if (!upb_fielddef_isprimitive(f) ||
upb_handlers_getprimitivehandlertype(f) != type)
return false;
*s = f->selector_base;
break;
case UPB_HANDLER_STRING:
if (upb_fielddef_isstring(f)) {
*s = f->selector_base;
} else if (upb_fielddef_lazy(f)) {
*s = f->selector_base + 3;
} else {
return false;
}
break;
case UPB_HANDLER_STARTSTR:
if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) {
*s = f->selector_base + 1;
} else {
return false;
}
break;
case UPB_HANDLER_ENDSTR:
if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) {
*s = f->selector_base + 2;
} else {
return false;
}
break;
case UPB_HANDLER_STARTSEQ:
if (!upb_fielddef_isseq(f)) return false;
*s = f->selector_base - 2;
break;
case UPB_HANDLER_ENDSEQ:
if (!upb_fielddef_isseq(f)) return false;
*s = f->selector_base - 1;
break;
case UPB_HANDLER_STARTSUBMSG:
if (!upb_fielddef_issubmsg(f)) return false;
// Selectors for STARTSUBMSG are at the beginning of the table so that the
// selector can also be used as an index into the "sub" array of
// subhandlers. The indexes for the two into these two tables are the
// same, except that in the handler table the static selectors come first.
*s = f->index_ + UPB_STATIC_SELECTOR_COUNT;
break;
case UPB_HANDLER_ENDSUBMSG:
if (!upb_fielddef_issubmsg(f)) return false;
*s = f->selector_base;
break;
}
assert((size_t)*s < upb_fielddef_containingtype(f)->selector_count);
return true;
}
uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) {
return upb_fielddef_isseq(f) ? 2 : 0;
}
uint32_t upb_handlers_selectorcount(const upb_fielddef *f) {
uint32_t ret = 1;
if (upb_fielddef_isseq(f)) ret += 2; // STARTSEQ/ENDSEQ
if (upb_fielddef_isstring(f)) ret += 2; // [STRING]/STARTSTR/ENDSTR
if (upb_fielddef_issubmsg(f)) {
// ENDSUBMSG (STARTSUBMSG is at table beginning)
ret += 0;
if (upb_fielddef_lazy(f)) {
// STARTSTR/ENDSTR/STRING (for lazy)
ret += 3;
}
}
return ret;
}
/* upb_handlerattr ************************************************************/
void upb_handlerattr_init(upb_handlerattr *attr) {
upb_handlerattr from = UPB_HANDLERATTR_INITIALIZER;
memcpy(attr, &from, sizeof(*attr));
}
void upb_handlerattr_uninit(upb_handlerattr *attr) {
UPB_UNUSED(attr);
}
bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd) {
attr->handler_data_ = hd;
return true;
}
bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type) {
attr->closure_type_ = type;
return true;
}
const void *upb_handlerattr_closuretype(const upb_handlerattr *attr) {
return attr->closure_type_;
}
bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
const void *type) {
attr->return_closure_type_ = type;
return true;
}
const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr) {
return attr->return_closure_type_;
}
bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok) {
attr->alwaysok_ = alwaysok;
return true;
}
bool upb_handlerattr_alwaysok(const upb_handlerattr *attr) {
return attr->alwaysok_;
}
/* upb_bufhandle **************************************************************/
size_t upb_bufhandle_objofs(const upb_bufhandle *h) {
return h->objofs_;
}
/* upb_byteshandler ***********************************************************/
void upb_byteshandler_init(upb_byteshandler* h) {
memset(h, 0, sizeof(*h));
}
// For when we support handlerfree callbacks.
void upb_byteshandler_uninit(upb_byteshandler* h) {
UPB_UNUSED(h);
}
bool upb_byteshandler_setstartstr(upb_byteshandler *h,
upb_startstr_handlerfunc *func, void *d) {
h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func;
h->table[UPB_STARTSTR_SELECTOR].attr.handler_data_ = d;
return true;
}
bool upb_byteshandler_setstring(upb_byteshandler *h,
upb_string_handlerfunc *func, void *d) {
h->table[UPB_STRING_SELECTOR].func = (upb_func*)func;
h->table[UPB_STRING_SELECTOR].attr.handler_data_ = d;
return true;
}
bool upb_byteshandler_setendstr(upb_byteshandler *h,
upb_endfield_handlerfunc *func, void *d) {
h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func;
h->table[UPB_ENDSTR_SELECTOR].attr.handler_data_ = d;
return true;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Our key invariants are:
* 1. reference cycles never span groups
* 2. for ref2(to, from), we increment to's count iff group(from) != group(to)
*
* The previous two are how we avoid leaking cycles. Other important
* invariants are:
* 3. for mutable objects "from" and "to", if there exists a ref2(to, from)
* this implies group(from) == group(to). (In practice, what we implement
* is even stronger; "from" and "to" will share a group if there has *ever*
* been a ref2(to, from), but all that is necessary for correctness is the
* weaker one).
* 4. mutable and immutable objects are never in the same group.
*/
#include <setjmp.h>
#include <stdlib.h>
static void freeobj(upb_refcounted *o);
const char untracked_val;
const void *UPB_UNTRACKED_REF = &untracked_val;
/* arch-specific atomic primitives *******************************************/
#ifdef UPB_THREAD_UNSAFE //////////////////////////////////////////////////////
static void atomic_inc(uint32_t *a) { (*a)++; }
static bool atomic_dec(uint32_t *a) { return --(*a) == 0; }
#elif defined(__GNUC__) || defined(__clang__) //////////////////////////////////
static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); }
static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; }
#elif defined(WIN32) ///////////////////////////////////////////////////////////
#include <Windows.h>
static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); }
static bool atomic_dec(upb_atomic_t *a) {
return InterlockedDecrement(&a->val) == 0;
}
#else
#error Atomic primitives not defined for your platform/CPU. \
Implement them or compile with UPB_THREAD_UNSAFE.
#endif
// All static objects point to this refcount.
// It is special-cased in ref/unref below.
uint32_t static_refcount = -1;
// We can avoid atomic ops for statically-declared objects.
// This is a minor optimization but nice since we can avoid degrading under
// contention in this case.
static void refgroup(uint32_t *group) {
if (group != &static_refcount)
atomic_inc(group);
}
static bool unrefgroup(uint32_t *group) {
if (group == &static_refcount) {
return false;
} else {
return atomic_dec(group);
}
}
/* Reference tracking (debug only) ********************************************/
#ifdef UPB_DEBUG_REFS
#ifdef UPB_THREAD_UNSAFE
static void upb_lock() {}
static void upb_unlock() {}
#else
// User must define functions that lock/unlock a global mutex and link this
// file against them.
void upb_lock();
void upb_unlock();
#endif
// UPB_DEBUG_REFS mode counts on being able to malloc() memory in some
// code-paths that can normally never fail, like upb_refcounted_ref(). Since
// we have no way to propagage out-of-memory errors back to the user, and since
// these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail.
#define CHECK_OOM(predicate) if (!(predicate)) { assert(predicate); exit(1); }
typedef struct {
int count; // How many refs there are (duplicates only allowed for ref2).
bool is_ref2;
} trackedref;
static trackedref *trackedref_new(bool is_ref2) {
trackedref *ret = malloc(sizeof(*ret));
CHECK_OOM(ret);
ret->count = 1;
ret->is_ref2 = is_ref2;
return ret;
}
static void track(const upb_refcounted *r, const void *owner, bool ref2) {
assert(owner);
if (owner == UPB_UNTRACKED_REF) return;
upb_lock();
upb_value v;
if (upb_inttable_lookupptr(r->refs, owner, &v)) {
trackedref *ref = upb_value_getptr(v);
// Since we allow multiple ref2's for the same to/from pair without
// allocating separate memory for each one, we lose the fine-grained
// tracking behavior we get with regular refs. Since ref2s only happen
// inside upb, we'll accept this limitation until/unless there is a really
// difficult upb-internal bug that can't be figured out without it.
assert(ref2);
assert(ref->is_ref2);
ref->count++;
} else {
trackedref *ref = trackedref_new(ref2);
bool ok = upb_inttable_insertptr(r->refs, owner, upb_value_ptr(ref));
CHECK_OOM(ok);
if (ref2) {
// We know this cast is safe when it is a ref2, because it's coming from
// another refcounted object.
const upb_refcounted *from = owner;
assert(!upb_inttable_lookupptr(from->ref2s, r, NULL));
ok = upb_inttable_insertptr(from->ref2s, r, upb_value_ptr(NULL));
CHECK_OOM(ok);
}
}
upb_unlock();
}
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
assert(owner);
if (owner == UPB_UNTRACKED_REF) return;
upb_lock();
upb_value v;
bool found = upb_inttable_lookupptr(r->refs, owner, &v);
// This assert will fail if an owner attempts to release a ref it didn't have.
UPB_ASSERT_VAR(found, found);
trackedref *ref = upb_value_getptr(v);
assert(ref->is_ref2 == ref2);
if (--ref->count == 0) {
free(ref);
upb_inttable_removeptr(r->refs, owner, NULL);
if (ref2) {
// We know this cast is safe when it is a ref2, because it's coming from
// another refcounted object.
const upb_refcounted *from = owner;
bool removed = upb_inttable_removeptr(from->ref2s, r, NULL);
assert(removed);
}
}
upb_unlock();
}
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
upb_lock();
upb_value v;
bool found = upb_inttable_lookupptr(r->refs, owner, &v);
UPB_ASSERT_VAR(found, found);
trackedref *ref = upb_value_getptr(v);
assert(ref->is_ref2 == ref2);
upb_unlock();
}
// Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that
// originate from the given owner.
static void getref2s(const upb_refcounted *owner, upb_inttable *tab) {
upb_lock();
upb_inttable_iter i;
upb_inttable_begin(&i, owner->ref2s);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_refcounted *to = (upb_refcounted*)upb_inttable_iter_key(&i);
// To get the count we need to look in the target's table.
upb_value v;
bool found = upb_inttable_lookupptr(to->refs, owner, &v);
assert(found);
trackedref *ref = upb_value_getptr(v);
upb_value count = upb_value_int32(ref->count);
bool ok = upb_inttable_insertptr(tab, to, count);
CHECK_OOM(ok);
}
upb_unlock();
}
typedef struct {
upb_inttable ref2;
const upb_refcounted *obj;
} check_state;
static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj,
void *closure) {
check_state *s = closure;
assert(obj == s->obj);
assert(subobj);
upb_inttable *ref2 = &s->ref2;
upb_value v;
bool removed = upb_inttable_removeptr(ref2, subobj, &v);
// The following assertion will fail if the visit() function visits a subobj
// that it did not have a ref2 on, or visits the same subobj too many times.
assert(removed);
int32_t newcount = upb_value_getint32(v) - 1;
if (newcount > 0) {
upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount));
}
}
static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
void *closure) {
// In DEBUG_REFS mode we know what existing ref2 refs there are, so we know
// exactly the set of nodes that visit() should visit. So we verify visit()'s
// correctness here.
check_state state;
state.obj = r;
bool ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32);
CHECK_OOM(ok);
getref2s(r, &state.ref2);
// This should visit any children in the ref2 table.
if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state);
// This assertion will fail if the visit() function missed any children.
assert(upb_inttable_count(&state.ref2) == 0);
upb_inttable_uninit(&state.ref2);
if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
}
static bool trackinit(upb_refcounted *r) {
r->refs = malloc(sizeof(*r->refs));
r->ref2s = malloc(sizeof(*r->ref2s));
if (!r->refs || !r->ref2s) goto err1;
if (!upb_inttable_init(r->refs, UPB_CTYPE_PTR)) goto err1;
if (!upb_inttable_init(r->ref2s, UPB_CTYPE_PTR)) goto err2;
return true;
err2:
upb_inttable_uninit(r->refs);
err1:
free(r->refs);
free(r->ref2s);
return false;
}
static void trackfree(const upb_refcounted *r) {
upb_inttable_uninit(r->refs);
upb_inttable_uninit(r->ref2s);
free(r->refs);
free(r->ref2s);
}
#else
static void track(const upb_refcounted *r, const void *owner, bool ref2) {
UPB_UNUSED(r);
UPB_UNUSED(owner);
UPB_UNUSED(ref2);
}
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) {
UPB_UNUSED(r);
UPB_UNUSED(owner);
UPB_UNUSED(ref2);
}
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) {
UPB_UNUSED(r);
UPB_UNUSED(owner);
UPB_UNUSED(ref2);
}
static bool trackinit(upb_refcounted *r) {
UPB_UNUSED(r);
return true;
}
static void trackfree(const upb_refcounted *r) {
UPB_UNUSED(r);
}
static void visit(const upb_refcounted *r, upb_refcounted_visit *v,
void *closure) {
if (r->vtbl->visit) r->vtbl->visit(r, v, closure);
}
#endif // UPB_DEBUG_REFS
/* freeze() *******************************************************************/
// The freeze() operation is by far the most complicated part of this scheme.
// We compute strongly-connected components and then mutate the graph such that
// we preserve the invariants documented at the top of this file. And we must
// handle out-of-memory errors gracefully (without leaving the graph
// inconsistent), which adds to the fun.
// The state used by the freeze operation (shared across many functions).
typedef struct {
int depth;
int maxdepth;
uint64_t index;
// Maps upb_refcounted* -> attributes (color, etc). attr layout varies by
// color.
upb_inttable objattr;
upb_inttable stack; // stack of upb_refcounted* for Tarjan's algorithm.
upb_inttable groups; // array of uint32_t*, malloc'd refcounts for new groups
upb_status *status;
jmp_buf err;
} tarjan;
static void release_ref2(const upb_refcounted *obj,
const upb_refcounted *subobj,
void *closure);
// Node attributes /////////////////////////////////////////////////////////////
// After our analysis phase all nodes will be either GRAY or WHITE.
typedef enum {
BLACK = 0, // Object has not been seen.
GRAY, // Object has been found via a refgroup but may not be reachable.
GREEN, // Object is reachable and is currently on the Tarjan stack.
WHITE, // Object is reachable and has been assigned a group (SCC).
} color_t;
UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); }
UPB_NORETURN static void oom(tarjan *t) {
upb_status_seterrmsg(t->status, "out of memory");
err(t);
}
static uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) {
upb_value v;
return upb_inttable_lookupptr(&t->objattr, r, &v) ?
upb_value_getuint64(v) : 0;
}
static uint64_t getattr(const tarjan *t, const upb_refcounted *r) {
upb_value v;
bool found = upb_inttable_lookupptr(&t->objattr, r, &v);
UPB_ASSERT_VAR(found, found);
return upb_value_getuint64(v);
}
static void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) {
upb_inttable_removeptr(&t->objattr, r, NULL);
upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr));
}
static color_t color(tarjan *t, const upb_refcounted *r) {
return trygetattr(t, r) & 0x3; // Color is always stored in the low 2 bits.
}
static void set_gray(tarjan *t, const upb_refcounted *r) {
assert(color(t, r) == BLACK);
setattr(t, r, GRAY);
}
// Pushes an obj onto the Tarjan stack and sets it to GREEN.
static void push(tarjan *t, const upb_refcounted *r) {
assert(color(t, r) == BLACK || color(t, r) == GRAY);
// This defines the attr layout for the GREEN state. "index" and "lowlink"
// get 31 bits, which is plenty (limit of 2B objects frozen at a time).
setattr(t, r, GREEN | (t->index << 2) | (t->index << 33));
if (++t->index == 0x80000000) {
upb_status_seterrmsg(t->status, "too many objects to freeze");
err(t);
}
upb_inttable_push(&t->stack, upb_value_ptr((void*)r));
}
// Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its
// SCC group.
static upb_refcounted *pop(tarjan *t) {
upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack));
assert(color(t, r) == GREEN);
// This defines the attr layout for nodes in the WHITE state.
// Top of group stack is [group, NULL]; we point at group.
setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8);
return r;
}
static void tarjan_newgroup(tarjan *t) {
uint32_t *group = malloc(sizeof(*group));
if (!group) oom(t);
// Push group and empty group leader (we'll fill in leader later).
if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) ||
!upb_inttable_push(&t->groups, upb_value_ptr(NULL))) {
free(group);
oom(t);
}
*group = 0;
}
static uint32_t idx(tarjan *t, const upb_refcounted *r) {
assert(color(t, r) == GREEN);
return (getattr(t, r) >> 2) & 0x7FFFFFFF;
}
static uint32_t lowlink(tarjan *t, const upb_refcounted *r) {
if (color(t, r) == GREEN) {
return getattr(t, r) >> 33;
} else {
return UINT32_MAX;
}
}
static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) {
assert(color(t, r) == GREEN);
setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF));
}
static uint32_t *group(tarjan *t, upb_refcounted *r) {
assert(color(t, r) == WHITE);
uint64_t groupnum = getattr(t, r) >> 8;
upb_value v;
bool found = upb_inttable_lookup(&t->groups, groupnum, &v);
UPB_ASSERT_VAR(found, found);
return upb_value_getptr(v);
}
// If the group leader for this object's group has not previously been set,
// the given object is assigned to be its leader.
static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) {
assert(color(t, r) == WHITE);
uint64_t leader_slot = (getattr(t, r) >> 8) + 1;
upb_value v;
bool found = upb_inttable_lookup(&t->groups, leader_slot, &v);
UPB_ASSERT_VAR(found, found);
if (upb_value_getptr(v)) {
return upb_value_getptr(v);
} else {
upb_inttable_remove(&t->groups, leader_slot, NULL);
upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r));
return r;
}
}
// Tarjan's algorithm //////////////////////////////////////////////////////////
// See:
// http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
static void do_tarjan(const upb_refcounted *obj, tarjan *t);
static void tarjan_visit(const upb_refcounted *obj,
const upb_refcounted *subobj,
void *closure) {
tarjan *t = closure;
if (++t->depth > t->maxdepth) {
upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth);
err(t);
} else if (subobj->is_frozen || color(t, subobj) == WHITE) {
// Do nothing: we don't want to visit or color already-frozen nodes,
// and WHITE nodes have already been assigned a SCC.
} else if (color(t, subobj) < GREEN) {
// Subdef has not yet been visited; recurse on it.
do_tarjan(subobj, t);
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj)));
} else if (color(t, subobj) == GREEN) {
// Subdef is in the stack and hence in the current SCC.
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj)));
}
--t->depth;
}
static void do_tarjan(const upb_refcounted *obj, tarjan *t) {
if (color(t, obj) == BLACK) {
// We haven't seen this object's group; mark the whole group GRAY.
const upb_refcounted *o = obj;
do { set_gray(t, o); } while ((o = o->next) != obj);
}
push(t, obj);
visit(obj, tarjan_visit, t);
if (lowlink(t, obj) == idx(t, obj)) {
tarjan_newgroup(t);
while (pop(t) != obj)
;
}
}
// freeze() ////////////////////////////////////////////////////////////////////
static void crossref(const upb_refcounted *r, const upb_refcounted *subobj,
void *_t) {
tarjan *t = _t;
assert(color(t, r) > BLACK);
if (color(t, subobj) > BLACK && r->group != subobj->group) {
// Previously this ref was not reflected in subobj->group because they
// were in the same group; now that they are split a ref must be taken.
refgroup(subobj->group);
}
}
static bool freeze(upb_refcounted *const*roots, int n, upb_status *s,
int maxdepth) {
volatile bool ret = false;
// We run in two passes so that we can allocate all memory before performing
// any mutation of the input -- this allows us to leave the input unchanged
// in the case of memory allocation failure.
tarjan t;
t.index = 0;
t.depth = 0;
t.maxdepth = maxdepth;
t.status = s;
if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1;
if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2;
if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3;
if (setjmp(t.err) != 0) goto err4;
for (int i = 0; i < n; i++) {
if (color(&t, roots[i]) < GREEN) {
do_tarjan(roots[i], &t);
}
}
// If we've made it this far, no further errors are possible so it's safe to
// mutate the objects without risk of leaving them in an inconsistent state.
ret = true;
// The transformation that follows requires care. The preconditions are:
// - all objects in attr map are WHITE or GRAY, and are in mutable groups
// (groups of all mutable objs)
// - no ref2(to, from) refs have incremented count(to) if both "to" and
// "from" are in our attr map (this follows from invariants (2) and (3))
// Pass 1: we remove WHITE objects from their mutable groups, and add them to
// new groups according to the SCC's we computed. These new groups will
// consist of only frozen objects. None will be immediately collectible,
// because WHITE objects are by definition reachable from one of "roots",
// which the caller must own refs on.
upb_inttable_iter i;
upb_inttable_begin(&i, &t.objattr);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
// Since removal from a singly-linked list requires access to the object's
// predecessor, we consider obj->next instead of obj for moving. With the
// while() loop we guarantee that we will visit every node's predecessor.
// Proof:
// 1. every node's predecessor is in our attr map.
// 2. though the loop body may change a node's predecessor, it will only
// change it to be the node we are currently operating on, so with a
// while() loop we guarantee ourselves the chance to remove each node.
while (color(&t, obj->next) == WHITE &&
group(&t, obj->next) != obj->next->group) {
// Remove from old group.
upb_refcounted *move = obj->next;
if (obj == move) {
// Removing the last object from a group.
assert(*obj->group == obj->individual_count);
free(obj->group);
} else {
obj->next = move->next;
// This may decrease to zero; we'll collect GRAY objects (if any) that
// remain in the group in the third pass.
assert(*move->group >= move->individual_count);
*move->group -= move->individual_count;
}
// Add to new group.
upb_refcounted *leader = groupleader(&t, move);
if (move == leader) {
// First object added to new group is its leader.
move->group = group(&t, move);
move->next = move;
*move->group = move->individual_count;
} else {
// Group already has at least one object in it.
assert(leader->group == group(&t, move));
move->group = group(&t, move);
move->next = leader->next;
leader->next = move;
*move->group += move->individual_count;
}
move->is_frozen = true;
}
}
// Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must
// increment count(to) if group(obj) != group(to) (which could now be the
// case if "to" was just frozen).
upb_inttable_begin(&i, &t.objattr);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
visit(obj, crossref, &t);
}
// Pass 3: GRAY objects are collected if their group's refcount dropped to
// zero when we removed its white nodes. This can happen if they had only
// been kept alive by virtue of sharing a group with an object that was just
// frozen.
//
// It is important that we do this last, since the GRAY object's free()
// function could call unref2() on just-frozen objects, which will decrement
// refs that were added in pass 2.
upb_inttable_begin(&i, &t.objattr);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i);
if (obj->group == NULL || *obj->group == 0) {
if (obj->group) {
// We eagerly free() the group's count (since we can't easily determine
// the group's remaining size it's the easiest way to ensure it gets
// done).
free(obj->group);
// Visit to release ref2's (done in a separate pass since release_ref2
// depends on o->group being unmodified so it can test merged()).
upb_refcounted *o = obj;
do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj);
// Mark "group" fields as NULL so we know to free the objects later in
// this loop, but also don't try to delete the group twice.
o = obj;
do { o->group = NULL; } while ((o = o->next) != obj);
}
freeobj(obj);
}
}
err4:
if (!ret) {
upb_inttable_begin(&i, &t.groups);
for(; !upb_inttable_done(&i); upb_inttable_next(&i))
free(upb_value_getptr(upb_inttable_iter_value(&i)));
}
upb_inttable_uninit(&t.groups);
err3:
upb_inttable_uninit(&t.stack);
err2:
upb_inttable_uninit(&t.objattr);
err1:
return ret;
}
/* Misc internal functions ***************************************************/
static bool merged(const upb_refcounted *r, const upb_refcounted *r2) {
return r->group == r2->group;
}
static void merge(upb_refcounted *r, upb_refcounted *from) {
if (merged(r, from)) return;
*r->group += *from->group;
free(from->group);
upb_refcounted *base = from;
// Set all refcount pointers in the "from" chain to the merged refcount.
//
// TODO(haberman): this linear algorithm can result in an overall O(n^2) bound
// if the user continuously extends a group by one object. Prevent this by
// using one of the techniques in this paper:
// ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf
do { from->group = r->group; } while ((from = from->next) != base);
// Merge the two circularly linked lists by swapping their next pointers.
upb_refcounted *tmp = r->next;
r->next = base->next;
base->next = tmp;
}
static void unref(const upb_refcounted *r);
static void release_ref2(const upb_refcounted *obj,
const upb_refcounted *subobj,
void *closure) {
UPB_UNUSED(closure);
untrack(subobj, obj, true);
if (!merged(obj, subobj)) {
assert(subobj->is_frozen);
unref(subobj);
}
}
static void unref(const upb_refcounted *r) {
if (unrefgroup(r->group)) {
free(r->group);
// In two passes, since release_ref2 needs a guarantee that any subobjs
// are alive.
const upb_refcounted *o = r;
do { visit(o, release_ref2, NULL); } while((o = o->next) != r);
o = r;
do {
const upb_refcounted *next = o->next;
assert(o->is_frozen || o->individual_count == 0);
freeobj((upb_refcounted*)o);
o = next;
} while(o != r);
}
}
static void freeobj(upb_refcounted *o) {
trackfree(o);
o->vtbl->free((upb_refcounted*)o);
}
/* Public interface ***********************************************************/
bool upb_refcounted_init(upb_refcounted *r,
const struct upb_refcounted_vtbl *vtbl,
const void *owner) {
r->next = r;
r->vtbl = vtbl;
r->individual_count = 0;
r->is_frozen = false;
r->group = malloc(sizeof(*r->group));
if (!r->group) return false;
*r->group = 0;
if (!trackinit(r)) {
free(r->group);
return false;
}
upb_refcounted_ref(r, owner);
return true;
}
bool upb_refcounted_isfrozen(const upb_refcounted *r) {
return r->is_frozen;
}
void upb_refcounted_ref(const upb_refcounted *r, const void *owner) {
track(r, owner, false);
if (!r->is_frozen)
((upb_refcounted*)r)->individual_count++;
refgroup(r->group);
}
void upb_refcounted_unref(const upb_refcounted *r, const void *owner) {
untrack(r, owner, false);
if (!r->is_frozen)
((upb_refcounted*)r)->individual_count--;
unref(r);
}
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) {
assert(!from->is_frozen); // Non-const pointer implies this.
track(r, from, true);
if (r->is_frozen) {
refgroup(r->group);
} else {
merge((upb_refcounted*)r, from);
}
}
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) {
assert(!from->is_frozen); // Non-const pointer implies this.
untrack(r, from, true);
if (r->is_frozen) {
unref(r);
} else {
assert(merged(r, from));
}
}
void upb_refcounted_donateref(
const upb_refcounted *r, const void *from, const void *to) {
assert(from != to);
if (to != NULL)
upb_refcounted_ref(r, to);
if (from != NULL)
upb_refcounted_unref(r, from);
}
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) {
checkref(r, owner, false);
}
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
int maxdepth) {
for (int i = 0; i < n; i++) {
assert(!roots[i]->is_frozen);
}
return freeze(roots, n, s, maxdepth);
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2013 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include <stdlib.h>
// Fallback implementation if the shim is not specialized by the JIT.
#define SHIM_WRITER(type, ctype) \
bool upb_shim_set ## type (void *c, const void *hd, ctype val) { \
uint8_t *m = c; \
const upb_shim_data *d = hd; \
if (d->hasbit > 0) \
*(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \
*(ctype*)&m[d->offset] = val; \
return true; \
} \
SHIM_WRITER(double, double)
SHIM_WRITER(float, float)
SHIM_WRITER(int32, int32_t)
SHIM_WRITER(int64, int64_t)
SHIM_WRITER(uint32, uint32_t)
SHIM_WRITER(uint64, uint64_t)
SHIM_WRITER(bool, bool)
#undef SHIM_WRITER
bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
int32_t hasbit) {
upb_shim_data *d = malloc(sizeof(*d));
if (!d) return false;
d->offset = offset;
d->hasbit = hasbit;
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, d);
upb_handlerattr_setalwaysok(&attr, true);
upb_handlers_addcleanup(h, d, free);
#define TYPE(u, l) \
case UPB_TYPE_##u: \
ok = upb_handlers_set##l(h, f, upb_shim_set##l, &attr); break;
bool ok = false;
switch (upb_fielddef_type(f)) {
TYPE(INT64, int64);
TYPE(INT32, int32);
TYPE(ENUM, int32);
TYPE(UINT64, uint64);
TYPE(UINT32, uint32);
TYPE(DOUBLE, double);
TYPE(FLOAT, float);
TYPE(BOOL, bool);
default: assert(false); break;
}
#undef TYPE
upb_handlerattr_uninit(&attr);
return ok;
}
const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
upb_fieldtype_t *type) {
upb_func *f = upb_handlers_gethandler(h, s);
if ((upb_int64_handlerfunc*)f == upb_shim_setint64) {
*type = UPB_TYPE_INT64;
} else if ((upb_int32_handlerfunc*)f == upb_shim_setint32) {
*type = UPB_TYPE_INT32;
} else if ((upb_uint64_handlerfunc*)f == upb_shim_setuint64) {
*type = UPB_TYPE_UINT64;
} else if ((upb_uint32_handlerfunc*)f == upb_shim_setuint32) {
*type = UPB_TYPE_UINT32;
} else if ((upb_double_handlerfunc*)f == upb_shim_setdouble) {
*type = UPB_TYPE_DOUBLE;
} else if ((upb_float_handlerfunc*)f == upb_shim_setfloat) {
*type = UPB_TYPE_FLOAT;
} else if ((upb_bool_handlerfunc*)f == upb_shim_setbool) {
*type = UPB_TYPE_BOOL;
} else {
return NULL;
}
return (const upb_shim_data*)upb_handlers_gethandlerdata(h, s);
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2008-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include <stdlib.h>
#include <string.h>
bool upb_symtab_isfrozen(const upb_symtab *s) {
return upb_refcounted_isfrozen(UPB_UPCAST(s));
}
void upb_symtab_ref(const upb_symtab *s, const void *owner) {
upb_refcounted_ref(UPB_UPCAST(s), owner);
}
void upb_symtab_unref(const upb_symtab *s, const void *owner) {
upb_refcounted_unref(UPB_UPCAST(s), owner);
}
void upb_symtab_donateref(
const upb_symtab *s, const void *from, const void *to) {
upb_refcounted_donateref(UPB_UPCAST(s), from, to);
}
void upb_symtab_checkref(const upb_symtab *s, const void *owner) {
upb_refcounted_checkref(UPB_UPCAST(s), owner);
}
static void upb_symtab_free(upb_refcounted *r) {
upb_symtab *s = (upb_symtab*)r;
upb_strtable_iter i;
upb_strtable_begin(&i, &s->symtab);
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
upb_def_unref(def, s);
}
upb_strtable_uninit(&s->symtab);
free(s);
}
upb_symtab *upb_symtab_new(const void *owner) {
static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free};
upb_symtab *s = malloc(sizeof(*s));
upb_refcounted_init(UPB_UPCAST(s), &vtbl, owner);
upb_strtable_init(&s->symtab, UPB_CTYPE_PTR);
return s;
}
void upb_symtab_freeze(upb_symtab *s) {
assert(!upb_symtab_isfrozen(s));
upb_refcounted *r = UPB_UPCAST(s);
// The symtab does not take ref2's (see refcounted.h) on the defs, because
// defs cannot refer back to the table and therefore cannot create cycles. So
// 0 will suffice for maxdepth here.
bool ok = upb_refcounted_freeze(&r, 1, NULL, 0);
UPB_ASSERT_VAR(ok, ok);
}
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return ret;
}
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return def ? upb_dyncast_msgdef(def) : NULL;
}
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) {
upb_value v;
upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ?
upb_value_getptr(v) : NULL;
return def ? upb_dyncast_enumdef(def) : NULL;
}
// Given a symbol and the base symbol inside which it is defined, find the
// symbol's definition in t.
static upb_def *upb_resolvename(const upb_strtable *t,
const char *base, const char *sym) {
if(strlen(sym) == 0) return NULL;
if(sym[0] == '.') {
// Symbols starting with '.' are absolute, so we do a single lookup.
// Slice to omit the leading '.'
upb_value v;
return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL;
} else {
// Remove components from base until we find an entry or run out.
// TODO: This branch is totally broken, but currently not used.
(void)base;
assert(false);
return NULL;
}
}
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym) {
upb_def *ret = upb_resolvename(&s->symtab, base, sym);
return ret;
}
// Searches def and its children to find defs that have the same name as any
// def in "addtab." Returns true if any where found, and as a side-effect adds
// duplicates of these defs into addtab.
//
// We use a modified depth-first traversal that traverses each SCC (which we
// already computed) as if it were a single node. This allows us to traverse
// the possibly-cyclic graph as if it were a DAG and to dup the correct set of
// nodes with O(n) time.
static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab,
const void *new_owner, upb_inttable *seen,
upb_status *s) {
// Memoize results of this function for efficiency (since we're traversing a
// DAG this is not needed to limit the depth of the search).
upb_value v;
if (upb_inttable_lookup(seen, (uintptr_t)def, &v))
return upb_value_getbool(v);
// Visit submessages for all messages in the SCC.
bool need_dup = false;
const upb_def *base = def;
do {
assert(upb_def_isfrozen(def));
if (def->type == UPB_DEF_FIELD) continue;
upb_value v;
if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) {
need_dup = true;
}
// For messages, continue the recursion by visiting all subdefs.
const upb_msgdef *m = upb_dyncast_msgdef(def);
if (m) {
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (!upb_fielddef_hassubdef(f)) continue;
// |= to avoid short-circuit; we need its side-effects.
need_dup |= upb_resolve_dfs(
upb_fielddef_subdef(f), addtab, new_owner, seen, s);
if (!upb_ok(s)) return false;
}
}
} while ((def = (upb_def*)def->base.next) != base);
if (need_dup) {
// Dup any defs that don't already have entries in addtab.
def = base;
do {
if (def->type == UPB_DEF_FIELD) continue;
const char *name = upb_def_fullname(def);
if (!upb_strtable_lookup(addtab, name, NULL)) {
upb_def *newdef = upb_def_dup(def, new_owner);
if (!newdef) goto oom;
newdef->came_from_user = false;
if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef)))
goto oom;
}
} while ((def = (upb_def*)def->base.next) != base);
}
upb_inttable_insert(seen, (uintptr_t)def, upb_value_bool(need_dup));
return need_dup;
oom:
upb_status_seterrmsg(s, "out of memory");
return false;
}
// TODO(haberman): we need a lot more testing of error conditions.
// The came_from_user stuff in particular is not tested.
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor,
upb_status *status) {
assert(!upb_symtab_isfrozen(s));
upb_def **add_defs = NULL;
upb_strtable addtab;
if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) {
upb_status_seterrmsg(status, "out of memory");
return false;
}
// Add new defs to our "add" set.
for (int i = 0; i < n; i++) {
upb_def *def = defs[i];
if (upb_def_isfrozen(def)) {
upb_status_seterrmsg(status, "added defs must be mutable");
goto err;
}
assert(!upb_def_isfrozen(def));
const char *fullname = upb_def_fullname(def);
if (!fullname) {
upb_status_seterrmsg(
status, "Anonymous defs cannot be added to a symtab");
goto err;
}
upb_fielddef *f = upb_dyncast_fielddef_mutable(def);
if (f) {
if (!upb_fielddef_containingtypename(f)) {
upb_status_seterrmsg(status,
"Standalone fielddefs must have a containing type "
"(extendee) name set");
goto err;
}
} else {
if (upb_strtable_lookup(&addtab, fullname, NULL)) {
upb_status_seterrf(status, "Conflicting defs named '%s'", fullname);
goto err;
}
// We need this to back out properly, because if there is a failure we
// need to donate the ref back to the caller.
def->came_from_user = true;
upb_def_donateref(def, ref_donor, s);
if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def)))
goto oom_err;
}
}
// Add standalone fielddefs (ie. extensions) to the appropriate messages.
// If the appropriate message only exists in the existing symtab, duplicate
// it so we have a mutable copy we can add the fields to.
for (int i = 0; i < n; i++) {
upb_def *def = defs[i];
upb_fielddef *f = upb_dyncast_fielddef_mutable(def);
if (!f) continue;
const char *msgname = upb_fielddef_containingtypename(f);
// We validated this earlier in this function.
assert(msgname);
// If the extendee name is absolutely qualified, move past the initial ".".
// TODO(haberman): it is not obvious what it would mean if this was not
// absolutely qualified.
if (msgname[0] == '.') {
msgname++;
}
upb_value v;
upb_msgdef *m;
if (upb_strtable_lookup(&addtab, msgname, &v)) {
// Extendee is in the set of defs the user asked us to add.
m = upb_value_getptr(v);
} else {
// Need to find and dup the extendee from the existing symtab.
const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname);
if (!frozen_m) {
upb_status_seterrf(status,
"Tried to extend message %s that does not exist "
"in this SymbolTable.",
msgname);
goto err;
}
m = upb_msgdef_dup(frozen_m, s);
if (!m) goto oom_err;
if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) {
upb_msgdef_unref(m, s);
goto oom_err;
}
}
if (!upb_msgdef_addfield(m, f, ref_donor, status)) {
goto err;
}
}
// Add dups of any existing def that can reach a def with the same name as
// anything in our "add" set.
upb_inttable seen;
if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err;
upb_strtable_iter i;
upb_strtable_begin(&i, &s->symtab);
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
upb_resolve_dfs(def, &addtab, s, &seen, status);
if (!upb_ok(status)) goto err;
}
upb_inttable_uninit(&seen);
// Now using the table, resolve symbolic references for subdefs.
upb_strtable_begin(&i, &addtab);
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
upb_msgdef *m = upb_dyncast_msgdef_mutable(def);
if (!m) continue;
// Type names are resolved relative to the message in which they appear.
const char *base = upb_msgdef_fullname(m);
upb_msg_field_iter j;
for(upb_msg_field_begin(&j, m);
!upb_msg_field_done(&j);
upb_msg_field_next(&j)) {
upb_fielddef *f = upb_msg_iter_field(&j);
const char *name = upb_fielddef_subdefname(f);
if (name && !upb_fielddef_subdef(f)) {
// Try the lookup in the current set of to-be-added defs first. If not
// there, try existing defs.
upb_def *subdef = upb_resolvename(&addtab, base, name);
if (subdef == NULL) {
subdef = upb_resolvename(&s->symtab, base, name);
}
if (subdef == NULL) {
upb_status_seterrf(
status, "couldn't resolve name '%s' in message '%s'", name, base);
goto err;
} else if (!upb_fielddef_setsubdef(f, subdef, status)) {
goto err;
}
}
}
}
// We need an array of the defs in addtab, for passing to upb_def_freeze.
add_defs = malloc(sizeof(void*) * upb_strtable_count(&addtab));
if (add_defs == NULL) goto oom_err;
upb_strtable_begin(&i, &addtab);
for (n = 0; !upb_strtable_done(&i); upb_strtable_next(&i)) {
add_defs[n++] = upb_value_getptr(upb_strtable_iter_value(&i));
}
if (!upb_def_freeze(add_defs, n, status)) goto err;
// This must be delayed until all errors have been detected, since error
// recovery code uses this table to cleanup defs.
upb_strtable_uninit(&addtab);
// TODO(haberman) we don't properly handle errors after this point (like
// OOM in upb_strtable_insert() below).
for (int i = 0; i < n; i++) {
upb_def *def = add_defs[i];
const char *name = upb_def_fullname(def);
upb_value v;
if (upb_strtable_remove(&s->symtab, name, &v)) {
const upb_def *def = upb_value_getptr(v);
upb_def_unref(def, s);
}
bool success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def));
UPB_ASSERT_VAR(success, success == true);
}
free(add_defs);
return true;
oom_err:
upb_status_seterrmsg(status, "out of memory");
err: {
// For defs the user passed in, we need to donate the refs back. For defs
// we dup'd, we need to just unref them.
upb_strtable_iter i;
upb_strtable_begin(&i, &addtab);
for (; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i));
bool came_from_user = def->came_from_user;
def->came_from_user = false;
if (came_from_user) {
upb_def_donateref(def, s, ref_donor);
} else {
upb_def_unref(def, s);
}
}
}
upb_strtable_uninit(&addtab);
free(add_defs);
assert(!upb_ok(status));
return false;
}
// Iteration.
static void advance_to_matching(upb_symtab_iter *iter) {
if (iter->type == UPB_DEF_ANY)
return;
while (!upb_strtable_done(&iter->iter) &&
iter->type != upb_symtab_iter_def(iter)->type) {
upb_strtable_next(&iter->iter);
}
}
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
upb_deftype_t type) {
upb_strtable_begin(&iter->iter, &s->symtab);
iter->type = type;
advance_to_matching(iter);
}
void upb_symtab_next(upb_symtab_iter *iter) {
upb_strtable_next(&iter->iter);
advance_to_matching(iter);
}
bool upb_symtab_done(const upb_symtab_iter *iter) {
return upb_strtable_done(&iter->iter);
}
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) {
return upb_value_getptr(upb_strtable_iter_value(&iter->iter));
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Implementation is heavily inspired by Lua's ltable.c.
*/
#include <stdlib.h>
#include <string.h>
#define UPB_MAXARRSIZE 16 // 64k.
// From Chromium.
#define ARRAY_SIZE(x) \
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
static const double MAX_LOAD = 0.85;
// The minimum utilization of the array part of a mixed hash/array table. This
// is a speed/memory-usage tradeoff (though it's not straightforward because of
// cache effects). The lower this is, the more memory we'll use.
static const double MIN_DENSITY = 0.1;
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }
int log2ceil(uint64_t v) {
int ret = 0;
bool pow2 = is_pow2(v);
while (v >>= 1) ret++;
ret = pow2 ? ret : ret + 1; // Ceiling.
return UPB_MIN(UPB_MAXARRSIZE, ret);
}
char *upb_strdup(const char *s) {
return upb_strdup2(s, strlen(s));
}
char *upb_strdup2(const char *s, size_t len) {
// Prevent overflow errors.
if (len == SIZE_MAX) return NULL;
// Always null-terminate, even if binary data; but don't rely on the input to
// have a null-terminating byte since it may be a raw binary buffer.
size_t n = len + 1;
char *p = malloc(n);
if (p) {
memcpy(p, s, len);
p[len] = 0;
}
return p;
}
// A type to represent the lookup key of either a strtable or an inttable.
typedef struct {
upb_tabkey key;
} lookupkey_t;
static lookupkey_t strkey2(const char *str, size_t len) {
lookupkey_t k;
k.key.s.str = (char*)str;
k.key.s.length = len;
return k;
}
static lookupkey_t intkey(uintptr_t key) {
lookupkey_t k;
k.key = upb_intkey(key);
return k;
}
typedef uint32_t hashfunc_t(upb_tabkey key);
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2);
/* Base table (shared code) ***************************************************/
// For when we need to cast away const.
static upb_tabent *mutable_entries(upb_table *t) {
return (upb_tabent*)t->entries;
}
static bool isfull(upb_table *t) {
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD;
}
static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) {
t->count = 0;
t->ctype = ctype;
t->size_lg2 = size_lg2;
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
if (bytes > 0) {
t->entries = malloc(bytes);
if (!t->entries) return false;
memset(mutable_entries(t), 0, bytes);
} else {
t->entries = NULL;
}
return true;
}
static void uninit(upb_table *t) { free(mutable_entries(t)); }
static upb_tabent *emptyent(upb_table *t) {
upb_tabent *e = mutable_entries(t) + upb_table_size(t);
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); }
}
static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) {
return (upb_tabent*)upb_getentry(t, hash);
}
static const upb_tabent *findentry(const upb_table *t, lookupkey_t key,
uint32_t hash, eqlfunc_t *eql) {
if (t->size_lg2 == 0) return NULL;
const upb_tabent *e = upb_getentry(t, hash);
if (upb_tabent_isempty(e)) return NULL;
while (1) {
if (eql(e->key, key)) return e;
if ((e = e->next) == NULL) return NULL;
}
}
static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key,
uint32_t hash, eqlfunc_t *eql) {
return (upb_tabent*)findentry(t, key, hash, eql);
}
static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v,
uint32_t hash, eqlfunc_t *eql) {
const upb_tabent *e = findentry(t, key, hash, eql);
if (e) {
if (v) {
_upb_value_setval(v, e->val, t->ctype);
}
return true;
} else {
return false;
}
}
// The given key must not already exist in the table.
static void insert(upb_table *t, lookupkey_t key, upb_value val,
uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) {
UPB_UNUSED(eql);
assert(findentry(t, key, hash, eql) == NULL);
assert(val.ctype == t->ctype);
t->count++;
upb_tabent *mainpos_e = getentry_mutable(t, hash);
upb_tabent *our_e = mainpos_e;
if (upb_tabent_isempty(mainpos_e)) {
// Our main position is empty; use it.
our_e->next = NULL;
} else {
// Collision.
upb_tabent *new_e = emptyent(t);
// Head of collider's chain.
upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key));
if (chain == mainpos_e) {
// Existing ent is in its main posisiton (it has the same hash as us, and
// is the head of our chain). Insert to new ent and append to this chain.
new_e->next = mainpos_e->next;
mainpos_e->next = new_e;
our_e = new_e;
} else {
// Existing ent is not in its main position (it is a node in some other
// chain). This implies that no existing ent in the table has our hash.
// Evict it (updating its chain) and use its ent for head of our chain.
*new_e = *mainpos_e; // copies next.
while (chain->next != mainpos_e) {
chain = (upb_tabent*)chain->next;
assert(chain);
}
chain->next = new_e;
our_e = mainpos_e;
our_e->next = NULL;
}
}
our_e->key = key.key;
our_e->val = val.val;
assert(findentry(t, key, hash, eql) == our_e);
}
static bool rm(upb_table *t, lookupkey_t key, upb_value *val,
upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) {
upb_tabent *chain = getentry_mutable(t, hash);
if (upb_tabent_isempty(chain)) return false;
if (eql(chain->key, key)) {
// Element to remove is at the head of its chain.
t->count--;
if (val) {
_upb_value_setval(val, chain->val, t->ctype);
}
if (chain->next) {
upb_tabent *move = (upb_tabent*)chain->next;
*chain = *move;
if (removed) *removed = move->key;
move->key.num = 0; // Make the slot empty.
} else {
if (removed) *removed = chain->key;
chain->key.num = 0; // Make the slot empty.
}
return true;
} else {
// Element to remove is either in a non-head position or not in the table.
while (chain->next && !eql(chain->next->key, key))
chain = (upb_tabent*)chain->next;
if (chain->next) {
// Found element to remove.
if (val) {
_upb_value_setval(val, chain->next->val, t->ctype);
}
upb_tabent *rm = (upb_tabent*)chain->next;
if (removed) *removed = rm->key;
rm->key.num = 0;
chain->next = rm->next;
t->count--;
return true;
} else {
return false;
}
}
}
static size_t next(const upb_table *t, size_t i) {
do {
if (++i >= upb_table_size(t))
return SIZE_MAX;
} while(upb_tabent_isempty(&t->entries[i]));
return i;
}
static size_t begin(const upb_table *t) {
return next(t, -1);
}
/* upb_strtable ***************************************************************/
// A simple "subclass" of upb_table that only adds a hash function for strings.
static uint32_t strhash(upb_tabkey key) {
return MurmurHash2(key.s.str, key.s.length, 0);
}
static bool streql(upb_tabkey k1, lookupkey_t k2) {
return k1.s.length == k2.key.s.length &&
memcmp(k1.s.str, k2.key.s.str, k1.s.length) == 0;
}
bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) {
return init(&t->t, ctype, 2);
}
void upb_strtable_uninit(upb_strtable *t) {
for (size_t i = 0; i < upb_table_size(&t->t); i++)
free((void*)t->t.entries[i].key.s.str);
uninit(&t->t);
}
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) {
upb_strtable new_table;
if (!init(&new_table.t, t->t.ctype, size_lg2))
return false;
upb_strtable_iter i;
upb_strtable_begin(&i, t);
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_strtable_insert2(
&new_table,
upb_strtable_iter_key(&i),
upb_strtable_iter_keylength(&i),
upb_strtable_iter_value(&i));
}
upb_strtable_uninit(t);
*t = new_table;
return true;
}
bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len,
upb_value v) {
if (isfull(&t->t)) {
// Need to resize. New table of double the size, add old elements to it.
if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) {
return false;
}
}
if ((k = upb_strdup2(k, len)) == NULL) return false;
lookupkey_t key = strkey2(k, len);
uint32_t hash = MurmurHash2(key.key.s.str, key.key.s.length, 0);
insert(&t->t, key, v, hash, &strhash, &streql);
return true;
}
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
upb_value *v) {
uint32_t hash = MurmurHash2(key, len, 0);
return lookup(&t->t, strkey2(key, len), v, hash, &streql);
}
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
upb_value *val) {
uint32_t hash = MurmurHash2(key, strlen(key), 0);
upb_tabkey tabkey;
if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) {
free((void*)tabkey.s.str);
return true;
} else {
return false;
}
}
// Iteration
static const upb_tabent *str_tabent(const upb_strtable_iter *i) {
return &i->t->t.entries[i->index];
}
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
i->t = t;
i->index = begin(&t->t);
}
void upb_strtable_next(upb_strtable_iter *i) {
i->index = next(&i->t->t, i->index);
}
bool upb_strtable_done(const upb_strtable_iter *i) {
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(str_tabent(i));
}
const char *upb_strtable_iter_key(upb_strtable_iter *i) {
assert(!upb_strtable_done(i));
return str_tabent(i)->key.s.str;
}
size_t upb_strtable_iter_keylength(upb_strtable_iter *i) {
assert(!upb_strtable_done(i));
return str_tabent(i)->key.s.length;
}
upb_value upb_strtable_iter_value(const upb_strtable_iter *i) {
assert(!upb_strtable_done(i));
return _upb_value_val(str_tabent(i)->val, i->t->t.ctype);
}
void upb_strtable_iter_setdone(upb_strtable_iter *i) {
i->index = SIZE_MAX;
}
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
const upb_strtable_iter *i2) {
if (upb_strtable_done(i1) && upb_strtable_done(i2))
return true;
return i1->t == i2->t && i1->index == i2->index;
}
/* upb_inttable ***************************************************************/
// For inttables we use a hybrid structure where small keys are kept in an
// array and large keys are put in the hash table.
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key.num); }
static bool inteql(upb_tabkey k1, lookupkey_t k2) {
return k1.num == k2.key.num;
}
static _upb_value *mutable_array(upb_inttable *t) {
return (_upb_value*)t->array;
}
static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) {
if (key < t->array_size) {
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL;
} else {
upb_tabent *e =
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
return e ? &e->val : NULL;
}
}
static const _upb_value *inttable_val_const(const upb_inttable *t,
uintptr_t key) {
return inttable_val((upb_inttable*)t, key);
}
size_t upb_inttable_count(const upb_inttable *t) {
return t->t.count + t->array_count;
}
static void check(upb_inttable *t) {
UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
// This check is very expensive (makes inserts/deletes O(N)).
size_t count = 0;
upb_inttable_iter i;
upb_inttable_begin(&i, t);
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL));
}
assert(count == upb_inttable_count(t));
#endif
}
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype,
size_t asize, int hsize_lg2) {
if (!init(&t->t, ctype, hsize_lg2)) return false;
// Always make the array part at least 1 long, so that we know key 0
// won't be in the hash part, which simplifies things.
t->array_size = UPB_MAX(1, asize);
t->array_count = 0;
size_t array_bytes = t->array_size * sizeof(upb_value);
t->array = malloc(array_bytes);
if (!t->array) {
uninit(&t->t);
return false;
}
memset(mutable_array(t), 0xff, array_bytes);
check(t);
return true;
}
bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) {
return upb_inttable_sizedinit(t, ctype, 0, 4);
}
void upb_inttable_uninit(upb_inttable *t) {
uninit(&t->t);
free(mutable_array(t));
}
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) {
assert(upb_arrhas(val.val));
if (key < t->array_size) {
assert(!upb_arrhas(t->array[key]));
t->array_count++;
mutable_array(t)[key] = val.val;
} else {
if (isfull(&t->t)) {
// Need to resize the hash part, but we re-use the array part.
upb_table new_table;
if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1))
return false;
size_t i;
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
const upb_tabent *e = &t->t.entries[i];
upb_value v;
_upb_value_setval(&v, e->val, t->t.ctype);
uint32_t hash = upb_inthash(e->key.num);
insert(&new_table, intkey(e->key.num), v, hash, &inthash, &inteql);
}
assert(t->t.count == new_table.count);
uninit(&t->t);
t->t = new_table;
}
insert(&t->t, intkey(key), val, upb_inthash(key), &inthash, &inteql);
}
check(t);
return true;
}
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) {
const _upb_value *table_v = inttable_val_const(t, key);
if (!table_v) return false;
if (v) _upb_value_setval(v, *table_v, t->t.ctype);
return true;
}
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) {
_upb_value *table_v = inttable_val(t, key);
if (!table_v) return false;
*table_v = val.val;
return true;
}
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
bool success;
if (key < t->array_size) {
if (upb_arrhas(t->array[key])) {
t->array_count--;
if (val) {
_upb_value_setval(val, t->array[key], t->t.ctype);
}
_upb_value empty = UPB_ARRAY_EMPTYENT;
mutable_array(t)[key] = empty;
success = true;
} else {
success = false;
}
} else {
upb_tabkey removed;
uint32_t hash = upb_inthash(key);
success = rm(&t->t, intkey(key), val, &removed, hash, &inteql);
}
check(t);
return success;
}
bool upb_inttable_push(upb_inttable *t, upb_value val) {
return upb_inttable_insert(t, upb_inttable_count(t), val);
}
upb_value upb_inttable_pop(upb_inttable *t) {
upb_value val;
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
UPB_ASSERT_VAR(ok, ok);
return val;
}
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) {
return upb_inttable_insert(t, (uintptr_t)key, val);
}
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key,
upb_value *v) {
return upb_inttable_lookup(t, (uintptr_t)key, v);
}
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
return upb_inttable_remove(t, (uintptr_t)key, val);
}
void upb_inttable_compact(upb_inttable *t) {
// Create a power-of-two histogram of the table keys.
int counts[UPB_MAXARRSIZE + 1] = {0};
uintptr_t max_key = 0;
upb_inttable_iter i;
upb_inttable_begin(&i, t);
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
uintptr_t key = upb_inttable_iter_key(&i);
if (key > max_key) {
max_key = key;
}
counts[log2ceil(key)]++;
}
size_t arr_size = 1;
int arr_count = upb_inttable_count(t);
if (upb_inttable_count(t) >= max_key * MIN_DENSITY) {
// We can put 100% of the entries in the array part.
arr_size = max_key + 1;
} else {
// Find the largest power of two that satisfies the MIN_DENSITY definition.
for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) {
arr_size = 1 << size_lg2;
arr_count -= counts[size_lg2];
if (arr_count >= arr_size * MIN_DENSITY) {
break;
}
}
}
// Array part must always be at least 1 entry large to catch lookups of key
// 0. Key 0 must always be in the array part because "0" in the hash part
// denotes an empty entry.
arr_size = UPB_MAX(arr_size, 1);
// Insert all elements into new, perfectly-sized table.
int hash_count = upb_inttable_count(t) - arr_count;
int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0;
int hashsize_lg2 = log2ceil(hash_size);
assert(hash_count >= 0);
upb_inttable new_t;
upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2);
upb_inttable_begin(&i, t);
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
uintptr_t k = upb_inttable_iter_key(&i);
upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i));
}
assert(new_t.array_size == arr_size);
assert(new_t.t.size_lg2 == hashsize_lg2);
upb_inttable_uninit(t);
*t = new_t;
}
// Iteration.
static const upb_tabent *int_tabent(const upb_inttable_iter *i) {
assert(!i->array_part);
return &i->t->t.entries[i->index];
}
static _upb_value int_arrent(const upb_inttable_iter *i) {
assert(i->array_part);
return i->t->array[i->index];
}
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
i->t = t;
i->index = -1;
i->array_part = true;
upb_inttable_next(i);
}
void upb_inttable_next(upb_inttable_iter *iter) {
const upb_inttable *t = iter->t;
if (iter->array_part) {
while (++iter->index < t->array_size) {
if (upb_arrhas(int_arrent(iter))) {
return;
}
}
iter->array_part = false;
iter->index = begin(&t->t);
} else {
iter->index = next(&t->t, iter->index);
}
}
bool upb_inttable_done(const upb_inttable_iter *i) {
if (i->array_part) {
return i->index >= i->t->array_size ||
!upb_arrhas(int_arrent(i));
} else {
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(int_tabent(i));
}
}
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) {
assert(!upb_inttable_done(i));
return i->array_part ? i->index : int_tabent(i)->key.num;
}
upb_value upb_inttable_iter_value(const upb_inttable_iter *i) {
assert(!upb_inttable_done(i));
return _upb_value_val(
i->array_part ? i->t->array[i->index] : int_tabent(i)->val,
i->t->t.ctype);
}
void upb_inttable_iter_setdone(upb_inttable_iter *i) {
i->index = SIZE_MAX;
i->array_part = false;
}
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
const upb_inttable_iter *i2) {
if (upb_inttable_done(i1) && upb_inttable_done(i2))
return true;
return i1->t == i2->t && i1->index == i2->index &&
i1->array_part == i2->array_part;
}
#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
// 1. It will not work incrementally.
// 2. It will not produce the same results on little-endian and big-endian
// machines.
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) {
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
// Initialize the hash to a 'random' value
uint32_t h = seed ^ len;
// Mix 4 bytes at a time into the hash
const uint8_t * data = (const uint8_t *)key;
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
// Handle the last few bytes of the input array
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
// Do a few final mixes of the hash to ensure the last few
// bytes are well-incorporated.
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#else // !UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) {
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
const uint8_t * data = (const uint8_t *)key;
uint32_t h = seed ^ len;
uint8_t align = (uintptr_t)data & 3;
if(align && (len >= 4)) {
// Pre-load the temp registers
uint32_t t = 0, d = 0;
switch(align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
}
t <<= (8 * align);
data += 4-align;
len -= 4-align;
int32_t sl = 8 * (4-align);
int32_t sr = 8 * align;
// Mix
while(len >= 4) {
d = *(uint32_t *)data;
t = (t >> sr) | (d << sl);
uint32_t k = t;
MIX(h,k,m);
t = d;
data += 4;
len -= 4;
}
// Handle leftover data in temp registers
d = 0;
if(len >= align) {
switch(align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
}
uint32_t k = (t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
} else {
switch(len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl); h *= m;
}
}
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else {
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
MIX(h,k,m);
data += 4;
len -= 4;
}
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
}
#undef MIX
#endif // UPB_UNALIGNED_READS_OK
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include <errno.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
bool upb_dumptostderr(void *closure, const upb_status* status) {
UPB_UNUSED(closure);
fprintf(stderr, "%s\n", upb_status_errmsg(status));
return false;
}
// Guarantee null-termination and provide ellipsis truncation.
// It may be tempting to "optimize" this by initializing these final
// four bytes up-front and then being careful never to overwrite them,
// this is safer and simpler.
static void nullz(upb_status *status) {
const char *ellipsis = "...";
size_t len = strlen(ellipsis);
assert(sizeof(status->msg) > len);
memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len);
}
void upb_status_clear(upb_status *status) {
if (!status) return;
status->ok_ = true;
status->code_ = 0;
status->msg[0] = '\0';
}
bool upb_ok(const upb_status *status) { return status->ok_; }
upb_errorspace *upb_status_errspace(const upb_status *status) {
return status->error_space_;
}
int upb_status_errcode(const upb_status *status) { return status->code_; }
const char *upb_status_errmsg(const upb_status *status) { return status->msg; }
void upb_status_seterrmsg(upb_status *status, const char *msg) {
if (!status) return;
status->ok_ = false;
strncpy(status->msg, msg, sizeof(status->msg));
nullz(status);
}
void upb_status_seterrf(upb_status *status, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
upb_status_vseterrf(status, fmt, args);
va_end(args);
}
void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) {
if (!status) return;
status->ok_ = false;
vsnprintf(status->msg, sizeof(status->msg), fmt, args);
nullz(status);
}
void upb_status_seterrcode(upb_status *status, upb_errorspace *space,
int code) {
if (!status) return;
status->ok_ = false;
status->error_space_ = space;
status->code_ = code;
space->set_message(status, code);
}
void upb_status_copy(upb_status *to, const upb_status *from) {
if (!to) return;
*to = *from;
}
// This file was generated by upbc (the upb compiler).
// Do not edit -- your changes will be discarded when the file is
// regenerated.
static const upb_msgdef msgs[20];
static const upb_fielddef fields[81];
static const upb_enumdef enums[4];
static const upb_tabent strentries[236];
static const upb_tabent intentries[14];
static const _upb_value arrays[232];
#ifdef UPB_DEBUG_REFS
static upb_inttable reftables[212];
#endif
static const upb_msgdef msgs[20] = {
UPB_MSGDEF_INIT("google.protobuf.DescriptorProto", 27, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[0], 8, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[0]),&reftables[0], &reftables[1]),
UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ExtensionRange", 4, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[8], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[16]),&reftables[2], &reftables[3]),
UPB_MSGDEF_INIT("google.protobuf.EnumDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[11], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[20]),&reftables[4], &reftables[5]),
UPB_MSGDEF_INIT("google.protobuf.EnumOptions", 7, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[0], &arrays[15], 8, 1), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[24]),&reftables[6], &reftables[7]),
UPB_MSGDEF_INIT("google.protobuf.EnumValueDescriptorProto", 8, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[23], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[28]),&reftables[8], &reftables[9]),
UPB_MSGDEF_INIT("google.protobuf.EnumValueOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[2], &arrays[27], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[32]),&reftables[10], &reftables[11]),
UPB_MSGDEF_INIT("google.protobuf.FieldDescriptorProto", 19, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[31], 9, 8), UPB_STRTABLE_INIT(8, 15, UPB_CTYPE_PTR, 4, &strentries[36]),&reftables[12], &reftables[13]),
UPB_MSGDEF_INIT("google.protobuf.FieldOptions", 14, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[4], &arrays[40], 32, 6), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[52]),&reftables[14], &reftables[15]),
UPB_MSGDEF_INIT("google.protobuf.FileDescriptorProto", 39, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[72], 12, 11), UPB_STRTABLE_INIT(11, 15, UPB_CTYPE_PTR, 4, &strentries[68]),&reftables[16], &reftables[17]),
UPB_MSGDEF_INIT("google.protobuf.FileDescriptorSet", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[84], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[84]),&reftables[18], &reftables[19]),
UPB_MSGDEF_INIT("google.protobuf.FileOptions", 21, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[6], &arrays[86], 64, 9), UPB_STRTABLE_INIT(10, 15, UPB_CTYPE_PTR, 4, &strentries[88]),&reftables[20], &reftables[21]),
UPB_MSGDEF_INIT("google.protobuf.MessageOptions", 8, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[8], &arrays[150], 16, 2), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[104]),&reftables[22], &reftables[23]),
UPB_MSGDEF_INIT("google.protobuf.MethodDescriptorProto", 13, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[166], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[108]),&reftables[24], &reftables[25]),
UPB_MSGDEF_INIT("google.protobuf.MethodOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[10], &arrays[171], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[116]),&reftables[26], &reftables[27]),
UPB_MSGDEF_INIT("google.protobuf.ServiceDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[175], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[120]),&reftables[28], &reftables[29]),
UPB_MSGDEF_INIT("google.protobuf.ServiceOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[12], &arrays[179], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[124]),&reftables[30], &reftables[31]),
UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[183], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[128]),&reftables[32], &reftables[33]),
UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo.Location", 14, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[185], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[132]),&reftables[34], &reftables[35]),
UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption", 18, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[190], 9, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[140]),&reftables[36], &reftables[37]),
UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption.NamePart", 6, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[199], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[156]),&reftables[38], &reftables[39]),
};
static const upb_fielddef fields[81] = {
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "aggregate_value", 8, &msgs[18], NULL, 15, 6, {0},&reftables[40], &reftables[41]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "allow_alias", 2, &msgs[3], NULL, 6, 1, {0},&reftables[42], &reftables[43]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "cc_generic_services", 16, &msgs[10], NULL, 17, 6, {0},&reftables[44], &reftables[45]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "ctype", 1, &msgs[7], UPB_UPCAST(&enums[2]), 6, 1, {0},&reftables[46], &reftables[47]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "default_value", 7, &msgs[6], NULL, 16, 7, {0},&reftables[48], &reftables[49]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "dependency", 3, &msgs[8], NULL, 30, 8, {0},&reftables[50], &reftables[51]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[7], NULL, 8, 3, {0},&reftables[52], &reftables[53]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_DOUBLE, 0, false, false, false, false, "double_value", 6, &msgs[18], NULL, 11, 4, {0},&reftables[54], &reftables[55]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "end", 2, &msgs[1], NULL, 3, 1, {0},&reftables[56], &reftables[57]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 4, &msgs[0], UPB_UPCAST(&msgs[2]), 16, 2, {0},&reftables[58], &reftables[59]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 5, &msgs[8], UPB_UPCAST(&msgs[2]), 13, 1, {0},&reftables[60], &reftables[61]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "experimental_map_key", 9, &msgs[7], NULL, 10, 5, {0},&reftables[62], &reftables[63]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "extendee", 2, &msgs[6], NULL, 7, 2, {0},&reftables[64], &reftables[65]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 7, &msgs[8], UPB_UPCAST(&msgs[6]), 19, 3, {0},&reftables[66], &reftables[67]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 6, &msgs[0], UPB_UPCAST(&msgs[6]), 22, 4, {0},&reftables[68], &reftables[69]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension_range", 5, &msgs[0], UPB_UPCAST(&msgs[1]), 19, 3, {0},&reftables[70], &reftables[71]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "field", 2, &msgs[0], UPB_UPCAST(&msgs[6]), 10, 0, {0},&reftables[72], &reftables[73]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "file", 1, &msgs[9], UPB_UPCAST(&msgs[8]), 5, 0, {0},&reftables[74], &reftables[75]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "go_package", 11, &msgs[10], NULL, 14, 5, {0},&reftables[76], &reftables[77]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "identifier_value", 3, &msgs[18], NULL, 6, 1, {0},&reftables[78], &reftables[79]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "input_type", 2, &msgs[12], NULL, 7, 2, {0},&reftables[80], &reftables[81]),
UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_BOOL, 0, false, false, false, false, "is_extension", 2, &msgs[19], NULL, 5, 1, {0},&reftables[82], &reftables[83]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generate_equals_and_hash", 20, &msgs[10], NULL, 20, 9, {0},&reftables[84], &reftables[85]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generic_services", 17, &msgs[10], NULL, 18, 7, {0},&reftables[86], &reftables[87]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_multiple_files", 10, &msgs[10], NULL, 13, 4, {0},&reftables[88], &reftables[89]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_outer_classname", 8, &msgs[10], NULL, 9, 2, {0},&reftables[90], &reftables[91]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_package", 1, &msgs[10], NULL, 6, 1, {0},&reftables[92], &reftables[93]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "label", 4, &msgs[6], UPB_UPCAST(&enums[0]), 11, 4, {0},&reftables[94], &reftables[95]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "lazy", 5, &msgs[7], NULL, 9, 4, {0},&reftables[96], &reftables[97]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "leading_comments", 3, &msgs[17], NULL, 8, 2, {0},&reftables[98], &reftables[99]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "location", 1, &msgs[16], UPB_UPCAST(&msgs[17]), 5, 0, {0},&reftables[100], &reftables[101]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "message_set_wire_format", 1, &msgs[11], NULL, 6, 1, {0},&reftables[102], &reftables[103]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "message_type", 4, &msgs[8], UPB_UPCAST(&msgs[0]), 10, 0, {0},&reftables[104], &reftables[105]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "method", 2, &msgs[14], UPB_UPCAST(&msgs[12]), 6, 0, {0},&reftables[106], &reftables[107]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[8], NULL, 22, 6, {0},&reftables[108], &reftables[109]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[14], NULL, 8, 2, {0},&reftables[110], &reftables[111]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "name", 2, &msgs[18], UPB_UPCAST(&msgs[19]), 5, 0, {0},&reftables[112], &reftables[113]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[4], NULL, 4, 1, {0},&reftables[114], &reftables[115]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[0], NULL, 24, 6, {0},&reftables[116], &reftables[117]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[12], NULL, 4, 1, {0},&reftables[118], &reftables[119]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[2], NULL, 8, 2, {0},&reftables[120], &reftables[121]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[6], NULL, 4, 1, {0},&reftables[122], &reftables[123]),
UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_STRING, 0, false, false, false, false, "name_part", 1, &msgs[19], NULL, 2, 0, {0},&reftables[124], &reftables[125]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT64, UPB_INTFMT_VARIABLE, false, false, false, false, "negative_int_value", 5, &msgs[18], NULL, 10, 3, {0},&reftables[126], &reftables[127]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "nested_type", 3, &msgs[0], UPB_UPCAST(&msgs[0]), 13, 1, {0},&reftables[128], &reftables[129]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "no_standard_descriptor_accessor", 2, &msgs[11], NULL, 7, 2, {0},&reftables[130], &reftables[131]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 3, &msgs[6], NULL, 10, 3, {0},&reftables[132], &reftables[133]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 2, &msgs[4], NULL, 7, 2, {0},&reftables[134], &reftables[135]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "optimize_for", 9, &msgs[10], UPB_UPCAST(&enums[3]), 12, 3, {0},&reftables[136], &reftables[137]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 7, &msgs[0], UPB_UPCAST(&msgs[11]), 23, 5, {0},&reftables[138], &reftables[139]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[2], UPB_UPCAST(&msgs[3]), 7, 1, {0},&reftables[140], &reftables[141]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[6], UPB_UPCAST(&msgs[7]), 3, 0, {0},&reftables[142], &reftables[143]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[4], UPB_UPCAST(&msgs[5]), 3, 0, {0},&reftables[144], &reftables[145]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[8], UPB_UPCAST(&msgs[10]), 20, 4, {0},&reftables[146], &reftables[147]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[14], UPB_UPCAST(&msgs[15]), 7, 1, {0},&reftables[148], &reftables[149]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 4, &msgs[12], UPB_UPCAST(&msgs[13]), 3, 0, {0},&reftables[150], &reftables[151]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "output_type", 3, &msgs[12], NULL, 10, 3, {0},&reftables[152], &reftables[153]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "package", 2, &msgs[8], NULL, 25, 7, {0},&reftables[154], &reftables[155]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "packed", 2, &msgs[7], NULL, 7, 2, {0},&reftables[156], &reftables[157]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "path", 1, &msgs[17], NULL, 4, 0, {0},&reftables[158], &reftables[159]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_UINT64, UPB_INTFMT_VARIABLE, false, false, false, false, "positive_int_value", 4, &msgs[18], NULL, 9, 2, {0},&reftables[160], &reftables[161]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "public_dependency", 10, &msgs[8], NULL, 35, 9, {0},&reftables[162], &reftables[163]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "py_generic_services", 18, &msgs[10], NULL, 19, 8, {0},&reftables[164], &reftables[165]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "service", 6, &msgs[8], UPB_UPCAST(&msgs[14]), 16, 2, {0},&reftables[166], &reftables[167]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "source_code_info", 9, &msgs[8], UPB_UPCAST(&msgs[16]), 21, 5, {0},&reftables[168], &reftables[169]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "span", 2, &msgs[17], NULL, 7, 1, {0},&reftables[170], &reftables[171]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "start", 1, &msgs[1], NULL, 2, 0, {0},&reftables[172], &reftables[173]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BYTES, 0, false, false, false, false, "string_value", 7, &msgs[18], NULL, 12, 5, {0},&reftables[174], &reftables[175]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "trailing_comments", 4, &msgs[17], NULL, 11, 3, {0},&reftables[176], &reftables[177]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "type", 5, &msgs[6], UPB_UPCAST(&enums[1]), 12, 5, {0},&reftables[178], &reftables[179]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "type_name", 6, &msgs[6], NULL, 13, 6, {0},&reftables[180], &reftables[181]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[5], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[182], &reftables[183]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[15], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[184], &reftables[185]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[3], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[186], &reftables[187]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[13], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[188], &reftables[189]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[10], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[190], &reftables[191]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[11], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[192], &reftables[193]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[7], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[194], &reftables[195]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "value", 2, &msgs[2], UPB_UPCAST(&msgs[4]), 6, 0, {0},&reftables[196], &reftables[197]),
UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "weak", 10, &msgs[7], NULL, 13, 6, {0},&reftables[198], &reftables[199]),
UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "weak_dependency", 11, &msgs[8], NULL, 38, 10, {0},&reftables[200], &reftables[201]),
};
static const upb_enumdef enums[4] = {
UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Label", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[160]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[202], 4, 3), 0, &reftables[202], &reftables[203]),
UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Type", UPB_STRTABLE_INIT(18, 31, UPB_CTYPE_INT32, 5, &strentries[164]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[206], 19, 18), 0, &reftables[204], &reftables[205]),
UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.CType", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[196]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[225], 3, 3), 0, &reftables[206], &reftables[207]),
UPB_ENUMDEF_INIT("google.protobuf.FileOptions.OptimizeMode", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[200]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[228], 4, 3), 0, &reftables[208], &reftables[209]),
};
static const upb_tabent strentries[236] = {
{UPB_TABKEY_STR("extension"), UPB_VALUE_INIT_CONSTPTR(&fields[14]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[38]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("field"), UPB_VALUE_INIT_CONSTPTR(&fields[16]), NULL},
{UPB_TABKEY_STR("extension_range"), UPB_VALUE_INIT_CONSTPTR(&fields[15]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("nested_type"), UPB_VALUE_INIT_CONSTPTR(&fields[44]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[49]), NULL},
{UPB_TABKEY_STR("enum_type"), UPB_VALUE_INIT_CONSTPTR(&fields[9]), &strentries[14]},
{UPB_TABKEY_STR("start"), UPB_VALUE_INIT_CONSTPTR(&fields[66]), NULL},
{UPB_TABKEY_STR("end"), UPB_VALUE_INIT_CONSTPTR(&fields[8]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("value"), UPB_VALUE_INIT_CONSTPTR(&fields[78]), NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[50]), NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[40]), &strentries[22]},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[73]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("allow_alias"), UPB_VALUE_INIT_CONSTPTR(&fields[1]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("number"), UPB_VALUE_INIT_CONSTPTR(&fields[47]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[52]), NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[37]), &strentries[30]},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[71]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("label"), UPB_VALUE_INIT_CONSTPTR(&fields[27]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[41]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("number"), UPB_VALUE_INIT_CONSTPTR(&fields[46]), &strentries[49]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("type_name"), UPB_VALUE_INIT_CONSTPTR(&fields[70]), NULL},
{UPB_TABKEY_STR("extendee"), UPB_VALUE_INIT_CONSTPTR(&fields[12]), NULL},
{UPB_TABKEY_STR("type"), UPB_VALUE_INIT_CONSTPTR(&fields[69]), &strentries[48]},
{UPB_TABKEY_STR("default_value"), UPB_VALUE_INIT_CONSTPTR(&fields[4]), NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[51]), NULL},
{UPB_TABKEY_STR("experimental_map_key"), UPB_VALUE_INIT_CONSTPTR(&fields[11]), &strentries[67]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("weak"), UPB_VALUE_INIT_CONSTPTR(&fields[79]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("packed"), UPB_VALUE_INIT_CONSTPTR(&fields[58]), NULL},
{UPB_TABKEY_STR("lazy"), UPB_VALUE_INIT_CONSTPTR(&fields[28]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("ctype"), UPB_VALUE_INIT_CONSTPTR(&fields[3]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("deprecated"), UPB_VALUE_INIT_CONSTPTR(&fields[6]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[77]), NULL},
{UPB_TABKEY_STR("extension"), UPB_VALUE_INIT_CONSTPTR(&fields[13]), NULL},
{UPB_TABKEY_STR("weak_dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[80]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[34]), NULL},
{UPB_TABKEY_STR("service"), UPB_VALUE_INIT_CONSTPTR(&fields[63]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("source_code_info"), UPB_VALUE_INIT_CONSTPTR(&fields[64]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[5]), NULL},
{UPB_TABKEY_STR("message_type"), UPB_VALUE_INIT_CONSTPTR(&fields[32]), NULL},
{UPB_TABKEY_STR("package"), UPB_VALUE_INIT_CONSTPTR(&fields[57]), NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[53]), &strentries[82]},
{UPB_TABKEY_STR("enum_type"), UPB_VALUE_INIT_CONSTPTR(&fields[10]), NULL},
{UPB_TABKEY_STR("public_dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[61]), &strentries[81]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("file"), UPB_VALUE_INIT_CONSTPTR(&fields[17]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[75]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("cc_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[2]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("java_multiple_files"), UPB_VALUE_INIT_CONSTPTR(&fields[24]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("java_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[23]), &strentries[102]},
{UPB_TABKEY_STR("java_generate_equals_and_hash"), UPB_VALUE_INIT_CONSTPTR(&fields[22]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("go_package"), UPB_VALUE_INIT_CONSTPTR(&fields[18]), NULL},
{UPB_TABKEY_STR("java_package"), UPB_VALUE_INIT_CONSTPTR(&fields[26]), NULL},
{UPB_TABKEY_STR("optimize_for"), UPB_VALUE_INIT_CONSTPTR(&fields[48]), NULL},
{UPB_TABKEY_STR("py_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[62]), NULL},
{UPB_TABKEY_STR("java_outer_classname"), UPB_VALUE_INIT_CONSTPTR(&fields[25]), NULL},
{UPB_TABKEY_STR("message_set_wire_format"), UPB_VALUE_INIT_CONSTPTR(&fields[31]), &strentries[106]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[76]), NULL},
{UPB_TABKEY_STR("no_standard_descriptor_accessor"), UPB_VALUE_INIT_CONSTPTR(&fields[45]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[39]), NULL},
{UPB_TABKEY_STR("input_type"), UPB_VALUE_INIT_CONSTPTR(&fields[20]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("output_type"), UPB_VALUE_INIT_CONSTPTR(&fields[56]), NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[55]), NULL},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[74]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[54]), &strentries[122]},
{UPB_TABKEY_STR("method"), UPB_VALUE_INIT_CONSTPTR(&fields[33]), NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[35]), &strentries[121]},
{UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[72]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("location"), UPB_VALUE_INIT_CONSTPTR(&fields[30]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("span"), UPB_VALUE_INIT_CONSTPTR(&fields[65]), &strentries[139]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("trailing_comments"), UPB_VALUE_INIT_CONSTPTR(&fields[68]), NULL},
{UPB_TABKEY_STR("leading_comments"), UPB_VALUE_INIT_CONSTPTR(&fields[29]), &strentries[137]},
{UPB_TABKEY_STR("path"), UPB_VALUE_INIT_CONSTPTR(&fields[59]), NULL},
{UPB_TABKEY_STR("double_value"), UPB_VALUE_INIT_CONSTPTR(&fields[7]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[36]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("negative_int_value"), UPB_VALUE_INIT_CONSTPTR(&fields[43]), NULL},
{UPB_TABKEY_STR("aggregate_value"), UPB_VALUE_INIT_CONSTPTR(&fields[0]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("positive_int_value"), UPB_VALUE_INIT_CONSTPTR(&fields[60]), NULL},
{UPB_TABKEY_STR("identifier_value"), UPB_VALUE_INIT_CONSTPTR(&fields[19]), NULL},
{UPB_TABKEY_STR("string_value"), UPB_VALUE_INIT_CONSTPTR(&fields[67]), &strentries[154]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("is_extension"), UPB_VALUE_INIT_CONSTPTR(&fields[21]), NULL},
{UPB_TABKEY_STR("name_part"), UPB_VALUE_INIT_CONSTPTR(&fields[42]), NULL},
{UPB_TABKEY_STR("LABEL_REQUIRED"), UPB_VALUE_INIT_INT32(2), &strentries[162]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("LABEL_REPEATED"), UPB_VALUE_INIT_INT32(3), NULL},
{UPB_TABKEY_STR("LABEL_OPTIONAL"), UPB_VALUE_INIT_INT32(1), NULL},
{UPB_TABKEY_STR("TYPE_FIXED64"), UPB_VALUE_INIT_INT32(6), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_STRING"), UPB_VALUE_INIT_INT32(9), NULL},
{UPB_TABKEY_STR("TYPE_FLOAT"), UPB_VALUE_INIT_INT32(2), &strentries[193]},
{UPB_TABKEY_STR("TYPE_DOUBLE"), UPB_VALUE_INIT_INT32(1), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_INT32"), UPB_VALUE_INIT_INT32(5), NULL},
{UPB_TABKEY_STR("TYPE_SFIXED32"), UPB_VALUE_INIT_INT32(15), NULL},
{UPB_TABKEY_STR("TYPE_FIXED32"), UPB_VALUE_INIT_INT32(7), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_MESSAGE"), UPB_VALUE_INIT_INT32(11), &strentries[194]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_INT64"), UPB_VALUE_INIT_INT32(3), &strentries[191]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_ENUM"), UPB_VALUE_INIT_INT32(14), NULL},
{UPB_TABKEY_STR("TYPE_UINT32"), UPB_VALUE_INIT_INT32(13), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_UINT64"), UPB_VALUE_INIT_INT32(4), &strentries[190]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("TYPE_SFIXED64"), UPB_VALUE_INIT_INT32(16), NULL},
{UPB_TABKEY_STR("TYPE_BYTES"), UPB_VALUE_INIT_INT32(12), NULL},
{UPB_TABKEY_STR("TYPE_SINT64"), UPB_VALUE_INIT_INT32(18), NULL},
{UPB_TABKEY_STR("TYPE_BOOL"), UPB_VALUE_INIT_INT32(8), NULL},
{UPB_TABKEY_STR("TYPE_GROUP"), UPB_VALUE_INIT_INT32(10), NULL},
{UPB_TABKEY_STR("TYPE_SINT32"), UPB_VALUE_INIT_INT32(17), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("CORD"), UPB_VALUE_INIT_INT32(1), NULL},
{UPB_TABKEY_STR("STRING"), UPB_VALUE_INIT_INT32(0), &strentries[197]},
{UPB_TABKEY_STR("STRING_PIECE"), UPB_VALUE_INIT_INT32(2), NULL},
{UPB_TABKEY_STR("CODE_SIZE"), UPB_VALUE_INIT_INT32(2), NULL},
{UPB_TABKEY_STR("SPEED"), UPB_VALUE_INIT_INT32(1), &strentries[203]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("LITE_RUNTIME"), UPB_VALUE_INIT_INT32(3), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("google.protobuf.SourceCodeInfo.Location"), UPB_VALUE_INIT_CONSTPTR(&msgs[17]), NULL},
{UPB_TABKEY_STR("google.protobuf.UninterpretedOption"), UPB_VALUE_INIT_CONSTPTR(&msgs[18]), NULL},
{UPB_TABKEY_STR("google.protobuf.FileDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[8]), NULL},
{UPB_TABKEY_STR("google.protobuf.MethodDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[12]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("google.protobuf.EnumValueOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[5]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("google.protobuf.DescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[0]), &strentries[228]},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("google.protobuf.SourceCodeInfo"), UPB_VALUE_INIT_CONSTPTR(&msgs[16]), NULL},
{UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto.Type"), UPB_VALUE_INIT_CONSTPTR(&enums[1]), NULL},
{UPB_TABKEY_STR("google.protobuf.DescriptorProto.ExtensionRange"), UPB_VALUE_INIT_CONSTPTR(&msgs[1]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_STR("google.protobuf.EnumValueDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[4]), NULL},
{UPB_TABKEY_STR("google.protobuf.FieldOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[7]), NULL},
{UPB_TABKEY_STR("google.protobuf.FileOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[10]), NULL},
{UPB_TABKEY_STR("google.protobuf.EnumDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[2]), &strentries[233]},
{UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto.Label"), UPB_VALUE_INIT_CONSTPTR(&enums[0]), NULL},
{UPB_TABKEY_STR("google.protobuf.ServiceDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[14]), NULL},
{UPB_TABKEY_STR("google.protobuf.FieldOptions.CType"), UPB_VALUE_INIT_CONSTPTR(&enums[2]), &strentries[229]},
{UPB_TABKEY_STR("google.protobuf.FileDescriptorSet"), UPB_VALUE_INIT_CONSTPTR(&msgs[9]), &strentries[235]},
{UPB_TABKEY_STR("google.protobuf.EnumOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[3]), NULL},
{UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[6]), NULL},
{UPB_TABKEY_STR("google.protobuf.FileOptions.OptimizeMode"), UPB_VALUE_INIT_CONSTPTR(&enums[3]), &strentries[221]},
{UPB_TABKEY_STR("google.protobuf.ServiceOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[15]), NULL},
{UPB_TABKEY_STR("google.protobuf.MessageOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[11]), NULL},
{UPB_TABKEY_STR("google.protobuf.MethodOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[13]), &strentries[226]},
{UPB_TABKEY_STR("google.protobuf.UninterpretedOption.NamePart"), UPB_VALUE_INIT_CONSTPTR(&msgs[19]), NULL},
};
static const upb_tabent intentries[14] = {
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[73]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[71]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[77]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[75]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[76]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[74]), NULL},
{UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL},
{UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[72]), NULL},
};
static const _upb_value arrays[232] = {
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[38]),
UPB_VALUE_INIT_CONSTPTR(&fields[16]),
UPB_VALUE_INIT_CONSTPTR(&fields[44]),
UPB_VALUE_INIT_CONSTPTR(&fields[9]),
UPB_VALUE_INIT_CONSTPTR(&fields[15]),
UPB_VALUE_INIT_CONSTPTR(&fields[14]),
UPB_VALUE_INIT_CONSTPTR(&fields[49]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[66]),
UPB_VALUE_INIT_CONSTPTR(&fields[8]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[40]),
UPB_VALUE_INIT_CONSTPTR(&fields[78]),
UPB_VALUE_INIT_CONSTPTR(&fields[50]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[1]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[37]),
UPB_VALUE_INIT_CONSTPTR(&fields[47]),
UPB_VALUE_INIT_CONSTPTR(&fields[52]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[41]),
UPB_VALUE_INIT_CONSTPTR(&fields[12]),
UPB_VALUE_INIT_CONSTPTR(&fields[46]),
UPB_VALUE_INIT_CONSTPTR(&fields[27]),
UPB_VALUE_INIT_CONSTPTR(&fields[69]),
UPB_VALUE_INIT_CONSTPTR(&fields[70]),
UPB_VALUE_INIT_CONSTPTR(&fields[4]),
UPB_VALUE_INIT_CONSTPTR(&fields[51]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[3]),
UPB_VALUE_INIT_CONSTPTR(&fields[58]),
UPB_VALUE_INIT_CONSTPTR(&fields[6]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[28]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[11]),
UPB_VALUE_INIT_CONSTPTR(&fields[79]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[34]),
UPB_VALUE_INIT_CONSTPTR(&fields[57]),
UPB_VALUE_INIT_CONSTPTR(&fields[5]),
UPB_VALUE_INIT_CONSTPTR(&fields[32]),
UPB_VALUE_INIT_CONSTPTR(&fields[10]),
UPB_VALUE_INIT_CONSTPTR(&fields[63]),
UPB_VALUE_INIT_CONSTPTR(&fields[13]),
UPB_VALUE_INIT_CONSTPTR(&fields[53]),
UPB_VALUE_INIT_CONSTPTR(&fields[64]),
UPB_VALUE_INIT_CONSTPTR(&fields[61]),
UPB_VALUE_INIT_CONSTPTR(&fields[80]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[17]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[26]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[25]),
UPB_VALUE_INIT_CONSTPTR(&fields[48]),
UPB_VALUE_INIT_CONSTPTR(&fields[24]),
UPB_VALUE_INIT_CONSTPTR(&fields[18]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[2]),
UPB_VALUE_INIT_CONSTPTR(&fields[23]),
UPB_VALUE_INIT_CONSTPTR(&fields[62]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[22]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[31]),
UPB_VALUE_INIT_CONSTPTR(&fields[45]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[39]),
UPB_VALUE_INIT_CONSTPTR(&fields[20]),
UPB_VALUE_INIT_CONSTPTR(&fields[56]),
UPB_VALUE_INIT_CONSTPTR(&fields[55]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[35]),
UPB_VALUE_INIT_CONSTPTR(&fields[33]),
UPB_VALUE_INIT_CONSTPTR(&fields[54]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[30]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[59]),
UPB_VALUE_INIT_CONSTPTR(&fields[65]),
UPB_VALUE_INIT_CONSTPTR(&fields[29]),
UPB_VALUE_INIT_CONSTPTR(&fields[68]),
UPB_ARRAY_EMPTYENT,
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[36]),
UPB_VALUE_INIT_CONSTPTR(&fields[19]),
UPB_VALUE_INIT_CONSTPTR(&fields[60]),
UPB_VALUE_INIT_CONSTPTR(&fields[43]),
UPB_VALUE_INIT_CONSTPTR(&fields[7]),
UPB_VALUE_INIT_CONSTPTR(&fields[67]),
UPB_VALUE_INIT_CONSTPTR(&fields[0]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR(&fields[42]),
UPB_VALUE_INIT_CONSTPTR(&fields[21]),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR("LABEL_OPTIONAL"),
UPB_VALUE_INIT_CONSTPTR("LABEL_REQUIRED"),
UPB_VALUE_INIT_CONSTPTR("LABEL_REPEATED"),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR("TYPE_DOUBLE"),
UPB_VALUE_INIT_CONSTPTR("TYPE_FLOAT"),
UPB_VALUE_INIT_CONSTPTR("TYPE_INT64"),
UPB_VALUE_INIT_CONSTPTR("TYPE_UINT64"),
UPB_VALUE_INIT_CONSTPTR("TYPE_INT32"),
UPB_VALUE_INIT_CONSTPTR("TYPE_FIXED64"),
UPB_VALUE_INIT_CONSTPTR("TYPE_FIXED32"),
UPB_VALUE_INIT_CONSTPTR("TYPE_BOOL"),
UPB_VALUE_INIT_CONSTPTR("TYPE_STRING"),
UPB_VALUE_INIT_CONSTPTR("TYPE_GROUP"),
UPB_VALUE_INIT_CONSTPTR("TYPE_MESSAGE"),
UPB_VALUE_INIT_CONSTPTR("TYPE_BYTES"),
UPB_VALUE_INIT_CONSTPTR("TYPE_UINT32"),
UPB_VALUE_INIT_CONSTPTR("TYPE_ENUM"),
UPB_VALUE_INIT_CONSTPTR("TYPE_SFIXED32"),
UPB_VALUE_INIT_CONSTPTR("TYPE_SFIXED64"),
UPB_VALUE_INIT_CONSTPTR("TYPE_SINT32"),
UPB_VALUE_INIT_CONSTPTR("TYPE_SINT64"),
UPB_VALUE_INIT_CONSTPTR("STRING"),
UPB_VALUE_INIT_CONSTPTR("CORD"),
UPB_VALUE_INIT_CONSTPTR("STRING_PIECE"),
UPB_ARRAY_EMPTYENT,
UPB_VALUE_INIT_CONSTPTR("SPEED"),
UPB_VALUE_INIT_CONSTPTR("CODE_SIZE"),
UPB_VALUE_INIT_CONSTPTR("LITE_RUNTIME"),
};
static const upb_symtab symtab = UPB_SYMTAB_INIT(UPB_STRTABLE_INIT(24, 31, UPB_CTYPE_PTR, 5, &strentries[204]), &reftables[210], &reftables[211]);
const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner) {
upb_symtab_ref(&symtab, owner);
return &symtab;
}
#ifdef UPB_DEBUG_REFS
static upb_inttable reftables[212] = {
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR),
};
#endif
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2008-2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* XXX: The routines in this file that consume a string do not currently
* support having the string span buffers. In the future, as upb_sink and
* its buffering/sharing functionality evolve there should be an easy and
* idiomatic way of correctly handling this case. For now, we accept this
* limitation since we currently only parse descriptors from single strings.
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
// upb_deflist is an internal-only dynamic array for storing a growing list of
// upb_defs.
typedef struct {
upb_def **defs;
size_t len;
size_t size;
bool owned;
} upb_deflist;
// We keep a stack of all the messages scopes we are currently in, as well as
// the top-level file scope. This is necessary to correctly qualify the
// definitions that are contained inside. "name" tracks the name of the
// message or package (a bare name -- not qualified by any enclosing scopes).
typedef struct {
char *name;
// Index of the first def that is under this scope. For msgdefs, the
// msgdef itself is at start-1.
int start;
} upb_descreader_frame;
// The maximum number of nested declarations that are allowed, ie.
// message Foo {
// message Bar {
// message Baz {
// }
// }
// }
//
// This is a resource limit that affects how big our runtime stack can grow.
// TODO: make this a runtime-settable property of the Reader instance.
#define UPB_MAX_MESSAGE_NESTING 64
struct upb_descreader {
upb_sink sink;
upb_deflist defs;
upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING];
int stack_len;
uint32_t number;
char *name;
bool saw_number;
bool saw_name;
char *default_string;
upb_fielddef *f;
};
static char *upb_strndup(const char *buf, size_t n) {
char *ret = malloc(n + 1);
if (!ret) return NULL;
memcpy(ret, buf, n);
ret[n] = '\0';
return ret;
}
// Returns a newly allocated string that joins input strings together, for
// example:
// join("Foo.Bar", "Baz") -> "Foo.Bar.Baz"
// join("", "Baz") -> "Baz"
// Caller owns a ref on the returned string.
static char *upb_join(const char *base, const char *name) {
if (!base || strlen(base) == 0) {
return upb_strdup(name);
} else {
char *ret = malloc(strlen(base) + strlen(name) + 2);
ret[0] = '\0';
strcat(ret, base);
strcat(ret, ".");
strcat(ret, name);
return ret;
}
}
/* upb_deflist ****************************************************************/
void upb_deflist_init(upb_deflist *l) {
l->size = 0;
l->defs = NULL;
l->len = 0;
l->owned = true;
}
void upb_deflist_uninit(upb_deflist *l) {
if (l->owned)
for(size_t i = 0; i < l->len; i++)
upb_def_unref(l->defs[i], l);
free(l->defs);
}
bool upb_deflist_push(upb_deflist *l, upb_def *d) {
if(++l->len >= l->size) {
size_t new_size = UPB_MAX(l->size, 4);
new_size *= 2;
l->defs = realloc(l->defs, new_size * sizeof(void *));
if (!l->defs) return false;
l->size = new_size;
}
l->defs[l->len - 1] = d;
return true;
}
void upb_deflist_donaterefs(upb_deflist *l, void *owner) {
assert(l->owned);
for (size_t i = 0; i < l->len; i++)
upb_def_donateref(l->defs[i], l, owner);
l->owned = false;
}
static upb_def *upb_deflist_last(upb_deflist *l) {
return l->defs[l->len-1];
}
// Qualify the defname for all defs starting with offset "start" with "str".
static void upb_deflist_qualify(upb_deflist *l, char *str, int32_t start) {
for (uint32_t i = start; i < l->len; i++) {
upb_def *def = l->defs[i];
char *name = upb_join(str, upb_def_fullname(def));
upb_def_setfullname(def, name, NULL);
free(name);
}
}
/* upb_descreader ************************************************************/
static upb_msgdef *upb_descreader_top(upb_descreader *r) {
assert(r->stack_len > 1);
int index = r->stack[r->stack_len-1].start - 1;
assert(index >= 0);
return upb_downcast_msgdef_mutable(r->defs.defs[index]);
}
static upb_def *upb_descreader_last(upb_descreader *r) {
return upb_deflist_last(&r->defs);
}
// Start/end handlers for FileDescriptorProto and DescriptorProto (the two
// entities that have names and can contain sub-definitions.
void upb_descreader_startcontainer(upb_descreader *r) {
upb_descreader_frame *f = &r->stack[r->stack_len++];
f->start = r->defs.len;
f->name = NULL;
}
void upb_descreader_endcontainer(upb_descreader *r) {
upb_descreader_frame *f = &r->stack[--r->stack_len];
upb_deflist_qualify(&r->defs, f->name, f->start);
free(f->name);
f->name = NULL;
}
void upb_descreader_setscopename(upb_descreader *r, char *str) {
upb_descreader_frame *f = &r->stack[r->stack_len-1];
free(f->name);
f->name = str;
}
// Handlers for google.protobuf.FileDescriptorProto.
static bool file_startmsg(void *r, const void *hd) {
UPB_UNUSED(hd);
upb_descreader_startcontainer(r);
return true;
}
static bool file_endmsg(void *closure, const void *hd, upb_status *status) {
UPB_UNUSED(hd);
UPB_UNUSED(status);
upb_descreader *r = closure;
upb_descreader_endcontainer(r);
return true;
}
static size_t file_onpackage(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// XXX: see comment at the top of the file.
upb_descreader_setscopename(r, upb_strndup(buf, n));
return n;
}
// Handlers for google.protobuf.EnumValueDescriptorProto.
static bool enumval_startmsg(void *closure, const void *hd) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
r->saw_number = false;
r->saw_name = false;
return true;
}
static size_t enumval_onname(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// XXX: see comment at the top of the file.
free(r->name);
r->name = upb_strndup(buf, n);
r->saw_name = true;
return n;
}
static bool enumval_onnumber(void *closure, const void *hd, int32_t val) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
r->number = val;
r->saw_number = true;
return true;
}
static bool enumval_endmsg(void *closure, const void *hd, upb_status *status) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
if(!r->saw_number || !r->saw_name) {
upb_status_seterrmsg(status, "Enum value missing name or number.");
return false;
}
upb_enumdef *e = upb_downcast_enumdef_mutable(upb_descreader_last(r));
upb_enumdef_addval(e, r->name, r->number, status);
free(r->name);
r->name = NULL;
return true;
}
// Handlers for google.protobuf.EnumDescriptorProto.
static bool enum_startmsg(void *closure, const void *hd) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_deflist_push(&r->defs, UPB_UPCAST(upb_enumdef_new(&r->defs)));
return true;
}
static bool enum_endmsg(void *closure, const void *hd, upb_status *status) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_enumdef *e = upb_downcast_enumdef_mutable(upb_descreader_last(r));
if (upb_def_fullname(upb_descreader_last(r)) == NULL) {
upb_status_seterrmsg(status, "Enum had no name.");
return false;
}
if (upb_enumdef_numvals(e) == 0) {
upb_status_seterrmsg(status, "Enum had no values.");
return false;
}
return true;
}
static size_t enum_onname(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// XXX: see comment at the top of the file.
char *fullname = upb_strndup(buf, n);
upb_def_setfullname(upb_descreader_last(r), fullname, NULL);
free(fullname);
return n;
}
// Handlers for google.protobuf.FieldDescriptorProto
static bool field_startmsg(void *closure, const void *hd) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
r->f = upb_fielddef_new(&r->defs);
free(r->default_string);
r->default_string = NULL;
// fielddefs default to packed, but descriptors default to non-packed.
upb_fielddef_setpacked(r->f, false);
return true;
}
// Converts the default value in string "str" into "d". Passes a ref on str.
// Returns true on success.
static bool parse_default(char *str, upb_fielddef *f) {
bool success = true;
char *end;
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32: {
long val = strtol(str, &end, 0);
if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || *end)
success = false;
else
upb_fielddef_setdefaultint32(f, val);
break;
}
case UPB_TYPE_INT64: {
long long val = strtoll(str, &end, 0);
if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || *end)
success = false;
else
upb_fielddef_setdefaultint64(f, val);
break;
}
case UPB_TYPE_UINT32: {
unsigned long val = strtoul(str, &end, 0);
if (val > UINT32_MAX || errno == ERANGE || *end)
success = false;
else
upb_fielddef_setdefaultuint32(f, val);
break;
}
case UPB_TYPE_UINT64: {
unsigned long long val = strtoull(str, &end, 0);
if (val > UINT64_MAX || errno == ERANGE || *end)
success = false;
else
upb_fielddef_setdefaultuint64(f, val);
break;
}
case UPB_TYPE_DOUBLE: {
double val = strtod(str, &end);
if (errno == ERANGE || *end)
success = false;
else
upb_fielddef_setdefaultdouble(f, val);
break;
}
case UPB_TYPE_FLOAT: {
float val = strtof(str, &end);
if (errno == ERANGE || *end)
success = false;
else
upb_fielddef_setdefaultfloat(f, val);
break;
}
case UPB_TYPE_BOOL: {
if (strcmp(str, "false") == 0)
upb_fielddef_setdefaultbool(f, false);
else if (strcmp(str, "true") == 0)
upb_fielddef_setdefaultbool(f, true);
else
success = false;
break;
}
default: abort();
}
return success;
}
static bool field_endmsg(void *closure, const void *hd, upb_status *status) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_fielddef *f = r->f;
// TODO: verify that all required fields were present.
assert(upb_fielddef_number(f) != 0);
assert(upb_fielddef_name(f) != NULL);
assert((upb_fielddef_subdefname(f) != NULL) == upb_fielddef_hassubdef(f));
if (r->default_string) {
if (upb_fielddef_issubmsg(f)) {
upb_status_seterrmsg(status, "Submessages cannot have defaults.");
return false;
}
if (upb_fielddef_isstring(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM) {
upb_fielddef_setdefaultcstr(f, r->default_string, NULL);
} else {
if (r->default_string && !parse_default(r->default_string, f)) {
// We don't worry too much about giving a great error message since the
// compiler should have ensured this was correct.
upb_status_seterrmsg(status, "Error converting default value.");
return false;
}
}
}
return true;
}
static bool field_onlazy(void *closure, const void *hd, bool val) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_fielddef_setlazy(r->f, val);
return true;
}
static bool field_onpacked(void *closure, const void *hd, bool val) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_fielddef_setpacked(r->f, val);
return true;
}
static bool field_ontype(void *closure, const void *hd, int32_t val) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_fielddef_setdescriptortype(r->f, val);
return true;
}
static bool field_onlabel(void *closure, const void *hd, int32_t val) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_fielddef_setlabel(r->f, val);
return true;
}
static bool field_onnumber(void *closure, const void *hd, int32_t val) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
bool ok = upb_fielddef_setnumber(r->f, val, NULL);
UPB_ASSERT_VAR(ok, ok);
return true;
}
static size_t field_onname(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// XXX: see comment at the top of the file.
char *name = upb_strndup(buf, n);
upb_fielddef_setname(r->f, name, NULL);
free(name);
return n;
}
static size_t field_ontypename(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// XXX: see comment at the top of the file.
char *name = upb_strndup(buf, n);
upb_fielddef_setsubdefname(r->f, name, NULL);
free(name);
return n;
}
static size_t field_onextendee(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// XXX: see comment at the top of the file.
char *name = upb_strndup(buf, n);
upb_fielddef_setcontainingtypename(r->f, name, NULL);
free(name);
return n;
}
static size_t field_ondefaultval(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
// Have to convert from string to the correct type, but we might not know the
// type yet, so we save it as a string until the end of the field.
// XXX: see comment at the top of the file.
free(r->default_string);
r->default_string = upb_strndup(buf, n);
return n;
}
// Handlers for google.protobuf.DescriptorProto (representing a message).
static bool msg_startmsg(void *closure, const void *hd) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_deflist_push(&r->defs, UPB_UPCAST(upb_msgdef_new(&r->defs)));
upb_descreader_startcontainer(r);
return true;
}
static bool msg_endmsg(void *closure, const void *hd, upb_status *status) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_msgdef *m = upb_descreader_top(r);
if(!upb_def_fullname(UPB_UPCAST(m))) {
upb_status_seterrmsg(status, "Encountered message with no name.");
return false;
}
upb_descreader_endcontainer(r);
return true;
}
static size_t msg_onname(void *closure, const void *hd, const char *buf,
size_t n, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_descreader *r = closure;
upb_msgdef *m = upb_descreader_top(r);
// XXX: see comment at the top of the file.
char *name = upb_strndup(buf, n);
upb_def_setfullname(UPB_UPCAST(m), name, NULL);
upb_descreader_setscopename(r, name); // Passes ownership of name.
return n;
}
static bool msg_onendfield(void *closure, const void *hd) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
upb_msgdef *m = upb_descreader_top(r);
upb_msgdef_addfield(m, r->f, &r->defs, NULL);
r->f = NULL;
return true;
}
static bool pushextension(void *closure, const void *hd) {
UPB_UNUSED(hd);
upb_descreader *r = closure;
assert(upb_fielddef_containingtypename(r->f));
upb_fielddef_setisextension(r->f, true);
upb_deflist_push(&r->defs, UPB_UPCAST(r->f));
r->f = NULL;
return true;
}
#define D(name) upbdefs_google_protobuf_ ## name(s)
static void reghandlers(const void *closure, upb_handlers *h) {
const upb_symtab *s = closure;
const upb_msgdef *m = upb_handlers_msgdef(h);
if (m == D(DescriptorProto)) {
upb_handlers_setstartmsg(h, &msg_startmsg, NULL);
upb_handlers_setendmsg(h, &msg_endmsg, NULL);
upb_handlers_setstring(h, D(DescriptorProto_name), &msg_onname, NULL);
upb_handlers_setendsubmsg(h, D(DescriptorProto_field), &msg_onendfield,
NULL);
upb_handlers_setendsubmsg(h, D(DescriptorProto_extension), &pushextension,
NULL);
} else if (m == D(FileDescriptorProto)) {
upb_handlers_setstartmsg(h, &file_startmsg, NULL);
upb_handlers_setendmsg(h, &file_endmsg, NULL);
upb_handlers_setstring(h, D(FileDescriptorProto_package), &file_onpackage,
NULL);
upb_handlers_setendsubmsg(h, D(FileDescriptorProto_extension), &pushextension,
NULL);
} else if (m == D(EnumValueDescriptorProto)) {
upb_handlers_setstartmsg(h, &enumval_startmsg, NULL);
upb_handlers_setendmsg(h, &enumval_endmsg, NULL);
upb_handlers_setstring(h, D(EnumValueDescriptorProto_name), &enumval_onname, NULL);
upb_handlers_setint32(h, D(EnumValueDescriptorProto_number), &enumval_onnumber,
NULL);
} else if (m == D(EnumDescriptorProto)) {
upb_handlers_setstartmsg(h, &enum_startmsg, NULL);
upb_handlers_setendmsg(h, &enum_endmsg, NULL);
upb_handlers_setstring(h, D(EnumDescriptorProto_name), &enum_onname, NULL);
} else if (m == D(FieldDescriptorProto)) {
upb_handlers_setstartmsg(h, &field_startmsg, NULL);
upb_handlers_setendmsg(h, &field_endmsg, NULL);
upb_handlers_setint32(h, D(FieldDescriptorProto_type), &field_ontype,
NULL);
upb_handlers_setint32(h, D(FieldDescriptorProto_label), &field_onlabel,
NULL);
upb_handlers_setint32(h, D(FieldDescriptorProto_number), &field_onnumber,
NULL);
upb_handlers_setstring(h, D(FieldDescriptorProto_name), &field_onname,
NULL);
upb_handlers_setstring(h, D(FieldDescriptorProto_type_name),
&field_ontypename, NULL);
upb_handlers_setstring(h, D(FieldDescriptorProto_extendee),
&field_onextendee, NULL);
upb_handlers_setstring(h, D(FieldDescriptorProto_default_value),
&field_ondefaultval, NULL);
} else if (m == D(FieldOptions)) {
upb_handlers_setbool(h, D(FieldOptions_lazy), &field_onlazy, NULL);
upb_handlers_setbool(h, D(FieldOptions_packed), &field_onpacked, NULL);
}
}
#undef D
void descreader_cleanup(void *_r) {
upb_descreader *r = _r;
free(r->name);
upb_deflist_uninit(&r->defs);
free(r->default_string);
while (r->stack_len > 0) {
upb_descreader_frame *f = &r->stack[--r->stack_len];
free(f->name);
}
}
/* Public API ****************************************************************/
upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h) {
upb_descreader *r = upb_env_malloc(e, sizeof(upb_descreader));
if (!r || !upb_env_addcleanup(e, descreader_cleanup, r)) {
return NULL;
}
upb_deflist_init(&r->defs);
upb_sink_reset(upb_descreader_input(r), h, r);
r->stack_len = 0;
r->name = NULL;
r->default_string = NULL;
return r;
}
upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n) {
*n = r->defs.len;
upb_deflist_donaterefs(&r->defs, owner);
return r->defs.defs;
}
upb_sink *upb_descreader_input(upb_descreader *r) {
return &r->sink;
}
const upb_handlers *upb_descreader_newhandlers(const void *owner) {
const upb_symtab *s = upbdefs_google_protobuf_descriptor(&s);
const upb_handlers *h = upb_handlers_newfrozen(
upbdefs_google_protobuf_FileDescriptorSet(s), owner, reghandlers, s);
upb_symtab_unref(s, &s);
return h;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2013 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Code to compile a upb::Handlers into bytecode for decoding a protobuf
* according to that specific schema and destination handlers.
*
* Compiling to bytecode is always the first step. If we are using the
* interpreted decoder we leave it as bytecode and interpret that. If we are
* using a JIT decoder we use a code generator to turn the bytecode into native
* code, LLVM IR, etc.
*
* Bytecode definition is in decoder.int.h.
*/
#include <stdarg.h>
#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif
#define MAXLABEL 5
#define EMPTYLABEL -1
/* mgroup *********************************************************************/
static void freegroup(upb_refcounted *r) {
mgroup *g = (mgroup*)r;
upb_inttable_uninit(&g->methods);
#ifdef UPB_USE_JIT_X64
upb_pbdecoder_freejit(g);
#endif
free(g->bytecode);
free(g);
}
static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const mgroup *g = (const mgroup*)r;
upb_inttable_iter i;
upb_inttable_begin(&i, &g->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
visit(r, UPB_UPCAST(method), closure);
}
}
mgroup *newgroup(const void *owner) {
mgroup *g = malloc(sizeof(*g));
static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup};
upb_refcounted_init(UPB_UPCAST(g), &vtbl, owner);
upb_inttable_init(&g->methods, UPB_CTYPE_PTR);
g->bytecode = NULL;
g->bytecode_end = NULL;
return g;
}
/* upb_pbdecodermethod ********************************************************/
static void freemethod(upb_refcounted *r) {
upb_pbdecodermethod *method = (upb_pbdecodermethod*)r;
if (method->dest_handlers_) {
upb_handlers_unref(method->dest_handlers_, method);
}
upb_inttable_uninit(&method->dispatch);
free(method);
}
static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit,
void *closure) {
const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r;
visit(r, m->group, closure);
}
static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers,
mgroup *group) {
static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod};
upb_pbdecodermethod *ret = malloc(sizeof(*ret));
upb_refcounted_init(UPB_UPCAST(ret), &vtbl, &ret);
upb_byteshandler_init(&ret->input_handler_);
// The method references the group and vice-versa, in a circular reference.
upb_ref2(ret, group);
upb_ref2(group, ret);
upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret));
upb_refcounted_unref(UPB_UPCAST(ret), &ret);
ret->group = UPB_UPCAST(group);
ret->dest_handlers_ = dest_handlers;
ret->is_native_ = false; // If we JIT, it will update this later.
upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64);
if (ret->dest_handlers_) {
upb_handlers_ref(ret->dest_handlers_, ret);
}
return ret;
}
void upb_pbdecodermethod_ref(const upb_pbdecodermethod *m, const void *owner) {
upb_refcounted_ref(UPB_UPCAST(m), owner);
}
void upb_pbdecodermethod_unref(const upb_pbdecodermethod *m,
const void *owner) {
upb_refcounted_unref(UPB_UPCAST(m), owner);
}
void upb_pbdecodermethod_donateref(const upb_pbdecodermethod *m,
const void *from, const void *to) {
upb_refcounted_donateref(UPB_UPCAST(m), from, to);
}
void upb_pbdecodermethod_checkref(const upb_pbdecodermethod *m,
const void *owner) {
upb_refcounted_checkref(UPB_UPCAST(m), owner);
}
const upb_handlers *upb_pbdecodermethod_desthandlers(
const upb_pbdecodermethod *m) {
return m->dest_handlers_;
}
const upb_byteshandler *upb_pbdecodermethod_inputhandler(
const upb_pbdecodermethod *m) {
return &m->input_handler_;
}
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) {
return m->is_native_;
}
const upb_pbdecodermethod *upb_pbdecodermethod_new(
const upb_pbdecodermethodopts *opts, const void *owner) {
upb_pbcodecache cache;
upb_pbcodecache_init(&cache);
const upb_pbdecodermethod *ret =
upb_pbcodecache_getdecodermethod(&cache, opts);
upb_pbdecodermethod_ref(ret, owner);
upb_pbcodecache_uninit(&cache);
return ret;
}
/* bytecode compiler **********************************************************/
// Data used only at compilation time.
typedef struct {
mgroup *group;
uint32_t *pc;
int fwd_labels[MAXLABEL];
int back_labels[MAXLABEL];
// For fields marked "lazy", parse them lazily or eagerly?
bool lazy;
} compiler;
static compiler *newcompiler(mgroup *group, bool lazy) {
compiler *ret = malloc(sizeof(*ret));
ret->group = group;
ret->lazy = lazy;
for (int i = 0; i < MAXLABEL; i++) {
ret->fwd_labels[i] = EMPTYLABEL;
ret->back_labels[i] = EMPTYLABEL;
}
return ret;
}
static void freecompiler(compiler *c) {
free(c);
}
const size_t ptr_words = sizeof(void*) / sizeof(uint32_t);
// How many words an instruction is.
static int instruction_len(uint32_t instr) {
switch (getop(instr)) {
case OP_SETDISPATCH: return 1 + ptr_words;
case OP_TAGN: return 3;
case OP_SETBIGGROUPNUM: return 2;
default: return 1;
}
}
bool op_has_longofs(int32_t instruction) {
switch (getop(instruction)) {
case OP_CALL:
case OP_BRANCH:
case OP_CHECKDELIM:
return true;
// The "tag" instructions only have 8 bytes available for the jump target,
// but that is ok because these opcodes only require short jumps.
case OP_TAG1:
case OP_TAG2:
case OP_TAGN:
return false;
default:
assert(false);
return false;
}
}
static int32_t getofs(uint32_t instruction) {
if (op_has_longofs(instruction)) {
return (int32_t)instruction >> 8;
} else {
return (int8_t)(instruction >> 8);
}
}
static void setofs(uint32_t *instruction, int32_t ofs) {
if (op_has_longofs(*instruction)) {
*instruction = getop(*instruction) | ofs << 8;
} else {
*instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8);
}
assert(getofs(*instruction) == ofs); // Would fail in cases of overflow.
}
static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; }
// Defines a local label at the current PC location. All previous forward
// references are updated to point to this location. The location is noted
// for any future backward references.
static void label(compiler *c, unsigned int label) {
assert(label < MAXLABEL);
int val = c->fwd_labels[label];
uint32_t *codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val;
while (codep) {
int ofs = getofs(*codep);
setofs(codep, c->pc - codep - instruction_len(*codep));
codep = ofs ? codep + ofs : NULL;
}
c->fwd_labels[label] = EMPTYLABEL;
c->back_labels[label] = pcofs(c);
}
// Creates a reference to a numbered label; either a forward reference
// (positive arg) or backward reference (negative arg). For forward references
// the value returned now is actually a "next" pointer into a linked list of all
// instructions that use this label and will be patched later when the label is
// defined with label().
//
// The returned value is the offset that should be written into the instruction.
static int32_t labelref(compiler *c, int label) {
assert(label < MAXLABEL);
if (label == LABEL_DISPATCH) {
// No resolving required.
return 0;
} else if (label < 0) {
// Backward local label. Relative to the next instruction.
uint32_t from = (c->pc + 1) - c->group->bytecode;
return c->back_labels[-label] - from;
} else {
// Forward local label: prepend to (possibly-empty) linked list.
int *lptr = &c->fwd_labels[label];
int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c);
*lptr = pcofs(c);
return ret;
}
}
static void put32(compiler *c, uint32_t v) {
mgroup *g = c->group;
if (c->pc == g->bytecode_end) {
int ofs = pcofs(c);
size_t oldsize = g->bytecode_end - g->bytecode;
size_t newsize = UPB_MAX(oldsize * 2, 64);
// TODO(haberman): handle OOM.
g->bytecode = realloc(g->bytecode, newsize * sizeof(uint32_t));
g->bytecode_end = g->bytecode + newsize;
c->pc = g->bytecode + ofs;
}
*c->pc++ = v;
}
static void putop(compiler *c, opcode op, ...) {
va_list ap;
va_start(ap, op);
switch (op) {
case OP_SETDISPATCH: {
uintptr_t ptr = (uintptr_t)va_arg(ap, void*);
put32(c, OP_SETDISPATCH);
put32(c, ptr);
if (sizeof(uintptr_t) > sizeof(uint32_t))
put32(c, (uint64_t)ptr >> 32);
break;
}
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
case OP_RET:
case OP_DISPATCH:
put32(c, op);
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
put32(c, op | va_arg(ap, upb_selector_t) << 8);
break;
case OP_SETBIGGROUPNUM:
put32(c, op);
put32(c, va_arg(ap, int));
break;
case OP_CALL: {
const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *);
put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8);
break;
}
case OP_CHECKDELIM:
case OP_BRANCH: {
uint32_t instruction = op;
int label = va_arg(ap, int);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAG1:
case OP_TAG2: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (tag << 16);
assert(tag <= 0xffff);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAGN: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (upb_value_size(tag) << 16);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
put32(c, tag);
put32(c, tag >> 32);
break;
}
}
va_end(ap);
}
#if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE)
const char *upb_pbdecoder_getopname(unsigned int op) {
#define OP(op) [OP_ ## op] = "OP_" #op
#define T(op) OP(PARSE_##op)
static const char *names[] = {
"<no opcode>",
T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
OP(STARTMSG), OP(ENDMSG), OP(STARTSEQ), OP(ENDSEQ), OP(STARTSUBMSG),
OP(ENDSUBMSG), OP(STARTSTR), OP(STRING), OP(ENDSTR), OP(CALL), OP(RET),
OP(PUSHLENDELIM), OP(PUSHTAGDELIM), OP(SETDELIM), OP(CHECKDELIM),
OP(BRANCH), OP(TAG1), OP(TAG2), OP(TAGN), OP(SETDISPATCH), OP(POP),
OP(SETBIGGROUPNUM), OP(DISPATCH), OP(HALT),
};
return op > OP_HALT ? names[0] : names[op];
#undef OP
#undef T
}
#endif
#ifdef UPB_DUMP_BYTECODE
static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) {
uint32_t *begin = p;
while (p < end) {
fprintf(f, "%p %8tx", p, p - begin);
uint32_t instr = *p++;
uint8_t op = getop(instr);
fprintf(f, " %s", upb_pbdecoder_getopname(op));
switch ((opcode)op) {
case OP_SETDISPATCH: {
const upb_inttable *dispatch;
memcpy(&dispatch, p, sizeof(void*));
p += ptr_words;
const upb_pbdecodermethod *method =
(void *)((char *)dispatch -
offsetof(upb_pbdecodermethod, dispatch));
fprintf(f, " %s", upb_msgdef_fullname(
upb_handlers_msgdef(method->dest_handlers_)));
break;
}
case OP_DISPATCH:
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
case OP_RET:
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
fprintf(f, " %d", instr >> 8);
break;
case OP_SETBIGGROUPNUM:
fprintf(f, " %d", *p++);
break;
case OP_CHECKDELIM:
case OP_CALL:
case OP_BRANCH:
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
break;
case OP_TAG1:
case OP_TAG2: {
fprintf(f, " tag:0x%x", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
case OP_TAGN: {
uint64_t tag = *p++;
tag |= (uint64_t)*p++ << 32;
fprintf(f, " tag:0x%llx", (long long)tag);
fprintf(f, " n:%d", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
}
fputs("\n", f);
}
}
#endif
static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) {
uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type;
uint64_t encoded_tag = upb_vencode32(tag);
// No tag should be greater than 5 bytes.
assert(encoded_tag <= 0xffffffffff);
return encoded_tag;
}
static void putchecktag(compiler *c, const upb_fielddef *f,
int wire_type, int dest) {
uint64_t tag = get_encoded_tag(f, wire_type);
switch (upb_value_size(tag)) {
case 1:
putop(c, OP_TAG1, dest, tag);
break;
case 2:
putop(c, OP_TAG2, dest, tag);
break;
default:
putop(c, OP_TAGN, dest, tag);
break;
}
}
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
upb_selector_t selector;
bool ok = upb_handlers_getselector(f, type, &selector);
UPB_ASSERT_VAR(ok, ok);
return selector;
}
// Takes an existing, primary dispatch table entry and repacks it with a
// different alternate wire type. Called when we are inserting a secondary
// dispatch table entry for an alternate wire type.
static uint64_t repack(uint64_t dispatch, int new_wt2) {
uint64_t ofs;
uint8_t wt1;
uint8_t old_wt2;
upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2);
assert(old_wt2 == NO_WIRE_TYPE); // wt2 should not be set yet.
return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2);
}
// Marks the current bytecode position as the dispatch target for this message,
// field, and wire type.
static void dispatchtarget(compiler *c, upb_pbdecodermethod *method,
const upb_fielddef *f, int wire_type) {
// Offset is relative to msg base.
uint64_t ofs = pcofs(c) - method->code_base.ofs;
uint32_t fn = upb_fielddef_number(f);
upb_inttable *d = &method->dispatch;
upb_value v;
if (upb_inttable_remove(d, fn, &v)) {
// TODO: prioritize based on packed setting in .proto file.
uint64_t repacked = repack(upb_value_getuint64(v), wire_type);
upb_inttable_insert(d, fn, upb_value_uint64(repacked));
upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs));
} else {
uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE);
upb_inttable_insert(d, fn, upb_value_uint64(val));
}
}
static void putpush(compiler *c, const upb_fielddef *f) {
if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) {
putop(c, OP_PUSHLENDELIM);
} else {
uint32_t fn = upb_fielddef_number(f);
if (fn >= 1 << 24) {
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_SETBIGGROUPNUM, fn);
} else {
putop(c, OP_PUSHTAGDELIM, fn);
}
}
}
static upb_pbdecodermethod *find_submethod(const compiler *c,
const upb_pbdecodermethod *method,
const upb_fielddef *f) {
const upb_handlers *sub =
upb_handlers_getsubhandlers(method->dest_handlers_, f);
upb_value v;
return upb_inttable_lookupptr(&c->group->methods, sub, &v)
? upb_value_getptr(v)
: NULL;
}
static void putsel(compiler *c, opcode op, upb_selector_t sel,
const upb_handlers *h) {
if (upb_handlers_gethandler(h, sel)) {
putop(c, op, sel);
}
}
// Puts an opcode to call a callback, but only if a callback actually exists for
// this field and handler type.
static void maybeput(compiler *c, opcode op, const upb_handlers *h,
const upb_fielddef *f, upb_handlertype_t type) {
putsel(c, op, getsel(f, type), h);
}
static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) {
if (!upb_fielddef_lazy(f))
return false;
return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) ||
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) ||
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR));
}
/* bytecode compiler code generation ******************************************/
// Symbolic names for our local labels.
#define LABEL_LOOPSTART 1 // Top of a repeated field loop.
#define LABEL_LOOPBREAK 2 // To jump out of a repeated loop
#define LABEL_FIELD 3 // Jump backward to find the most recent field.
#define LABEL_ENDMSG 4 // To reach the OP_ENDMSG instr for this msg.
// Generates bytecode to parse a single non-lazy message field.
static void generate_msgfield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
const upb_pbdecodermethod *sub_m = find_submethod(c, method, f);
if (!sub_m) {
// Don't emit any code for this field at all; it will be parsed as an
// unknown field.
return;
}
label(c, LABEL_FIELD);
int wire_type =
(upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE)
? UPB_WIRE_TYPE_DELIMITED
: UPB_WIRE_TYPE_START_GROUP;
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
}
}
// Generates bytecode to parse a single string or lazy submessage field.
static void generate_delimfield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
label(c, LABEL_FIELD);
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
// Need to emit even if no handler to skip past the string.
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
putop(c, OP_POP);
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
putop(c, OP_SETDELIM);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
putop(c, OP_POP);
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
putop(c, OP_SETDELIM);
}
}
// Generates bytecode to parse a single primitive field.
static void generate_primitivefield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
label(c, LABEL_FIELD);
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f);
// From a decoding perspective, ENUM is the same as INT32.
if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM)
descriptor_type = UPB_DESCRIPTOR_TYPE_INT32;
opcode parse_type = (opcode)descriptor_type;
// TODO(haberman): generate packed or non-packed first depending on "packed"
// setting in the fielddef. This will favor (in speed) whichever was
// specified.
assert((int)parse_type >= 0 && parse_type <= OP_MAX);
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
int wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); // Packed
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); // Non-packed
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP); // Packed and non-packed join.
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
putop(c, OP_SETDELIM); // Could remove for non-packed by dup ENDSEQ.
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, parse_type, sel);
}
}
// Adds bytecode for parsing the given message to the given decoderplan,
// while adding all dispatch targets to this message's dispatch table.
static void compile_method(compiler *c, upb_pbdecodermethod *method) {
assert(method);
// Clear all entries in the dispatch table.
upb_inttable_uninit(&method->dispatch);
upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64);
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
const upb_msgdef *md = upb_handlers_msgdef(h);
method->code_base.ofs = pcofs(c);
putop(c, OP_SETDISPATCH, &method->dispatch);
putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h);
label(c, LABEL_FIELD);
uint32_t* start_pc = c->pc;
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_fieldtype_t type = upb_fielddef_type(f);
if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) {
generate_msgfield(c, f, method);
} else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES ||
type == UPB_TYPE_MESSAGE) {
generate_delimfield(c, f, method);
} else {
generate_primitivefield(c, f, method);
}
}
// If there were no fields, or if no handlers were defined, we need to
// generate a non-empty loop body so that we can at least dispatch for unknown
// fields and check for the end of the message.
if (c->pc == start_pc) {
// Check for end-of-message.
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
// Unconditionally dispatch.
putop(c, OP_DISPATCH, 0);
}
// For now we just loop back to the last field of the message (or if none,
// the DISPATCH opcode for the message).
putop(c, OP_BRANCH, -LABEL_FIELD);
// Insert both a label and a dispatch table entry for this end-of-msg.
label(c, LABEL_ENDMSG);
upb_value val = upb_value_uint64(pcofs(c) - method->code_base.ofs);
upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val);
putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h);
putop(c, OP_RET);
upb_inttable_compact(&method->dispatch);
}
// Populate "methods" with new upb_pbdecodermethod objects reachable from "h".
// Returns the method for these handlers.
//
// Generates a new method for every destination handlers reachable from "h".
static void find_methods(compiler *c, const upb_handlers *h) {
upb_value v;
if (upb_inttable_lookupptr(&c->group->methods, h, &v))
return;
newmethod(h, c->group);
// Find submethods.
upb_msg_field_iter i;
const upb_msgdef *md = upb_handlers_msgdef(h);
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
const upb_handlers *sub_h;
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE &&
(sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) {
// We only generate a decoder method for submessages with handlers.
// Others will be parsed as unknown fields.
find_methods(c, sub_h);
}
}
}
// (Re-)compile bytecode for all messages in "msgs."
// Overwrites any existing bytecode in "c".
static void compile_methods(compiler *c) {
// Start over at the beginning of the bytecode.
c->pc = c->group->bytecode;
upb_inttable_iter i;
upb_inttable_begin(&i, &c->group->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
compile_method(c, method);
}
}
static void set_bytecode_handlers(mgroup *g) {
upb_inttable_iter i;
upb_inttable_begin(&i, &g->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i));
m->code_base.ptr = g->bytecode + m->code_base.ofs;
upb_byteshandler *h = &m->input_handler_;
upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr);
upb_byteshandler_setstring(h, upb_pbdecoder_decode, g);
upb_byteshandler_setendstr(h, upb_pbdecoder_end, m);
}
}
/* JIT setup. *****************************************************************/
#ifdef UPB_USE_JIT_X64
static void sethandlers(mgroup *g, bool allowjit) {
g->jit_code = NULL;
if (allowjit) {
// Compile byte-code into machine code, create handlers.
upb_pbdecoder_jit(g);
} else {
set_bytecode_handlers(g);
}
}
#else // UPB_USE_JIT_X64
static void sethandlers(mgroup *g, bool allowjit) {
// No JIT compiled in; use bytecode handlers unconditionally.
UPB_UNUSED(allowjit);
set_bytecode_handlers(g);
}
#endif // UPB_USE_JIT_X64
// TODO(haberman): allow this to be constructed for an arbitrary set of dest
// handlers and other mgroups (but verify we have a transitive closure).
const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy,
const void *owner) {
UPB_UNUSED(allowjit);
assert(upb_handlers_isfrozen(dest));
mgroup *g = newgroup(owner);
compiler *c = newcompiler(g, lazy);
find_methods(c, dest);
// We compile in two passes:
// 1. all messages are assigned relative offsets from the beginning of the
// bytecode (saved in method->code_base).
// 2. forwards OP_CALL instructions can be correctly linked since message
// offsets have been previously assigned.
//
// Could avoid the second pass by linking OP_CALL instructions somehow.
compile_methods(c);
compile_methods(c);
g->bytecode_end = c->pc;
freecompiler(c);
#ifdef UPB_DUMP_BYTECODE
FILE *f = fopen("/tmp/upb-bytecode", "wb");
assert(f);
dumpbc(g->bytecode, g->bytecode_end, stderr);
dumpbc(g->bytecode, g->bytecode_end, f);
fclose(f);
#endif
sethandlers(g, allowjit);
return g;
}
/* upb_pbcodecache ************************************************************/
void upb_pbcodecache_init(upb_pbcodecache *c) {
upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR);
c->allow_jit_ = true;
}
void upb_pbcodecache_uninit(upb_pbcodecache *c) {
upb_inttable_iter i;
upb_inttable_begin(&i, &c->groups);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i));
upb_refcounted_unref(UPB_UPCAST(group), c);
}
upb_inttable_uninit(&c->groups);
}
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) {
return c->allow_jit_;
}
bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) {
if (upb_inttable_count(&c->groups) > 0)
return false;
c->allow_jit_ = allow;
return true;
}
const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) {
// Right now we build a new DecoderMethod every time.
// TODO(haberman): properly cache methods by their true key.
const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c);
upb_inttable_push(&c->groups, upb_value_constptr(g));
upb_value v;
bool ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v);
UPB_ASSERT_VAR(ok, ok);
return upb_value_getptr(v);
}
/* upb_pbdecodermethodopts ****************************************************/
void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
const upb_handlers *h) {
opts->handlers = h;
opts->lazy = false;
}
void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) {
opts->lazy = lazy;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2008-2013 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* This file implements a VM for the interpreted (bytecode) decoder.
*
* Bytecode must previously have been generated using the bytecode compiler in
* compile_decoder.c. This decoder then walks through the bytecode op-by-op to
* parse the input.
*
* Decoding is fully resumable; we just keep a pointer to the current bytecode
* instruction and resume from there. A fair amount of the logic here is to
* handle the fact that values can span buffer seams and we have to be able to
* be capable of suspending/resuming from any byte in the stream. This
* sometimes requires keeping a few trailing bytes from the last buffer around
* in the "residual" buffer.
*/
#include <inttypes.h>
#include <stddef.h>
#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif
#define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d);
// Error messages that are shared between the bytecode and JIT decoders.
const char *kPbDecoderStackOverflow = "Nesting too deep.";
// Error messages shared within this file.
static const char *kUnterminatedVarint = "Unterminated varint.";
/* upb_pbdecoder **************************************************************/
static opcode halt = OP_HALT;
// Whether an op consumes any of the input buffer.
static bool consumes_input(opcode op) {
switch (op) {
case OP_SETDISPATCH:
case OP_STARTMSG:
case OP_ENDMSG:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_SETBIGGROUPNUM:
case OP_CHECKDELIM:
case OP_CALL:
case OP_RET:
case OP_BRANCH:
return false;
default:
return true;
}
}
static bool in_residual_buf(const upb_pbdecoder *d, const char *p);
// It's unfortunate that we have to micro-manage the compiler with
// UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily
// specific to one hardware configuration. But empirically on a Core i7,
// performance increases 30-50% with these annotations. Every instance where
// these appear, gcc 4.2.1 made the wrong decision and degraded performance in
// benchmarks.
static void seterr(upb_pbdecoder *d, const char *msg) {
upb_status status = UPB_STATUS_INIT;
upb_status_seterrmsg(&status, msg);
upb_env_reporterror(d->env, &status);
}
void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) {
seterr(d, msg);
}
/* Buffering ******************************************************************/
// We operate on one buffer at a time, which is either the user's buffer passed
// to our "decode" callback or some residual bytes from the previous buffer.
// How many bytes can be safely read from d->ptr without reading past end-of-buf
// or past the current delimited end.
static size_t curbufleft(const upb_pbdecoder *d) {
assert(d->data_end >= d->ptr);
return d->data_end - d->ptr;
}
// Overall stream offset of d->ptr.
uint64_t offset(const upb_pbdecoder *d) {
return d->bufstart_ofs + (d->ptr - d->buf);
}
// Advances d->ptr.
static void advance(upb_pbdecoder *d, size_t len) {
assert(curbufleft(d) >= len);
d->ptr += len;
}
static bool in_buf(const char *p, const char *buf, const char *end) {
return p >= buf && p <= end;
}
static bool in_residual_buf(const upb_pbdecoder *d, const char *p) {
return in_buf(p, d->residual, d->residual_end);
}
// Calculates the delim_end value, which is affected by both the current buffer
// and the parsing stack, so must be called whenever either is updated.
static void set_delim_end(upb_pbdecoder *d) {
size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs;
if (delim_ofs <= (size_t)(d->end - d->buf)) {
d->delim_end = d->buf + delim_ofs;
d->data_end = d->delim_end;
} else {
d->data_end = d->end;
d->delim_end = NULL;
}
}
static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) {
d->ptr = buf;
d->buf = buf;
d->end = end;
set_delim_end(d);
}
static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) {
assert(curbufleft(d) == 0);
d->bufstart_ofs += (d->end - d->buf);
switchtobuf(d, buf, buf + len);
}
static void checkpoint(upb_pbdecoder *d) {
// The assertion here is in the interests of efficiency, not correctness.
// We are trying to ensure that we don't checkpoint() more often than
// necessary.
assert(d->checkpoint != d->ptr);
d->checkpoint = d->ptr;
}
// Resumes the decoder from an initial state or from a previous suspend.
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
size_t size, const upb_bufhandle *handle) {
UPB_UNUSED(p); // Useless; just for the benefit of the JIT.
d->buf_param = buf;
d->size_param = size;
d->handle = handle;
if (d->residual_end > d->residual) {
// We have residual bytes from the last buffer.
assert(d->ptr == d->residual);
} else {
switchtobuf(d, buf, buf + size);
}
d->checkpoint = d->ptr;
if (d->top->groupnum < 0) {
CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0));
d->checkpoint = d->ptr;
}
return DECODE_OK;
}
// Suspends the decoder at the last checkpoint, without saving any residual
// bytes. If there are any unconsumed bytes, returns a short byte count.
size_t upb_pbdecoder_suspend(upb_pbdecoder *d) {
d->pc = d->last;
if (d->checkpoint == d->residual) {
// Checkpoint was in residual buf; no user bytes were consumed.
d->ptr = d->residual;
return 0;
} else {
assert(!in_residual_buf(d, d->checkpoint));
assert(d->buf == d->buf_param);
size_t consumed = d->checkpoint - d->buf;
d->bufstart_ofs += consumed;
d->residual_end = d->residual;
switchtobuf(d, d->residual, d->residual_end);
return consumed;
}
}
// Suspends the decoder at the last checkpoint, and saves any unconsumed
// bytes in our residual buffer. This is necessary if we need more user
// bytes to form a complete value, which might not be contiguous in the
// user's buffers. Always consumes all user bytes.
static size_t suspend_save(upb_pbdecoder *d) {
// We hit end-of-buffer before we could parse a full value.
// Save any unconsumed bytes (if any) to the residual buffer.
d->pc = d->last;
if (d->checkpoint == d->residual) {
// Checkpoint was in residual buf; append user byte(s) to residual buf.
assert((d->residual_end - d->residual) + d->size_param <=
sizeof(d->residual));
if (!in_residual_buf(d, d->ptr)) {
d->bufstart_ofs -= (d->residual_end - d->residual);
}
memcpy(d->residual_end, d->buf_param, d->size_param);
d->residual_end += d->size_param;
} else {
// Checkpoint was in user buf; old residual bytes not needed.
assert(!in_residual_buf(d, d->checkpoint));
d->ptr = d->checkpoint;
size_t save = curbufleft(d);
assert(save <= sizeof(d->residual));
memcpy(d->residual, d->ptr, save);
d->residual_end = d->residual + save;
d->bufstart_ofs = offset(d);
}
switchtobuf(d, d->residual, d->residual_end);
return d->size_param;
}
// Skips "bytes" bytes in the stream, which may be more than available. If we
// skip more bytes than are available, we return a long read count to the caller
// indicating how many bytes the caller should skip before passing a new buffer.
static int32_t skip(upb_pbdecoder *d, size_t bytes) {
assert(!in_residual_buf(d, d->ptr) || d->size_param == 0);
if (curbufleft(d) >= bytes) {
// Skipped data is all in current buffer.
advance(d, bytes);
return DECODE_OK;
} else {
// Skipped data extends beyond currently available buffers.
d->pc = d->last;
size_t skip = bytes - curbufleft(d);
d->bufstart_ofs += (d->end - d->buf) + skip;
d->residual_end = d->residual;
switchtobuf(d, d->residual, d->residual_end);
return d->size_param + skip;
}
}
// Copies the next "bytes" bytes into "buf" and advances the stream.
// Requires that this many bytes are available in the current buffer.
UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf,
size_t bytes) {
assert(bytes <= curbufleft(d));
memcpy(buf, d->ptr, bytes);
advance(d, bytes);
}
// Slow path for getting the next "bytes" bytes, regardless of whether they are
// available in the current buffer or not. Returns a status code as described
// in decoder.int.h.
UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf,
size_t bytes) {
const size_t avail = curbufleft(d);
consumebytes(d, buf, avail);
bytes -= avail;
assert(bytes > 0);
if (in_residual_buf(d, d->ptr)) {
advancetobuf(d, d->buf_param, d->size_param);
}
if (curbufleft(d) >= bytes) {
consumebytes(d, (char *)buf + avail, bytes);
return DECODE_OK;
} else if (d->data_end == d->delim_end) {
seterr(d, "Submessage ended in the middle of a value or group");
return upb_pbdecoder_suspend(d);
} else {
return suspend_save(d);
}
}
// Gets the next "bytes" bytes, regardless of whether they are available in the
// current buffer or not. Returns a status code as described in decoder.int.h.
UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf,
size_t bytes) {
if (curbufleft(d) >= bytes) {
// Buffer has enough data to satisfy.
consumebytes(d, buf, bytes);
return DECODE_OK;
} else {
return getbytes_slow(d, buf, bytes);
}
}
UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf,
size_t bytes) {
size_t ret = curbufleft(d);
memcpy(buf, d->ptr, ret);
if (in_residual_buf(d, d->ptr)) {
size_t copy = UPB_MIN(bytes - ret, d->size_param);
memcpy((char *)buf + ret, d->buf_param, copy);
ret += copy;
}
return ret;
}
UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf,
size_t bytes) {
if (curbufleft(d) >= bytes) {
memcpy(buf, d->ptr, bytes);
return bytes;
} else {
return peekbytes_slow(d, buf, bytes);
}
}
/* Decoding of wire types *****************************************************/
// Slow path for decoding a varint from the current buffer position.
// Returns a status code as described in decoder.int.h.
UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d,
uint64_t *u64) {
*u64 = 0;
uint8_t byte = 0x80;
int bitpos;
for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) {
int32_t ret = getbytes(d, &byte, 1);
if (ret >= 0) return ret;
*u64 |= (uint64_t)(byte & 0x7F) << bitpos;
}
if(bitpos == 70 && (byte & 0x80)) {
seterr(d, kUnterminatedVarint);
return upb_pbdecoder_suspend(d);
}
return DECODE_OK;
}
// Decodes a varint from the current buffer position.
// Returns a status code as described in decoder.int.h.
UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) {
if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) {
*u64 = *d->ptr;
advance(d, 1);
return DECODE_OK;
} else if (curbufleft(d) >= 10) {
// Fast case.
upb_decoderet r = upb_vdecode_fast(d->ptr);
if (r.p == NULL) {
seterr(d, kUnterminatedVarint);
return upb_pbdecoder_suspend(d);
}
advance(d, r.p - d->ptr);
*u64 = r.val;
return DECODE_OK;
} else {
// Slow case -- varint spans buffer seam.
return upb_pbdecoder_decode_varint_slow(d, u64);
}
}
// Decodes a 32-bit varint from the current buffer position.
// Returns a status code as described in decoder.int.h.
UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) {
uint64_t u64;
int32_t ret = decode_varint(d, &u64);
if (ret >= 0) return ret;
if (u64 > UINT32_MAX) {
seterr(d, "Unterminated 32-bit varint");
// TODO(haberman) guarantee that this function return is >= 0 somehow,
// so we know this path will always be treated as error by our caller.
// Right now the size_t -> int32_t can overflow and produce negative values.
*u32 = 0;
return upb_pbdecoder_suspend(d);
}
*u32 = u64;
return DECODE_OK;
}
// Decodes a fixed32 from the current buffer position.
// Returns a status code as described in decoder.int.h.
// TODO: proper byte swapping for big-endian machines.
UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) {
return getbytes(d, u32, 4);
}
// Decodes a fixed64 from the current buffer position.
// Returns a status code as described in decoder.int.h.
// TODO: proper byte swapping for big-endian machines.
UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) {
return getbytes(d, u64, 8);
}
// Non-static versions of the above functions.
// These are called by the JIT for fallback paths.
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) {
return decode_fixed32(d, u32);
}
int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) {
return decode_fixed64(d, u64);
}
static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; }
static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; }
// Pushes a frame onto the decoder stack.
static bool decoder_push(upb_pbdecoder *d, uint64_t end) {
upb_pbdecoder_frame *fr = d->top;
if (end > fr->end_ofs) {
seterr(d, "Submessage end extends past enclosing submessage.");
return false;
} else if (fr == d->limit) {
seterr(d, kPbDecoderStackOverflow);
return false;
}
fr++;
fr->end_ofs = end;
fr->dispatch = NULL;
fr->groupnum = 0;
d->top = fr;
return true;
}
static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) {
// While we expect to see an "end" tag (either ENDGROUP or a non-sequence
// field number) prior to hitting any enclosing submessage end, pushing our
// existing delim end prevents us from continuing to parse values from a
// corrupt proto that doesn't give us an END tag in time.
if (!decoder_push(d, d->top->end_ofs))
return false;
d->top->groupnum = arg;
return true;
}
// Pops a frame from the decoder stack.
static void decoder_pop(upb_pbdecoder *d) { d->top--; }
UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d,
uint64_t expected) {
uint64_t data = 0;
size_t bytes = upb_value_size(expected);
size_t read = peekbytes(d, &data, bytes);
if (read == bytes && data == expected) {
// Advance past matched bytes.
int32_t ok = getbytes(d, &data, read);
UPB_ASSERT_VAR(ok, ok < 0);
return DECODE_OK;
} else if (read < bytes && memcmp(&data, &expected, read) == 0) {
return suspend_save(d);
} else {
return DECODE_MISMATCH;
}
}
int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
uint8_t wire_type) {
if (fieldnum >= 0)
goto have_tag;
while (true) {
uint32_t tag;
CHECK_RETURN(decode_v32(d, &tag));
wire_type = tag & 0x7;
fieldnum = tag >> 3;
have_tag:
if (fieldnum == 0) {
seterr(d, "Saw invalid field number (0)");
return upb_pbdecoder_suspend(d);
}
// TODO: deliver to unknown field callback.
switch (wire_type) {
case UPB_WIRE_TYPE_32BIT:
CHECK_RETURN(skip(d, 4));
break;
case UPB_WIRE_TYPE_64BIT:
CHECK_RETURN(skip(d, 8));
break;
case UPB_WIRE_TYPE_VARINT: {
uint64_t u64;
CHECK_RETURN(decode_varint(d, &u64));
break;
}
case UPB_WIRE_TYPE_DELIMITED: {
uint32_t len;
CHECK_RETURN(decode_v32(d, &len));
CHECK_RETURN(skip(d, len));
break;
}
case UPB_WIRE_TYPE_START_GROUP:
CHECK_SUSPEND(pushtagdelim(d, -fieldnum));
break;
case UPB_WIRE_TYPE_END_GROUP:
if (fieldnum == -d->top->groupnum) {
decoder_pop(d);
} else if (fieldnum == d->top->groupnum) {
return DECODE_ENDGROUP;
} else {
seterr(d, "Unmatched ENDGROUP tag.");
return upb_pbdecoder_suspend(d);
}
break;
default:
seterr(d, "Invalid wire type");
return upb_pbdecoder_suspend(d);
}
if (d->top->groupnum >= 0) {
return DECODE_OK;
}
if (d->ptr == d->delim_end) {
seterr(d, "Enclosing submessage ended in the middle of value or group");
// Unlike most errors we notice during parsing, right now we have consumed
// all of the user's input.
//
// There are three different options for how to handle this case:
//
// 1. decode() = short count, error = set
// 2. decode() = full count, error = set
// 3. decode() = full count, error NOT set, short count and error will
// be reported on next call to decode() (or end())
//
// (1) and (3) have the advantage that they preserve the invariant that an
// error occurs iff decode() returns a short count.
//
// (2) and (3) have the advantage of reflecting the fact that all of the
// bytes were in fact parsed (and possibly delivered to the unknown field
// handler, in the future when that is supported).
//
// (3) requires extra state in the decode (a place to store the "permanent
// error" that we should return for all subsequent attempts to decode).
// But we likely want this anyway.
//
// Right now we do (1), thanks to the fact that we checkpoint *after* this
// check. (3) may be a better choice long term; unclear at the moment.
return upb_pbdecoder_suspend(d);
}
checkpoint(d);
}
}
static void goto_endmsg(upb_pbdecoder *d) {
upb_value v;
bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v);
UPB_ASSERT_VAR(found, found);
d->pc = d->top->base + upb_value_getuint64(v);
}
// Parses a tag and jumps to the corresponding bytecode instruction for this
// field.
//
// If the tag is unknown (or the wire type doesn't match), parses the field as
// unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode
// instruction for the end of message.
static int32_t dispatch(upb_pbdecoder *d) {
upb_inttable *dispatch = d->top->dispatch;
// Decode tag.
uint32_t tag;
CHECK_RETURN(decode_v32(d, &tag));
uint8_t wire_type = tag & 0x7;
uint32_t fieldnum = tag >> 3;
// Lookup tag. Because of packed/non-packed compatibility, we have to
// check the wire type against two possibilities.
upb_value val;
if (fieldnum != DISPATCH_ENDMSG &&
upb_inttable_lookup32(dispatch, fieldnum, &val)) {
uint64_t v = upb_value_getuint64(val);
if (wire_type == (v & 0xff)) {
d->pc = d->top->base + (v >> 16);
return DECODE_OK;
} else if (wire_type == ((v >> 8) & 0xff)) {
bool found =
upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val);
UPB_ASSERT_VAR(found, found);
d->pc = d->top->base + upb_value_getuint64(val);
return DECODE_OK;
}
}
// Unknown field or ENDGROUP.
int32_t ret = upb_pbdecoder_skipunknown(d, fieldnum, wire_type);
if (ret == DECODE_ENDGROUP) {
goto_endmsg(d);
return DECODE_OK;
} else if (ret == DECODE_OK) {
// We just consumed some input, so we might now have consumed all the data
// in the delmited region. Since every opcode that can trigger dispatch is
// directly preceded by OP_CHECKDELIM, rewind to it now to re-check the
// delimited end.
d->pc = d->last - 1;
assert(getop(*d->pc) == OP_CHECKDELIM);
return DECODE_OK;
}
return ret;
}
// Callers know that the stack is more than one deep because the opcodes that
// call this only occur after PUSH operations.
upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) {
assert(d->top != d->stack);
return d->top - 1;
}
/* The main decoding loop *****************************************************/
// The main decoder VM function. Uses traditional bytecode dispatch loop with a
// switch() statement.
size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
size_t size, const upb_bufhandle *handle) {
upb_pbdecoder *d = closure;
const mgroup *group = hd;
assert(buf);
int32_t result = upb_pbdecoder_resume(d, NULL, buf, size, handle);
if (result == DECODE_ENDGROUP) {
goto_endmsg(d);
}
CHECK_RETURN(result);
UPB_UNUSED(group);
#define VMCASE(op, code) \
case op: { code; if (consumes_input(op)) checkpoint(d); break; }
#define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \
VMCASE(OP_PARSE_ ## type, { \
ctype val; \
CHECK_RETURN(decode_ ## wt(d, &val)); \
upb_sink_put ## name(&d->top->sink, arg, (convfunc)(val)); \
})
while(1) {
d->last = d->pc;
int32_t instruction = *d->pc++;
opcode op = getop(instruction);
uint32_t arg = instruction >> 8;
int32_t longofs = arg;
assert(d->ptr != d->residual_end);
#ifdef UPB_DUMP_BYTECODE
fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d "
"%x %s (%d)\n",
(int)offset(d),
(int)(d->ptr - d->buf),
(int)(d->data_end - d->ptr),
(int)(d->end - d->ptr),
(int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)),
(int)(d->pc - 1 - group->bytecode),
upb_pbdecoder_getopname(op),
arg);
#endif
switch (op) {
// Technically, we are losing data if we see a 32-bit varint that is not
// properly sign-extended. We could detect this and error about the data
// loss, but proto2 does not do this, so we pass.
PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t)
PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t)
PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t)
PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t)
PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t)
PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t)
PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t)
PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t)
PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t)
PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t)
PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t)
PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t)
PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t)
VMCASE(OP_SETDISPATCH,
d->top->base = d->pc - 1;
memcpy(&d->top->dispatch, d->pc, sizeof(void*));
d->pc += sizeof(void*) / sizeof(uint32_t);
)
VMCASE(OP_STARTMSG,
CHECK_SUSPEND(upb_sink_startmsg(&d->top->sink));
)
VMCASE(OP_ENDMSG,
CHECK_SUSPEND(upb_sink_endmsg(&d->top->sink, d->status));
)
VMCASE(OP_STARTSEQ,
upb_pbdecoder_frame *outer = outer_frame(d);
CHECK_SUSPEND(upb_sink_startseq(&outer->sink, arg, &d->top->sink));
)
VMCASE(OP_ENDSEQ,
CHECK_SUSPEND(upb_sink_endseq(&d->top->sink, arg));
)
VMCASE(OP_STARTSUBMSG,
upb_pbdecoder_frame *outer = outer_frame(d);
CHECK_SUSPEND(upb_sink_startsubmsg(&outer->sink, arg, &d->top->sink));
)
VMCASE(OP_ENDSUBMSG,
CHECK_SUSPEND(upb_sink_endsubmsg(&d->top->sink, arg));
)
VMCASE(OP_STARTSTR,
uint32_t len = d->top->end_ofs - offset(d);
upb_pbdecoder_frame *outer = outer_frame(d);
CHECK_SUSPEND(upb_sink_startstr(&outer->sink, arg, len, &d->top->sink));
if (len == 0) {
d->pc++; // Skip OP_STRING.
}
)
VMCASE(OP_STRING,
uint32_t len = curbufleft(d);
size_t n = upb_sink_putstring(&d->top->sink, arg, d->ptr, len, handle);
if (n > len) {
if (n > d->top->end_ofs - offset(d)) {
seterr(d, "Tried to skip past end of string.");
return upb_pbdecoder_suspend(d);
} else {
int32_t ret = skip(d, n);
// This shouldn't return DECODE_OK, because n > len.
assert(ret >= 0);
return ret;
}
}
advance(d, n);
if (n < len || d->delim_end == NULL) {
// We aren't finished with this string yet.
d->pc--; // Repeat OP_STRING.
if (n > 0) checkpoint(d);
return upb_pbdecoder_suspend(d);
}
)
VMCASE(OP_ENDSTR,
CHECK_SUSPEND(upb_sink_endstr(&d->top->sink, arg));
)
VMCASE(OP_PUSHTAGDELIM,
CHECK_SUSPEND(pushtagdelim(d, arg));
)
VMCASE(OP_SETBIGGROUPNUM,
d->top->groupnum = *d->pc++;
)
VMCASE(OP_POP,
assert(d->top > d->stack);
decoder_pop(d);
)
VMCASE(OP_PUSHLENDELIM,
uint32_t len;
CHECK_RETURN(decode_v32(d, &len));
CHECK_SUSPEND(decoder_push(d, offset(d) + len));
set_delim_end(d);
)
VMCASE(OP_SETDELIM,
set_delim_end(d);
)
VMCASE(OP_CHECKDELIM,
// We are guaranteed of this assert because we never allow ourselves to
// consume bytes beyond data_end, which covers delim_end when non-NULL.
assert(!(d->delim_end && d->ptr > d->delim_end));
if (d->ptr == d->delim_end)
d->pc += longofs;
)
VMCASE(OP_CALL,
d->callstack[d->call_len++] = d->pc;
d->pc += longofs;
)
VMCASE(OP_RET,
assert(d->call_len > 0);
d->pc = d->callstack[--d->call_len];
)
VMCASE(OP_BRANCH,
d->pc += longofs;
)
VMCASE(OP_TAG1,
CHECK_SUSPEND(curbufleft(d) > 0);
uint8_t expected = (arg >> 8) & 0xff;
if (*d->ptr == expected) {
advance(d, 1);
} else {
int8_t shortofs;
badtag:
shortofs = arg;
if (shortofs == LABEL_DISPATCH) {
CHECK_RETURN(dispatch(d));
} else {
d->pc += shortofs;
break; // Avoid checkpoint().
}
}
)
VMCASE(OP_TAG2,
CHECK_SUSPEND(curbufleft(d) > 0);
uint16_t expected = (arg >> 8) & 0xffff;
if (curbufleft(d) >= 2) {
uint16_t actual;
memcpy(&actual, d->ptr, 2);
if (expected == actual) {
advance(d, 2);
} else {
goto badtag;
}
} else {
int32_t result = upb_pbdecoder_checktag_slow(d, expected);
if (result == DECODE_MISMATCH) goto badtag;
if (result >= 0) return result;
}
)
VMCASE(OP_TAGN, {
uint64_t expected;
memcpy(&expected, d->pc, 8);
d->pc += 2;
int32_t result = upb_pbdecoder_checktag_slow(d, expected);
if (result == DECODE_MISMATCH) goto badtag;
if (result >= 0) return result;
})
VMCASE(OP_DISPATCH, {
CHECK_RETURN(dispatch(d));
})
VMCASE(OP_HALT, {
return size;
})
}
}
}
void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) {
upb_pbdecoder *d = closure;
UPB_UNUSED(size_hint);
d->top->end_ofs = UINT64_MAX;
d->bufstart_ofs = 0;
d->call_len = 1;
d->callstack[0] = &halt;
d->pc = pc;
return d;
}
void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) {
UPB_UNUSED(hd);
UPB_UNUSED(size_hint);
upb_pbdecoder *d = closure;
d->top->end_ofs = UINT64_MAX;
d->bufstart_ofs = 0;
d->call_len = 0;
return d;
}
bool upb_pbdecoder_end(void *closure, const void *handler_data) {
upb_pbdecoder *d = closure;
const upb_pbdecodermethod *method = handler_data;
if (d->residual_end > d->residual) {
seterr(d, "Unexpected EOF");
return false;
}
if (d->top->end_ofs != UINT64_MAX) {
seterr(d, "Unexpected EOF inside delimited string");
return false;
}
// Message ends here.
uint64_t end = offset(d);
d->top->end_ofs = end;
char dummy;
#ifdef UPB_USE_JIT_X64
const mgroup *group = (const mgroup*)method->group;
if (group->jit_code) {
if (d->top != d->stack)
d->stack->end_ofs = 0;
group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL);
} else {
#endif
d->stack->end_ofs = end;
const uint32_t *p = d->pc;
// Check the previous bytecode, but guard against beginning.
if (p != method->code_base.ptr) p--;
if (getop(*p) == OP_CHECKDELIM) {
// Rewind from OP_TAG* to OP_CHECKDELIM.
assert(getop(*d->pc) == OP_TAG1 ||
getop(*d->pc) == OP_TAG2 ||
getop(*d->pc) == OP_TAGN ||
getop(*d->pc == OP_DISPATCH));
d->pc = p;
}
upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL);
#ifdef UPB_USE_JIT_X64
}
#endif
if (d->call_len != 0) {
seterr(d, "Unexpected EOF");
return false;
}
return true;
}
void upb_pbdecoder_reset(upb_pbdecoder *d) {
d->top = d->stack;
d->top->groupnum = 0;
d->ptr = d->residual;
d->buf = d->residual;
d->end = d->residual;
d->residual_end = d->residual;
}
static size_t stacksize(upb_pbdecoder *d, size_t entries) {
UPB_UNUSED(d);
return entries * sizeof(upb_pbdecoder_frame);
}
static size_t callstacksize(upb_pbdecoder *d, size_t entries) {
UPB_UNUSED(d);
#ifdef UPB_USE_JIT_X64
if (d->method_->is_native_) {
// Each native stack frame needs two pointers, plus we need a few frames for
// the enter/exit trampolines.
size_t ret = entries * sizeof(void*) * 2;
ret += sizeof(void*) * 10;
return ret;
}
#endif
return entries * sizeof(uint32_t*);
}
upb_pbdecoder *upb_pbdecoder_create(upb_env *e, const upb_pbdecodermethod *m,
upb_sink *sink) {
const size_t default_max_nesting = 64;
#ifndef NDEBUG
size_t size_before = upb_env_bytesallocated(e);
#endif
upb_pbdecoder *d = upb_env_malloc(e, sizeof(upb_pbdecoder));
if (!d) return NULL;
d->method_ = m;
d->callstack = upb_env_malloc(e, callstacksize(d, default_max_nesting));
d->stack = upb_env_malloc(e, stacksize(d, default_max_nesting));
if (!d->stack || !d->callstack) {
return NULL;
}
d->env = e;
d->limit = d->stack + default_max_nesting - 1;
d->stack_size = default_max_nesting;
upb_pbdecoder_reset(d);
upb_bytessink_reset(&d->input_, &m->input_handler_, d);
assert(sink);
if (d->method_->dest_handlers_) {
if (sink->handlers != d->method_->dest_handlers_)
return NULL;
}
upb_sink_reset(&d->top->sink, sink->handlers, sink->closure);
// If this fails, increase the value in decoder.h.
assert(upb_env_bytesallocated(e) - size_before <= UPB_PB_DECODER_SIZE);
return d;
}
uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) {
return offset(d);
}
const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) {
return d->method_;
}
upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d) {
return &d->input_;
}
size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) {
return d->stack_size;
}
bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) {
assert(d->top >= d->stack);
if (max < (size_t)(d->top - d->stack)) {
// Can't set a limit smaller than what we are currently at.
return false;
}
if (max > d->stack_size) {
// Need to reallocate stack and callstack to accommodate.
size_t old_size = stacksize(d, d->stack_size);
size_t new_size = stacksize(d, max);
void *p = upb_env_realloc(d->env, d->stack, old_size, new_size);
if (!p) {
return false;
}
d->stack = p;
old_size = callstacksize(d, d->stack_size);
new_size = callstacksize(d, max);
p = upb_env_realloc(d->env, d->callstack, old_size, new_size);
if (!p) {
return false;
}
d->callstack = p;
d->stack_size = max;
}
d->limit = d->stack + max - 1;
return true;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Since we are implementing pure handlers (ie. without any out-of-band access
* to pre-computed lengths), we have to buffer all submessages before we can
* emit even their first byte.
*
* Not knowing the size of submessages also means we can't write a perfect
* zero-copy implementation, even with buffering. Lengths are stored as
* varints, which means that we don't know how many bytes to reserve for the
* length until we know what the length is.
*
* This leaves us with three main choices:
*
* 1. buffer all submessage data in a temporary buffer, then copy it exactly
* once into the output buffer.
*
* 2. attempt to buffer data directly into the output buffer, estimating how
* many bytes each length will take. When our guesses are wrong, use
* memmove() to grow or shrink the allotted space.
*
* 3. buffer directly into the output buffer, allocating a max length
* ahead-of-time for each submessage length. If we overallocated, we waste
* space, but no memcpy() or memmove() is required. This approach requires
* defining a maximum size for submessages and rejecting submessages that
* exceed that size.
*
* (2) and (3) have the potential to have better performance, but they are more
* complicated and subtle to implement:
*
* (3) requires making an arbitrary choice of the maximum message size; it
* wastes space when submessages are shorter than this and fails
* completely when they are longer. This makes it more finicky and
* requires configuration based on the input. It also makes it impossible
* to perfectly match the output of reference encoders that always use the
* optimal amount of space for each length.
*
* (2) requires guessing the the size upfront, and if multiple lengths are
* guessed wrong the minimum required number of memmove() operations may
* be complicated to compute correctly. Implemented properly, it may have
* a useful amortized or average cost, but more investigation is required
* to determine this and what the optimal algorithm is to achieve it.
*
* (1) makes you always pay for exactly one copy, but its implementation is
* the simplest and its performance is predictable.
*
* So for now, we implement (1) only. If we wish to optimize later, we should
* be able to do it without affecting users.
*
* The strategy is to buffer the segments of data that do *not* depend on
* unknown lengths in one buffer, and keep a separate buffer of segment pointers
* and lengths. When the top-level submessage ends, we can go beginning to end,
* alternating the writing of lengths with memcpy() of the rest of the data.
* At the top level though, no buffering is required.
*/
#include <stdlib.h>
// The output buffer is divided into segments; a segment is a string of data
// that is "ready to go" -- it does not need any varint lengths inserted into
// the middle. The seams between segments are where varints will be inserted
// once they are known.
//
// We also use the concept of a "run", which is a range of encoded bytes that
// occur at a single submessage level. Every segment contains one or more runs.
//
// A segment can span messages. Consider:
//
// .--Submessage lengths---------.
// | | |
// | V V
// V | |--------------- | |-----------------
// Submessages: | |-----------------------------------------------
// Top-level msg: ------------------------------------------------------------
//
// Segments: ----- ------------------- -----------------
// Runs: *---- *--------------*--- *----------------
// (* marks the start)
//
// Note that the top-level menssage is not in any segment because it does not
// have any length preceding it.
//
// A segment is only interrupted when another length needs to be inserted. So
// observe how the second segment spans both the inner submessage and part of
// the next enclosing message.
typedef struct {
uint32_t msglen; // The length to varint-encode before this segment.
uint32_t seglen; // Length of the segment.
} upb_pb_encoder_segment;
struct upb_pb_encoder {
upb_env *env;
// Our input and output.
upb_sink input_;
upb_bytessink *output_;
// The "subclosure" -- used as the inner closure as part of the bytessink
// protocol.
void *subc;
// The output buffer and limit, and our current write position. "buf"
// initially points to "initbuf", but is dynamically allocated if we need to
// grow beyond the initial size.
char *buf, *ptr, *limit;
// The beginning of the current run, or undefined if we are at the top level.
char *runbegin;
// The list of segments we are accumulating.
upb_pb_encoder_segment *segbuf, *segptr, *seglimit;
// The stack of enclosing submessages. Each entry in the stack points to the
// segment where this submessage's length is being accumulated.
int *stack, *top, *stacklimit;
// Depth of startmsg/endmsg calls.
int depth;
};
/* low-level buffering ********************************************************/
// Low-level functions for interacting with the output buffer.
// TODO(haberman): handle pushback
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) {
size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL);
UPB_ASSERT_VAR(n, n == len);
}
static upb_pb_encoder_segment *top(upb_pb_encoder *e) {
return &e->segbuf[*e->top];
}
// Call to ensure that at least "bytes" bytes are available for writing at
// e->ptr. Returns false if the bytes could not be allocated.
static bool reserve(upb_pb_encoder *e, size_t bytes) {
if ((size_t)(e->limit - e->ptr) < bytes) {
// Grow buffer.
size_t needed = bytes + (e->ptr - e->buf);
size_t old_size = e->limit - e->buf;
size_t new_size = old_size;
while (new_size < needed) {
new_size *= 2;
}
char *new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size);
if (new_buf == NULL) {
return false;
}
e->ptr = new_buf + (e->ptr - e->buf);
e->runbegin = new_buf + (e->runbegin - e->buf);
e->limit = new_buf + new_size;
e->buf = new_buf;
}
return true;
}
// Call when "bytes" bytes have been writte at e->ptr. The caller *must* have
// previously called reserve() with at least this many bytes.
static void encoder_advance(upb_pb_encoder *e, size_t bytes) {
assert((size_t)(e->limit - e->ptr) >= bytes);
e->ptr += bytes;
}
// Call when all of the bytes for a handler have been written. Flushes the
// bytes if possible and necessary, returning false if this failed.
static bool commit(upb_pb_encoder *e) {
if (!e->top) {
// We aren't inside a delimited region. Flush our accumulated bytes to
// the output.
//
// TODO(haberman): in the future we may want to delay flushing for
// efficiency reasons.
putbuf(e, e->buf, e->ptr - e->buf);
e->ptr = e->buf;
}
return true;
}
// Writes the given bytes to the buffer, handling reserve/advance.
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) {
if (!reserve(e, len)) {
return false;
}
memcpy(e->ptr, data, len);
encoder_advance(e, len);
return true;
}
// Finish the current run by adding the run totals to the segment and message
// length.
static void accumulate(upb_pb_encoder *e) {
assert(e->ptr >= e->runbegin);
size_t run_len = e->ptr - e->runbegin;
e->segptr->seglen += run_len;
top(e)->msglen += run_len;
e->runbegin = e->ptr;
}
// Call to indicate the start of delimited region for which the full length is
// not yet known. All data will be buffered until the length is known.
// Delimited regions may be nested; their lengths will all be tracked properly.
static bool start_delim(upb_pb_encoder *e) {
if (e->top) {
// We are already buffering, advance to the next segment and push it on the
// stack.
accumulate(e);
if (++e->top == e->stacklimit) {
// TODO(haberman): grow stack?
return false;
}
if (++e->segptr == e->seglimit) {
// Grow segment buffer.
size_t old_size =
(e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment);
size_t new_size = old_size * 2;
upb_pb_encoder_segment *new_buf =
upb_env_realloc(e->env, e->segbuf, old_size, new_size);
if (new_buf == NULL) {
return false;
}
e->segptr = new_buf + (e->segptr - e->segbuf);
e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment));
e->segbuf = new_buf;
}
} else {
// We were previously at the top level, start buffering.
e->segptr = e->segbuf;
e->top = e->stack;
e->runbegin = e->ptr;
}
*e->top = e->segptr - e->segbuf;
e->segptr->seglen = 0;
e->segptr->msglen = 0;
return true;
}
// Call to indicate the end of a delimited region. We now know the length of
// the delimited region. If we are not nested inside any other delimited
// regions, we can now emit all of the buffered data we accumulated.
static bool end_delim(upb_pb_encoder *e) {
accumulate(e);
size_t msglen = top(e)->msglen;
if (e->top == e->stack) {
// All lengths are now available, emit all buffered data.
char buf[UPB_PB_VARINT_MAX_LEN];
upb_pb_encoder_segment *s;
const char *ptr = e->buf;
for (s = e->segbuf; s <= e->segptr; s++) {
size_t lenbytes = upb_vencode64(s->msglen, buf);
putbuf(e, buf, lenbytes);
putbuf(e, ptr, s->seglen);
ptr += s->seglen;
}
e->ptr = e->buf;
e->top = NULL;
} else {
// Need to keep buffering; propagate length info into enclosing submessages.
--e->top;
top(e)->msglen += msglen + upb_varint_size(msglen);
}
return true;
}
/* tag_t **********************************************************************/
// A precomputed (pre-encoded) tag and length.
typedef struct {
uint8_t bytes;
char tag[7];
} tag_t;
// Allocates a new tag for this field, and sets it in these handlerattr.
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt,
upb_handlerattr *attr) {
uint32_t n = upb_fielddef_number(f);
tag_t *tag = malloc(sizeof(tag_t));
tag->bytes = upb_vencode64((n << 3) | wt, tag->tag);
upb_handlerattr_init(attr);
upb_handlerattr_sethandlerdata(attr, tag);
upb_handlers_addcleanup(h, tag, free);
}
static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) {
return encode_bytes(e, tag->tag, tag->bytes);
}
/* encoding of wire types *****************************************************/
static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) {
// TODO(haberman): byte-swap for big endian.
return encode_bytes(e, &val, sizeof(uint64_t));
}
static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) {
// TODO(haberman): byte-swap for big endian.
return encode_bytes(e, &val, sizeof(uint32_t));
}
static bool encode_varint(upb_pb_encoder *e, uint64_t val) {
if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) {
return false;
}
encoder_advance(e, upb_vencode64(val, e->ptr));
return true;
}
static uint64_t dbl2uint64(double d) {
uint64_t ret;
memcpy(&ret, &d, sizeof(uint64_t));
return ret;
}
static uint32_t flt2uint32(float d) {
uint32_t ret;
memcpy(&ret, &d, sizeof(uint32_t));
return ret;
}
/* encoding of proto types ****************************************************/
static bool startmsg(void *c, const void *hd) {
upb_pb_encoder *e = c;
UPB_UNUSED(hd);
if (e->depth++ == 0) {
upb_bytessink_start(e->output_, 0, &e->subc);
}
return true;
}
static bool endmsg(void *c, const void *hd, upb_status *status) {
upb_pb_encoder *e = c;
UPB_UNUSED(hd);
UPB_UNUSED(status);
if (--e->depth == 0) {
upb_bytessink_end(e->output_);
}
return true;
}
static void *encode_startdelimfield(void *c, const void *hd) {
bool ok = encode_tag(c, hd) && commit(c) && start_delim(c);
return ok ? c : UPB_BREAK;
}
static bool encode_enddelimfield(void *c, const void *hd) {
UPB_UNUSED(hd);
return end_delim(c);
}
static void *encode_startgroup(void *c, const void *hd) {
return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK;
}
static bool encode_endgroup(void *c, const void *hd) {
return encode_tag(c, hd) && commit(c);
}
static void *encode_startstr(void *c, const void *hd, size_t size_hint) {
UPB_UNUSED(size_hint);
return encode_startdelimfield(c, hd);
}
static size_t encode_strbuf(void *c, const void *hd, const char *buf,
size_t len, const upb_bufhandle *h) {
UPB_UNUSED(hd);
UPB_UNUSED(h);
return encode_bytes(c, buf, len) ? len : 0;
}
#define T(type, ctype, convert, encode) \
static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \
} \
static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
UPB_UNUSED(hd); \
return encode(e, (convert)(val)); \
}
T(double, double, dbl2uint64, encode_fixed64)
T(float, float, flt2uint32, encode_fixed32);
T(int64, int64_t, uint64_t, encode_varint);
T(int32, int32_t, uint32_t, encode_varint);
T(fixed64, uint64_t, uint64_t, encode_fixed64);
T(fixed32, uint32_t, uint32_t, encode_fixed32);
T(bool, bool, bool, encode_varint);
T(uint32, uint32_t, uint32_t, encode_varint);
T(uint64, uint64_t, uint64_t, encode_varint);
T(enum, int32_t, uint32_t, encode_varint);
T(sfixed32, int32_t, uint32_t, encode_fixed32);
T(sfixed64, int64_t, uint64_t, encode_fixed64);
T(sint32, int32_t, upb_zzenc_32, encode_varint);
T(sint64, int64_t, upb_zzenc_64, encode_varint);
#undef T
/* code to build the handlers *************************************************/
static void newhandlers_callback(const void *closure, upb_handlers *h) {
UPB_UNUSED(closure);
upb_handlers_setstartmsg(h, startmsg, NULL);
upb_handlers_setendmsg(h, endmsg, NULL);
const upb_msgdef *m = upb_handlers_msgdef(h);
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) &&
upb_fielddef_packed(f);
upb_handlerattr attr;
upb_wiretype_t wt =
packed ? UPB_WIRE_TYPE_DELIMITED
: upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
// Pre-encode the tag for this field.
new_tag(h, f, wt, &attr);
if (packed) {
upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr);
upb_handlers_setendseq(h, f, encode_enddelimfield, &attr);
}
#define T(upper, lower, upbtype) \
case UPB_DESCRIPTOR_TYPE_##upper: \
if (packed) { \
upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
} else { \
upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
} \
break;
switch (upb_fielddef_descriptortype(f)) {
T(DOUBLE, double, double);
T(FLOAT, float, float);
T(INT64, int64, int64);
T(INT32, int32, int32);
T(FIXED64, fixed64, uint64);
T(FIXED32, fixed32, uint32);
T(BOOL, bool, bool);
T(UINT32, uint32, uint32);
T(UINT64, uint64, uint64);
T(ENUM, enum, int32);
T(SFIXED32, sfixed32, int32);
T(SFIXED64, sfixed64, int64);
T(SINT32, sint32, int32);
T(SINT64, sint64, int64);
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES:
upb_handlers_setstartstr(h, f, encode_startstr, &attr);
upb_handlers_setendstr(h, f, encode_enddelimfield, &attr);
upb_handlers_setstring(h, f, encode_strbuf, &attr);
break;
case UPB_DESCRIPTOR_TYPE_MESSAGE:
upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr);
upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr);
break;
case UPB_DESCRIPTOR_TYPE_GROUP: {
// Endgroup takes a different tag (wire_type = END_GROUP).
upb_handlerattr attr2;
new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2);
upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr);
upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2);
upb_handlerattr_uninit(&attr2);
break;
}
}
#undef T
upb_handlerattr_uninit(&attr);
}
}
void upb_pb_encoder_reset(upb_pb_encoder *e) {
e->segptr = NULL;
e->top = NULL;
e->depth = 0;
}
/* public API *****************************************************************/
const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
const void *owner) {
return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL);
}
upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h,
upb_bytessink *output) {
const size_t initial_bufsize = 256;
const size_t initial_segbufsize = 16;
// TODO(haberman): make this configurable.
const size_t stack_size = 64;
#ifndef NDEBUG
const size_t size_before = upb_env_bytesallocated(env);
#endif
upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder));
if (!e) return NULL;
e->buf = upb_env_malloc(env, initial_bufsize);
e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf));
e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack));
if (!e->buf || !e->segbuf || !e->stack) {
return NULL;
}
e->limit = e->buf + initial_bufsize;
e->seglimit = e->segbuf + initial_segbufsize;
e->stacklimit = e->stack + stack_size;
upb_pb_encoder_reset(e);
upb_sink_reset(&e->input_, h, e);
e->env = env;
e->output_ = output;
e->subc = output->closure;
e->ptr = e->buf;
// If this fails, increase the value in encoder.h.
assert(upb_env_bytesallocated(env) - size_before <= UPB_PB_ENCODER_SIZE);
return e;
}
upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; }
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2010-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n,
void *owner, upb_status *status) {
// Create handlers.
const upb_handlers *reader_h = upb_descreader_newhandlers(&reader_h);
upb_pbdecodermethodopts opts;
upb_pbdecodermethodopts_init(&opts, reader_h);
const upb_pbdecodermethod *decoder_m =
upb_pbdecodermethod_new(&opts, &decoder_m);
upb_env env;
upb_env_init(&env);
upb_env_reporterrorsto(&env, status);
upb_descreader *reader = upb_descreader_create(&env, reader_h);
upb_pbdecoder *decoder =
upb_pbdecoder_create(&env, decoder_m, upb_descreader_input(reader));
// Push input data.
bool ok = upb_bufsrc_putbuf(str, len, upb_pbdecoder_input(decoder));
upb_def **ret = NULL;
if (!ok) goto cleanup;
upb_def **defs = upb_descreader_getdefs(reader, owner, n);
ret = malloc(sizeof(upb_def*) * (*n));
memcpy(ret, defs, sizeof(upb_def*) * (*n));
cleanup:
upb_env_uninit(&env);
upb_handlers_unref(reader_h, &reader_h);
upb_pbdecodermethod_unref(decoder_m, &decoder_m);
return ret;
}
bool upb_load_descriptor_into_symtab(upb_symtab *s, const char *str, size_t len,
upb_status *status) {
int n;
upb_def **defs = upb_load_defs_from_descriptor(str, len, &n, &defs, status);
if (!defs) return false;
bool success = upb_symtab_add(s, defs, n, &defs, status);
free(defs);
return success;
}
char *upb_readfile(const char *filename, size_t *len) {
FILE *f = fopen(filename, "rb");
if(!f) return NULL;
if(fseek(f, 0, SEEK_END) != 0) goto error;
long size = ftell(f);
if(size < 0) goto error;
if(fseek(f, 0, SEEK_SET) != 0) goto error;
char *buf = malloc(size + 1);
if(size && fread(buf, size, 1, f) != 1) goto error;
fclose(f);
if (len) *len = size;
return buf;
error:
fclose(f);
return NULL;
}
bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname,
upb_status *status) {
size_t len;
char *data = upb_readfile(fname, &len);
if (!data) {
if (status) upb_status_seterrf(status, "Couldn't read file: %s", fname);
return false;
}
bool success = upb_load_descriptor_into_symtab(symtab, data, len, status);
free(data);
return success;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* OPT: This is not optimized at all. It uses printf() which parses the format
* string every time, and it allocates memory for every put.
*/
#include <ctype.h>
#include <float.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct upb_textprinter {
upb_sink input_;
upb_bytessink *output_;
int indent_depth_;
bool single_line_;
void *subc;
};
#define CHECK(x) if ((x) < 0) goto err;
static const char *shortname(const char *longname) {
const char *last = strrchr(longname, '.');
return last ? last + 1 : longname;
}
static int indent(upb_textprinter *p) {
int i;
if (!p->single_line_)
for (i = 0; i < p->indent_depth_; i++)
upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL);
return 0;
}
static int endfield(upb_textprinter *p) {
const char ch = (p->single_line_ ? ' ' : '\n');
upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL);
return 0;
}
static int putescaped(upb_textprinter *p, const char *buf, size_t len,
bool preserve_utf8) {
// Based on CEscapeInternal() from Google's protobuf release.
char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf);
const char *end = buf + len;
// I think hex is prettier and more useful, but proto2 uses octal; should
// investigate whether it can parse hex also.
const bool use_hex = false;
bool last_hex_escape = false; // true if last output char was \xNN
for (; buf < end; buf++) {
if (dstend - dst < 4) {
upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL);
dst = dstbuf;
}
bool is_hex_escape = false;
switch (*buf) {
case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break;
case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break;
case '\t': *(dst++) = '\\'; *(dst++) = 't'; break;
case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break;
case '\'': *(dst++) = '\\'; *(dst++) = '\''; break;
case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break;
default:
// Note that if we emit \xNN and the buf character after that is a hex
// digit then that digit must be escaped too to prevent it being
// interpreted as part of the character code by C.
if ((!preserve_utf8 || (uint8_t)*buf < 0x80) &&
(!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) {
sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf);
is_hex_escape = use_hex;
dst += 4;
} else {
*(dst++) = *buf; break;
}
}
last_hex_escape = is_hex_escape;
}
// Flush remaining data.
upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL);
return 0;
}
bool putf(upb_textprinter *p, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
// Run once to get the length of the string.
va_list args_copy;
va_copy(args_copy, args);
int len = vsnprintf(NULL, 0, fmt, args_copy);
va_end(args_copy);
// + 1 for NULL terminator (vsnprintf() requires it even if we don't).
char *str = malloc(len + 1);
if (!str) return false;
int written = vsnprintf(str, len + 1, fmt, args);
va_end(args);
UPB_ASSERT_VAR(written, written == len);
bool ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL);
free(str);
return ok;
}
/* handlers *******************************************************************/
static bool textprinter_startmsg(void *c, const void *hd) {
UPB_UNUSED(hd);
upb_textprinter *p = c;
if (p->indent_depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc);
}
return true;
}
static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) {
UPB_UNUSED(hd);
UPB_UNUSED(s);
upb_textprinter *p = c;
if (p->indent_depth_ == 0) {
upb_bytessink_end(p->output_);
}
return true;
}
#define TYPE(name, ctype, fmt) \
static bool textprinter_put ## name(void *closure, const void *handler_data, \
ctype val) { \
upb_textprinter *p = closure; \
const upb_fielddef *f = handler_data; \
CHECK(indent(p)); \
putf(p, "%s: " fmt, upb_fielddef_name(f), val); \
CHECK(endfield(p)); \
return true; \
err: \
return false; \
}
static bool textprinter_putbool(void *closure, const void *handler_data,
bool val) {
upb_textprinter *p = closure;
const upb_fielddef *f = handler_data;
CHECK(indent(p));
putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false");
CHECK(endfield(p));
return true;
err:
return false;
}
#define STRINGIFY_HELPER(x) #x
#define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x)
TYPE(int32, int32_t, "%" PRId32)
TYPE(int64, int64_t, "%" PRId64)
TYPE(uint32, uint32_t, "%" PRIu32);
TYPE(uint64, uint64_t, "%" PRIu64)
TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g")
TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g")
#undef TYPE
// Output a symbolic value from the enum if found, else just print as int32.
static bool textprinter_putenum(void *closure, const void *handler_data,
int32_t val) {
upb_textprinter *p = closure;
const upb_fielddef *f = handler_data;
const upb_enumdef *enum_def = upb_downcast_enumdef(upb_fielddef_subdef(f));
const char *label = upb_enumdef_iton(enum_def, val);
if (label) {
indent(p);
putf(p, "%s: %s", upb_fielddef_name(f), label);
endfield(p);
} else {
if (!textprinter_putint32(closure, handler_data, val))
return false;
}
return true;
}
static void *textprinter_startstr(void *closure, const void *handler_data,
size_t size_hint) {
const upb_fielddef *f = handler_data;
UPB_UNUSED(size_hint);
upb_textprinter *p = closure;
indent(p);
putf(p, "%s: \"", upb_fielddef_name(f));
return p;
}
static bool textprinter_endstr(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_textprinter *p = closure;
putf(p, "\"");
endfield(p);
return true;
}
static size_t textprinter_putstr(void *closure, const void *hd, const char *buf,
size_t len, const upb_bufhandle *handle) {
UPB_UNUSED(handle);
upb_textprinter *p = closure;
const upb_fielddef *f = hd;
CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING));
return len;
err:
return 0;
}
static void *textprinter_startsubmsg(void *closure, const void *handler_data) {
upb_textprinter *p = closure;
const char *name = handler_data;
CHECK(indent(p));
putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n');
p->indent_depth_++;
return p;
err:
return UPB_BREAK;
}
static bool textprinter_endsubmsg(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_textprinter *p = closure;
p->indent_depth_--;
CHECK(indent(p));
upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL);
CHECK(endfield(p));
return true;
err:
return false;
}
static void onmreg(const void *c, upb_handlers *h) {
UPB_UNUSED(c);
const upb_msgdef *m = upb_handlers_msgdef(h);
upb_handlers_setstartmsg(h, textprinter_startmsg, NULL);
upb_handlers_setendmsg(h, textprinter_endmsg, NULL);
upb_msg_field_iter i;
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, f);
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
upb_handlers_setint32(h, f, textprinter_putint32, &attr);
break;
case UPB_TYPE_INT64:
upb_handlers_setint64(h, f, textprinter_putint64, &attr);
break;
case UPB_TYPE_UINT32:
upb_handlers_setuint32(h, f, textprinter_putuint32, &attr);
break;
case UPB_TYPE_UINT64:
upb_handlers_setuint64(h, f, textprinter_putuint64, &attr);
break;
case UPB_TYPE_FLOAT:
upb_handlers_setfloat(h, f, textprinter_putfloat, &attr);
break;
case UPB_TYPE_DOUBLE:
upb_handlers_setdouble(h, f, textprinter_putdouble, &attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, f, textprinter_putbool, &attr);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
upb_handlers_setstartstr(h, f, textprinter_startstr, &attr);
upb_handlers_setstring(h, f, textprinter_putstr, &attr);
upb_handlers_setendstr(h, f, textprinter_endstr, &attr);
break;
case UPB_TYPE_MESSAGE: {
const char *name =
upb_fielddef_istagdelim(f)
? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f)))
: upb_fielddef_name(f);
upb_handlerattr_sethandlerdata(&attr, name);
upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr);
upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr);
break;
}
case UPB_TYPE_ENUM:
upb_handlers_setint32(h, f, textprinter_putenum, &attr);
break;
}
}
}
static void textprinter_reset(upb_textprinter *p, bool single_line) {
p->single_line_ = single_line;
p->indent_depth_ = 0;
}
/* Public API *****************************************************************/
upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
upb_bytessink *output) {
upb_textprinter *p = upb_env_malloc(env, sizeof(upb_textprinter));
if (!p) return NULL;
p->output_ = output;
upb_sink_reset(&p->input_, h, p);
textprinter_reset(p, false);
return p;
}
const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
const void *owner) {
return upb_handlers_newfrozen(m, owner, &onmreg, NULL);
}
upb_sink *upb_textprinter_input(upb_textprinter *p) { return &p->input_; }
void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) {
p->single_line_ = single_line;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
// Index is descriptor type.
const uint8_t upb_pb_native_wire_types[] = {
UPB_WIRE_TYPE_END_GROUP, // ENDGROUP
UPB_WIRE_TYPE_64BIT, // DOUBLE
UPB_WIRE_TYPE_32BIT, // FLOAT
UPB_WIRE_TYPE_VARINT, // INT64
UPB_WIRE_TYPE_VARINT, // UINT64
UPB_WIRE_TYPE_VARINT, // INT32
UPB_WIRE_TYPE_64BIT, // FIXED64
UPB_WIRE_TYPE_32BIT, // FIXED32
UPB_WIRE_TYPE_VARINT, // BOOL
UPB_WIRE_TYPE_DELIMITED, // STRING
UPB_WIRE_TYPE_START_GROUP, // GROUP
UPB_WIRE_TYPE_DELIMITED, // MESSAGE
UPB_WIRE_TYPE_DELIMITED, // BYTES
UPB_WIRE_TYPE_VARINT, // UINT32
UPB_WIRE_TYPE_VARINT, // ENUM
UPB_WIRE_TYPE_32BIT, // SFIXED32
UPB_WIRE_TYPE_64BIT, // SFIXED64
UPB_WIRE_TYPE_VARINT, // SINT32
UPB_WIRE_TYPE_VARINT, // SINT64
};
// A basic branch-based decoder, uses 32-bit values to get good performance
// on 32-bit architectures (but performs well on 64-bits also).
// This scheme comes from the original Google Protobuf implementation (proto2).
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) {
upb_decoderet err = {NULL, 0};
const char *p = r.p;
uint32_t low = (uint32_t)r.val;
uint32_t high = 0;
uint32_t b;
b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done;
b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done;
b = *(p++); low |= (b & 0x7fU) << 28;
high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done;
return err;
done:
r.val = ((uint64_t)high << 32) | low;
r.p = p;
return r;
}
// Like the previous, but uses 64-bit values.
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) {
const char *p = r.p;
uint64_t val = r.val;
uint64_t b;
upb_decoderet err = {NULL, 0};
b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done;
return err;
done:
r.val = val;
r.p = p;
return r;
}
// Given an encoded varint v, returns an integer with a single bit set that
// indicates the end of the varint. Subtracting one from this value will
// yield a mask that leaves only bits that are part of the varint. Returns
// 0 if the varint is unterminated.
static uint64_t upb_get_vstopbit(uint64_t v) {
uint64_t cbits = v | 0x7f7f7f7f7f7f7f7fULL;
return ~cbits & (cbits+1);
}
// A branchless decoder. Credit to Pascal Massimino for the bit-twiddling.
upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r) {
uint64_t b;
memcpy(&b, r.p, sizeof(b));
uint64_t stop_bit = upb_get_vstopbit(b);
b = (b & 0x7f7f7f7f7f7f7f7fULL) & (stop_bit - 1);
b += b & 0x007f007f007f007fULL;
b += 3 * (b & 0x0000ffff0000ffffULL);
b += 15 * (b & 0x00000000ffffffffULL);
if (stop_bit == 0) {
// Error: unterminated varint.
upb_decoderet err_r = {(void*)0, 0};
return err_r;
}
upb_decoderet my_r = {r.p + ((__builtin_ctzll(stop_bit) + 1) / 8),
r.val | (b << 7)};
return my_r;
}
// A branchless decoder. Credit to Daniel Wright for the bit-twiddling.
upb_decoderet upb_vdecode_max8_wright(upb_decoderet r) {
uint64_t b;
memcpy(&b, r.p, sizeof(b));
uint64_t stop_bit = upb_get_vstopbit(b);
b &= (stop_bit - 1);
b = ((b & 0x7f007f007f007f00ULL) >> 1) | (b & 0x007f007f007f007fULL);
b = ((b & 0xffff0000ffff0000ULL) >> 2) | (b & 0x0000ffff0000ffffULL);
b = ((b & 0xffffffff00000000ULL) >> 4) | (b & 0x00000000ffffffffULL);
if (stop_bit == 0) {
// Error: unterminated varint.
upb_decoderet err_r = {(void*)0, 0};
return err_r;
}
upb_decoderet my_r = {r.p + ((__builtin_ctzll(stop_bit) + 1) / 8),
r.val | (b << 14)};
return my_r;
}
#line 1 "upb/json/parser.rl"
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A parser that uses the Ragel State Machine Compiler to generate
* the finite automata.
*
* Ragel only natively handles regular languages, but we can manually
* program it a bit to handle context-free languages like JSON, by using
* the "fcall" and "fret" constructs.
*
* This parser can handle the basics, but needs several things to be fleshed
* out:
*
* - handling of unicode escape sequences (including high surrogate pairs).
* - properly check and report errors for unknown fields, stack overflow,
* improper array nesting (or lack of nesting).
* - handling of base64 sequences with padding characters.
* - handling of push-back (non-success returns from sink functions).
* - handling of keys/escape-sequences/etc that span input buffers.
*/
#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#define UPB_JSON_MAX_DEPTH 64
typedef struct {
upb_sink sink;
// The current message in which we're parsing, and the field whose value we're
// expecting next.
const upb_msgdef *m;
const upb_fielddef *f;
// We are in a repeated-field context, ready to emit mapentries as
// submessages. This flag alters the start-of-object (open-brace) behavior to
// begin a sequence of mapentry messages rather than a single submessage.
bool is_map;
// We are in a map-entry message context. This flag is set when parsing the
// value field of a single map entry and indicates to all value-field parsers
// (subobjects, strings, numbers, and bools) that the map-entry submessage
// should end as soon as the value is parsed.
bool is_mapentry;
// If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent
// message's map field that we're currently parsing. This differs from |f|
// because |f| is the field in the *current* message (i.e., the map-entry
// message itself), not the parent's field that leads to this map.
const upb_fielddef *mapfield;
} upb_jsonparser_frame;
struct upb_json_parser {
upb_env *env;
upb_byteshandler input_handler_;
upb_bytessink input_;
// Stack to track the JSON scopes we are in.
upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH];
upb_jsonparser_frame *top;
upb_jsonparser_frame *limit;
upb_status *status;
// Ragel's internal parsing stack for the parsing state machine.
int current_state;
int parser_stack[UPB_JSON_MAX_DEPTH];
int parser_top;
// The handle for the current buffer.
const upb_bufhandle *handle;
// Accumulate buffer. See details in parser.rl.
const char *accumulated;
size_t accumulated_len;
char *accumulate_buf;
size_t accumulate_buf_size;
// Multi-part text data. See details in parser.rl.
int multipart_state;
upb_selector_t string_selector;
// Input capture. See details in parser.rl.
const char *capture;
// Intermediate result of parsing a unicode escape sequence.
uint32_t digit;
};
#define PARSER_CHECK_RETURN(x) if (!(x)) return false
// Used to signal that a capture has been suspended.
static char suspend_capture;
static upb_selector_t getsel_for_handlertype(upb_json_parser *p,
upb_handlertype_t type) {
upb_selector_t sel;
bool ok = upb_handlers_getselector(p->top->f, type, &sel);
UPB_ASSERT_VAR(ok, ok);
return sel;
}
static upb_selector_t parser_getsel(upb_json_parser *p) {
return getsel_for_handlertype(
p, upb_handlers_getprimitivehandlertype(p->top->f));
}
static bool check_stack(upb_json_parser *p) {
if ((p->top + 1) == p->limit) {
upb_status_seterrmsg(p->status, "Nesting too deep");
return false;
}
return true;
}
// There are GCC/Clang built-ins for overflow checking which we could start
// using if there was any performance benefit to it.
static bool checked_add(size_t a, size_t b, size_t *c) {
if (SIZE_MAX - a < b) return false;
*c = a + b;
return true;
}
static size_t saturating_multiply(size_t a, size_t b) {
// size_t is unsigned, so this is defined behavior even on overflow.
size_t ret = a * b;
if (b != 0 && ret / b != a) {
ret = SIZE_MAX;
}
return ret;
}
/* Base64 decoding ************************************************************/
// TODO(haberman): make this streaming.
static const signed char b64table[] = {
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1
};
// Returns the table value sign-extended to 32 bits. Knowing that the upper
// bits will be 1 for unrecognized characters makes it easier to check for
// this error condition later (see below).
int32_t b64lookup(unsigned char ch) { return b64table[ch]; }
// Returns true if the given character is not a valid base64 character or
// padding.
bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; }
static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr,
size_t len) {
const char *limit = ptr + len;
for (; ptr < limit; ptr += 4) {
if (limit - ptr < 4) {
upb_status_seterrf(p->status,
"Base64 input for bytes field not a multiple of 4: %s",
upb_fielddef_name(p->top->f));
return false;
}
uint32_t val = b64lookup(ptr[0]) << 18 |
b64lookup(ptr[1]) << 12 |
b64lookup(ptr[2]) << 6 |
b64lookup(ptr[3]);
// Test the upper bit; returns true if any of the characters returned -1.
if (val & 0x80000000) {
goto otherchar;
}
char output[3];
output[0] = val >> 16;
output[1] = (val >> 8) & 0xff;
output[2] = val & 0xff;
upb_sink_putstring(&p->top->sink, sel, output, 3, NULL);
}
return true;
otherchar:
if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) ||
nonbase64(ptr[3]) ) {
upb_status_seterrf(p->status,
"Non-base64 characters in bytes field: %s",
upb_fielddef_name(p->top->f));
return false;
} if (ptr[2] == '=') {
// Last group contains only two input bytes, one output byte.
if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') {
goto badpadding;
}
uint32_t val = b64lookup(ptr[0]) << 18 |
b64lookup(ptr[1]) << 12;
assert(!(val & 0x80000000));
char output = val >> 16;
upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL);
return true;
} else {
// Last group contains only three input bytes, two output bytes.
if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') {
goto badpadding;
}
uint32_t val = b64lookup(ptr[0]) << 18 |
b64lookup(ptr[1]) << 12 |
b64lookup(ptr[2]) << 6;
char output[2];
output[0] = val >> 16;
output[1] = (val >> 8) & 0xff;
upb_sink_putstring(&p->top->sink, sel, output, 2, NULL);
return true;
}
badpadding:
upb_status_seterrf(p->status,
"Incorrect base64 padding for field: %s (%.*s)",
upb_fielddef_name(p->top->f),
4, ptr);
return false;
}
/* Accumulate buffer **********************************************************/
// Functionality for accumulating a buffer.
//
// Some parts of the parser need an entire value as a contiguous string. For
// example, to look up a member name in a hash table, or to turn a string into
// a number, the relevant library routines need the input string to be in
// contiguous memory, even if the value spanned two or more buffers in the
// input. These routines handle that.
//
// In the common case we can just point to the input buffer to get this
// contiguous string and avoid any actual copy. So we optimistically begin
// this way. But there are a few cases where we must instead copy into a
// separate buffer:
//
// 1. The string was not contiguous in the input (it spanned buffers).
//
// 2. The string included escape sequences that need to be interpreted to get
// the true value in a contiguous buffer.
static void assert_accumulate_empty(upb_json_parser *p) {
UPB_UNUSED(p);
assert(p->accumulated == NULL);
assert(p->accumulated_len == 0);
}
static void accumulate_clear(upb_json_parser *p) {
p->accumulated = NULL;
p->accumulated_len = 0;
}
// Used internally by accumulate_append().
static bool accumulate_realloc(upb_json_parser *p, size_t need) {
size_t old_size = p->accumulate_buf_size;
size_t new_size = UPB_MAX(old_size, 128);
while (new_size < need) {
new_size = saturating_multiply(new_size, 2);
}
void *mem = upb_env_realloc(p->env, p->accumulate_buf, old_size, new_size);
if (!mem) {
upb_status_seterrmsg(p->status, "Out of memory allocating buffer.");
return false;
}
p->accumulate_buf = mem;
p->accumulate_buf_size = new_size;
return true;
}
// Logically appends the given data to the append buffer.
// If "can_alias" is true, we will try to avoid actually copying, but the buffer
// must be valid until the next accumulate_append() call (if any).
static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len,
bool can_alias) {
if (!p->accumulated && can_alias) {
p->accumulated = buf;
p->accumulated_len = len;
return true;
}
size_t need;
if (!checked_add(p->accumulated_len, len, &need)) {
upb_status_seterrmsg(p->status, "Integer overflow.");
return false;
}
if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) {
return false;
}
if (p->accumulated != p->accumulate_buf) {
memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len);
p->accumulated = p->accumulate_buf;
}
memcpy(p->accumulate_buf + p->accumulated_len, buf, len);
p->accumulated_len += len;
return true;
}
// Returns a pointer to the data accumulated since the last accumulate_clear()
// call, and writes the length to *len. This with point either to the input
// buffer or a temporary accumulate buffer.
static const char *accumulate_getptr(upb_json_parser *p, size_t *len) {
assert(p->accumulated);
*len = p->accumulated_len;
return p->accumulated;
}
/* Mult-part text data ********************************************************/
// When we have text data in the input, it can often come in multiple segments.
// For example, there may be some raw string data followed by an escape
// sequence. The two segments are processed with different logic. Also buffer
// seams in the input can cause multiple segments.
//
// As we see segments, there are two main cases for how we want to process them:
//
// 1. we want to push the captured input directly to string handlers.
//
// 2. we need to accumulate all the parts into a contiguous buffer for further
// processing (field name lookup, string->number conversion, etc).
// This is the set of states for p->multipart_state.
enum {
// We are not currently processing multipart data.
MULTIPART_INACTIVE = 0,
// We are processing multipart data by accumulating it into a contiguous
// buffer.
MULTIPART_ACCUMULATE = 1,
// We are processing multipart data by pushing each part directly to the
// current string handlers.
MULTIPART_PUSHEAGERLY = 2
};
// Start a multi-part text value where we accumulate the data for processing at
// the end.
static void multipart_startaccum(upb_json_parser *p) {
assert_accumulate_empty(p);
assert(p->multipart_state == MULTIPART_INACTIVE);
p->multipart_state = MULTIPART_ACCUMULATE;
}
// Start a multi-part text value where we immediately push text data to a string
// value with the given selector.
static void multipart_start(upb_json_parser *p, upb_selector_t sel) {
assert_accumulate_empty(p);
assert(p->multipart_state == MULTIPART_INACTIVE);
p->multipart_state = MULTIPART_PUSHEAGERLY;
p->string_selector = sel;
}
static bool multipart_text(upb_json_parser *p, const char *buf, size_t len,
bool can_alias) {
switch (p->multipart_state) {
case MULTIPART_INACTIVE:
upb_status_seterrmsg(
p->status, "Internal error: unexpected state MULTIPART_INACTIVE");
return false;
case MULTIPART_ACCUMULATE:
if (!accumulate_append(p, buf, len, can_alias)) {
return false;
}
break;
case MULTIPART_PUSHEAGERLY: {
const upb_bufhandle *handle = can_alias ? p->handle : NULL;
upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle);
break;
}
}
return true;
}
// Note: this invalidates the accumulate buffer! Call only after reading its
// contents.
static void multipart_end(upb_json_parser *p) {
assert(p->multipart_state != MULTIPART_INACTIVE);
p->multipart_state = MULTIPART_INACTIVE;
accumulate_clear(p);
}
/* Input capture **************************************************************/
// Functionality for capturing a region of the input as text. Gracefully
// handles the case where a buffer seam occurs in the middle of the captured
// region.
static void capture_begin(upb_json_parser *p, const char *ptr) {
assert(p->multipart_state != MULTIPART_INACTIVE);
assert(p->capture == NULL);
p->capture = ptr;
}
static bool capture_end(upb_json_parser *p, const char *ptr) {
assert(p->capture);
if (multipart_text(p, p->capture, ptr - p->capture, true)) {
p->capture = NULL;
return true;
} else {
return false;
}
}
// This is called at the end of each input buffer (ie. when we have hit a
// buffer seam). If we are in the middle of capturing the input, this
// processes the unprocessed capture region.
static void capture_suspend(upb_json_parser *p, const char **ptr) {
if (!p->capture) return;
if (multipart_text(p, p->capture, *ptr - p->capture, false)) {
// We use this as a signal that we were in the middle of capturing, and
// that capturing should resume at the beginning of the next buffer.
//
// We can't use *ptr here, because we have no guarantee that this pointer
// will be valid when we resume (if the underlying memory is freed, then
// using the pointer at all, even to compare to NULL, is likely undefined
// behavior).
p->capture = &suspend_capture;
} else {
// Need to back up the pointer to the beginning of the capture, since
// we were not able to actually preserve it.
*ptr = p->capture;
}
}
static void capture_resume(upb_json_parser *p, const char *ptr) {
if (p->capture) {
assert(p->capture == &suspend_capture);
p->capture = ptr;
}
}
/* Callbacks from the parser **************************************************/
// These are the functions called directly from the parser itself.
// We define these in the same order as their declarations in the parser.
static char escape_char(char in) {
switch (in) {
case 'r': return '\r';
case 't': return '\t';
case 'n': return '\n';
case 'f': return '\f';
case 'b': return '\b';
case '/': return '/';
case '"': return '"';
case '\\': return '\\';
default:
assert(0);
return 'x';
}
}
static bool escape(upb_json_parser *p, const char *ptr) {
char ch = escape_char(*ptr);
return multipart_text(p, &ch, 1, false);
}
static void start_hex(upb_json_parser *p) {
p->digit = 0;
}
static void hexdigit(upb_json_parser *p, const char *ptr) {
char ch = *ptr;
p->digit <<= 4;
if (ch >= '0' && ch <= '9') {
p->digit += (ch - '0');
} else if (ch >= 'a' && ch <= 'f') {
p->digit += ((ch - 'a') + 10);
} else {
assert(ch >= 'A' && ch <= 'F');
p->digit += ((ch - 'A') + 10);
}
}
static bool end_hex(upb_json_parser *p) {
uint32_t codepoint = p->digit;
// emit the codepoint as UTF-8.
char utf8[3]; // support \u0000 -- \uFFFF -- need only three bytes.
int length = 0;
if (codepoint <= 0x7F) {
utf8[0] = codepoint;
length = 1;
} else if (codepoint <= 0x07FF) {
utf8[1] = (codepoint & 0x3F) | 0x80;
codepoint >>= 6;
utf8[0] = (codepoint & 0x1F) | 0xC0;
length = 2;
} else /* codepoint <= 0xFFFF */ {
utf8[2] = (codepoint & 0x3F) | 0x80;
codepoint >>= 6;
utf8[1] = (codepoint & 0x3F) | 0x80;
codepoint >>= 6;
utf8[0] = (codepoint & 0x0F) | 0xE0;
length = 3;
}
// TODO(haberman): Handle high surrogates: if codepoint is a high surrogate
// we have to wait for the next escape to get the full code point).
return multipart_text(p, utf8, length, false);
}
static void start_text(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_text(upb_json_parser *p, const char *ptr) {
return capture_end(p, ptr);
}
static void start_number(upb_json_parser *p, const char *ptr) {
multipart_startaccum(p);
capture_begin(p, ptr);
}
static bool parse_number(upb_json_parser *p);
static bool end_number(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
return parse_number(p);
}
static bool parse_number(upb_json_parser *p) {
// strtol() and friends unfortunately do not support specifying the length of
// the input string, so we need to force a copy into a NULL-terminated buffer.
if (!multipart_text(p, "\0", 1, false)) {
return false;
}
size_t len;
const char *buf = accumulate_getptr(p, &len);
const char *myend = buf + len - 1; // One for NULL.
char *end;
switch (upb_fielddef_type(p->top->f)) {
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32: {
long val = strtol(p->accumulated, &end, 0);
if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend)
goto err;
else
upb_sink_putint32(&p->top->sink, parser_getsel(p), val);
break;
}
case UPB_TYPE_INT64: {
long long val = strtoll(p->accumulated, &end, 0);
if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend)
goto err;
else
upb_sink_putint64(&p->top->sink, parser_getsel(p), val);
break;
}
case UPB_TYPE_UINT32: {
unsigned long val = strtoul(p->accumulated, &end, 0);
if (val > UINT32_MAX || errno == ERANGE || end != myend)
goto err;
else
upb_sink_putuint32(&p->top->sink, parser_getsel(p), val);
break;
}
case UPB_TYPE_UINT64: {
unsigned long long val = strtoull(p->accumulated, &end, 0);
if (val > UINT64_MAX || errno == ERANGE || end != myend)
goto err;
else
upb_sink_putuint64(&p->top->sink, parser_getsel(p), val);
break;
}
case UPB_TYPE_DOUBLE: {
double val = strtod(p->accumulated, &end);
if (errno == ERANGE || end != myend)
goto err;
else
upb_sink_putdouble(&p->top->sink, parser_getsel(p), val);
break;
}
case UPB_TYPE_FLOAT: {
float val = strtof(p->accumulated, &end);
if (errno == ERANGE || end != myend)
goto err;
else
upb_sink_putfloat(&p->top->sink, parser_getsel(p), val);
break;
}
default:
assert(false);
}
multipart_end(p);
return true;
err:
upb_status_seterrf(p->status, "error parsing number: %s", buf);
multipart_end(p);
return false;
}
static bool parser_putbool(upb_json_parser *p, bool val) {
if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) {
upb_status_seterrf(p->status,
"Boolean value specified for non-bool field: %s",
upb_fielddef_name(p->top->f));
return false;
}
bool ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val);
UPB_ASSERT_VAR(ok, ok);
return true;
}
static bool start_stringval(upb_json_parser *p) {
assert(p->top->f);
if (upb_fielddef_isstring(p->top->f)) {
if (!check_stack(p)) return false;
// Start a new parser frame: parser frames correspond one-to-one with
// handler frames, and string events occur in a sub-frame.
upb_jsonparser_frame *inner = p->top + 1;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink);
inner->m = p->top->m;
inner->f = p->top->f;
inner->is_map = false;
inner->is_mapentry = false;
p->top = inner;
if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) {
// For STRING fields we push data directly to the handlers as it is
// parsed. We don't do this yet for BYTES fields, because our base64
// decoder is not streaming.
//
// TODO(haberman): make base64 decoding streaming also.
multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING));
return true;
} else {
multipart_startaccum(p);
return true;
}
} else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) {
// No need to push a frame -- symbolic enum names in quotes remain in the
// current parser frame.
//
// Enum string values must accumulate so we can look up the value in a table
// once it is complete.
multipart_startaccum(p);
return true;
} else {
upb_status_seterrf(p->status,
"String specified for non-string/non-enum field: %s",
upb_fielddef_name(p->top->f));
return false;
}
}
static bool end_stringval(upb_json_parser *p) {
bool ok = true;
switch (upb_fielddef_type(p->top->f)) {
case UPB_TYPE_BYTES:
if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING),
p->accumulated, p->accumulated_len)) {
return false;
}
// Fall through.
case UPB_TYPE_STRING: {
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(&p->top->sink, sel);
p->top--;
break;
}
case UPB_TYPE_ENUM: {
// Resolve enum symbolic name to integer value.
const upb_enumdef *enumdef =
(const upb_enumdef*)upb_fielddef_subdef(p->top->f);
size_t len;
const char *buf = accumulate_getptr(p, &len);
int32_t int_val = 0;
ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val);
if (ok) {
upb_selector_t sel = parser_getsel(p);
upb_sink_putint32(&p->top->sink, sel, int_val);
} else {
upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf);
}
break;
}
default:
assert(false);
upb_status_seterrmsg(p->status, "Internal error in JSON decoder");
ok = false;
break;
}
multipart_end(p);
return ok;
}
static void start_member(upb_json_parser *p) {
assert(!p->top->f);
multipart_startaccum(p);
}
// Helper: invoked during parse_mapentry() to emit the mapentry message's key
// field based on the current contents of the accumulate buffer.
static bool parse_mapentry_key(upb_json_parser *p) {
size_t len;
const char *buf = accumulate_getptr(p, &len);
// Emit the key field. We do a bit of ad-hoc parsing here because the
// parser state machine has already decided that this is a string field
// name, and we are reinterpreting it as some arbitrary key type. In
// particular, integer and bool keys are quoted, so we need to parse the
// quoted string contents here.
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY);
if (p->top->f == NULL) {
upb_status_seterrmsg(p->status, "mapentry message has no key");
return false;
}
switch (upb_fielddef_type(p->top->f)) {
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
// Invoke end_number. The accum buffer has the number's text already.
if (!parse_number(p)) {
return false;
}
break;
case UPB_TYPE_BOOL:
if (len == 4 && !strncmp(buf, "true", 4)) {
if (!parser_putbool(p, true)) {
return false;
}
} else if (len == 5 && !strncmp(buf, "false", 5)) {
if (!parser_putbool(p, false)) {
return false;
}
} else {
upb_status_seterrmsg(p->status,
"Map bool key not 'true' or 'false'");
return false;
}
multipart_end(p);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
upb_sink subsink;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(&p->top->sink, sel, len, &subsink);
sel = getsel_for_handlertype(p, UPB_HANDLER_STRING);
upb_sink_putstring(&subsink, sel, buf, len, NULL);
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(&subsink, sel);
multipart_end(p);
break;
}
default:
upb_status_seterrmsg(p->status, "Invalid field type for map key");
return false;
}
return true;
}
// Helper: emit one map entry (as a submessage in the map field sequence). This
// is invoked from end_membername(), at the end of the map entry's key string,
// with the map key in the accumulate buffer. It parses the key from that
// buffer, emits the handler calls to start the mapentry submessage (setting up
// its subframe in the process), and sets up state in the subframe so that the
// value parser (invoked next) will emit the mapentry's value field and then
// end the mapentry message.
static bool handle_mapentry(upb_json_parser *p) {
// Map entry: p->top->sink is the seq frame, so we need to start a frame
// for the mapentry itself, and then set |f| in that frame so that the map
// value field is parsed, and also set a flag to end the frame after the
// map-entry value is parsed.
if (!check_stack(p)) return false;
const upb_fielddef *mapfield = p->top->mapfield;
const upb_msgdef *mapentrymsg = upb_fielddef_msgsubdef(mapfield);
upb_jsonparser_frame *inner = p->top + 1;
p->top->f = mapfield;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink);
inner->m = mapentrymsg;
inner->mapfield = mapfield;
inner->is_map = false;
// Don't set this to true *yet* -- we reuse parsing handlers below to push
// the key field value to the sink, and these handlers will pop the frame
// if they see is_mapentry (when invoked by the parser state machine, they
// would have just seen the map-entry value, not key).
inner->is_mapentry = false;
p->top = inner;
// send STARTMSG in submsg frame.
upb_sink_startmsg(&p->top->sink);
parse_mapentry_key(p);
// Set up the value field to receive the map-entry value.
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE);
p->top->is_mapentry = true; // set up to pop frame after value is parsed.
p->top->mapfield = mapfield;
if (p->top->f == NULL) {
upb_status_seterrmsg(p->status, "mapentry message has no value");
return false;
}
return true;
}
static bool end_membername(upb_json_parser *p) {
assert(!p->top->f);
if (p->top->is_map) {
return handle_mapentry(p);
} else {
size_t len;
const char *buf = accumulate_getptr(p, &len);
const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len);
if (!f) {
// TODO(haberman): Ignore unknown fields if requested/configured to do so.
upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf);
return false;
}
p->top->f = f;
multipart_end(p);
return true;
}
}
static void end_member(upb_json_parser *p) {
// If we just parsed a map-entry value, end that frame too.
if (p->top->is_mapentry) {
assert(p->top > p->stack);
// send ENDMSG on submsg.
upb_status s = UPB_STATUS_INIT;
upb_sink_endmsg(&p->top->sink, &s);
const upb_fielddef* mapfield = p->top->mapfield;
// send ENDSUBMSG in repeated-field-of-mapentries frame.
p->top--;
upb_selector_t sel;
bool ok = upb_handlers_getselector(mapfield,
UPB_HANDLER_ENDSUBMSG, &sel);
UPB_ASSERT_VAR(ok, ok);
upb_sink_endsubmsg(&p->top->sink, sel);
}
p->top->f = NULL;
}
static bool start_subobject(upb_json_parser *p) {
assert(p->top->f);
if (upb_fielddef_ismap(p->top->f)) {
// Beginning of a map. Start a new parser frame in a repeated-field
// context.
if (!check_stack(p)) return false;
upb_jsonparser_frame *inner = p->top + 1;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
upb_sink_startseq(&p->top->sink, sel, &inner->sink);
inner->m = upb_fielddef_msgsubdef(p->top->f);
inner->mapfield = p->top->f;
inner->f = NULL;
inner->is_map = true;
inner->is_mapentry = false;
p->top = inner;
return true;
} else if (upb_fielddef_issubmsg(p->top->f)) {
// Beginning of a subobject. Start a new parser frame in the submsg
// context.
if (!check_stack(p)) return false;
upb_jsonparser_frame *inner = p->top + 1;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink);
inner->m = upb_fielddef_msgsubdef(p->top->f);
inner->f = NULL;
inner->is_map = false;
inner->is_mapentry = false;
p->top = inner;
return true;
} else {
upb_status_seterrf(p->status,
"Object specified for non-message/group field: %s",
upb_fielddef_name(p->top->f));
return false;
}
}
static void end_subobject(upb_json_parser *p) {
if (p->top->is_map) {
p->top--;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
upb_sink_endseq(&p->top->sink, sel);
} else {
p->top--;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG);
upb_sink_endsubmsg(&p->top->sink, sel);
}
}
static bool start_array(upb_json_parser *p) {
assert(p->top->f);
if (!upb_fielddef_isseq(p->top->f)) {
upb_status_seterrf(p->status,
"Array specified for non-repeated field: %s",
upb_fielddef_name(p->top->f));
return false;
}
if (!check_stack(p)) return false;
upb_jsonparser_frame *inner = p->top + 1;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
upb_sink_startseq(&p->top->sink, sel, &inner->sink);
inner->m = p->top->m;
inner->f = p->top->f;
inner->is_map = false;
inner->is_mapentry = false;
p->top = inner;
return true;
}
static void end_array(upb_json_parser *p) {
assert(p->top > p->stack);
p->top--;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
upb_sink_endseq(&p->top->sink, sel);
}
static void start_object(upb_json_parser *p) {
if (!p->top->is_map) {
upb_sink_startmsg(&p->top->sink);
}
}
static void end_object(upb_json_parser *p) {
if (!p->top->is_map) {
upb_status status;
upb_sink_endmsg(&p->top->sink, &status);
}
}
#define CHECK_RETURN_TOP(x) if (!(x)) goto error
/* The actual parser **********************************************************/
// What follows is the Ragel parser itself. The language is specified in Ragel
// and the actions call our C functions above.
//
// Ragel has an extensive set of functionality, and we use only a small part of
// it. There are many action types but we only use a few:
//
// ">" -- transition into a machine
// "%" -- transition out of a machine
// "@" -- transition into a final state of a machine.
//
// "@" transitions are tricky because a machine can transition into a final
// state repeatedly. But in some cases we know this can't happen, for example
// a string which is delimited by a final '"' can only transition into its
// final state once, when the closing '"' is seen.
#line 1151 "upb/json/parser.rl"
#line 1063 "upb/json/parser.c"
static const char _json_actions[] = {
0, 1, 0, 1, 2, 1, 3, 1,
5, 1, 6, 1, 7, 1, 8, 1,
10, 1, 12, 1, 13, 1, 14, 1,
15, 1, 16, 1, 17, 1, 21, 1,
25, 1, 27, 2, 3, 8, 2, 4,
5, 2, 6, 2, 2, 6, 8, 2,
11, 9, 2, 13, 15, 2, 14, 15,
2, 18, 1, 2, 19, 27, 2, 20,
9, 2, 22, 27, 2, 23, 27, 2,
24, 27, 2, 26, 27, 3, 14, 11,
9
};
static const unsigned char _json_key_offsets[] = {
0, 0, 4, 9, 14, 15, 19, 24,
29, 34, 38, 42, 45, 48, 50, 54,
58, 60, 62, 67, 69, 71, 80, 86,
92, 98, 104, 106, 115, 116, 116, 116,
121, 126, 131, 132, 133, 134, 135, 135,
136, 137, 138, 138, 139, 140, 141, 141,
146, 151, 152, 156, 161, 166, 171, 175,
175, 178, 178, 178
};
static const char _json_trans_keys[] = {
32, 123, 9, 13, 32, 34, 125, 9,
13, 32, 34, 125, 9, 13, 34, 32,
58, 9, 13, 32, 93, 125, 9, 13,
32, 44, 125, 9, 13, 32, 44, 125,
9, 13, 32, 34, 9, 13, 45, 48,
49, 57, 48, 49, 57, 46, 69, 101,
48, 57, 69, 101, 48, 57, 43, 45,
48, 57, 48, 57, 48, 57, 46, 69,
101, 48, 57, 34, 92, 34, 92, 34,
47, 92, 98, 102, 110, 114, 116, 117,
48, 57, 65, 70, 97, 102, 48, 57,
65, 70, 97, 102, 48, 57, 65, 70,
97, 102, 48, 57, 65, 70, 97, 102,
34, 92, 34, 45, 91, 102, 110, 116,
123, 48, 57, 34, 32, 93, 125, 9,
13, 32, 44, 93, 9, 13, 32, 93,
125, 9, 13, 97, 108, 115, 101, 117,
108, 108, 114, 117, 101, 32, 34, 125,
9, 13, 32, 34, 125, 9, 13, 34,
32, 58, 9, 13, 32, 93, 125, 9,
13, 32, 44, 125, 9, 13, 32, 44,
125, 9, 13, 32, 34, 9, 13, 32,
9, 13, 0
};
static const char _json_single_lengths[] = {
0, 2, 3, 3, 1, 2, 3, 3,
3, 2, 2, 1, 3, 0, 2, 2,
0, 0, 3, 2, 2, 9, 0, 0,
0, 0, 2, 7, 1, 0, 0, 3,
3, 3, 1, 1, 1, 1, 0, 1,
1, 1, 0, 1, 1, 1, 0, 3,
3, 1, 2, 3, 3, 3, 2, 0,
1, 0, 0, 0
};
static const char _json_range_lengths[] = {
0, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 0, 0, 0, 3, 3,
3, 3, 0, 1, 0, 0, 0, 1,
1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 1, 1, 1, 1, 0,
1, 0, 0, 0
};
static const short _json_index_offsets[] = {
0, 0, 4, 9, 14, 16, 20, 25,
30, 35, 39, 43, 46, 50, 52, 56,
60, 62, 64, 69, 72, 75, 85, 89,
93, 97, 101, 104, 113, 115, 116, 117,
122, 127, 132, 134, 136, 138, 140, 141,
143, 145, 147, 148, 150, 152, 154, 155,
160, 165, 167, 171, 176, 181, 186, 190,
191, 194, 195, 196
};
static const char _json_indicies[] = {
0, 2, 0, 1, 3, 4, 5, 3,
1, 6, 7, 8, 6, 1, 9, 1,
10, 11, 10, 1, 11, 1, 1, 11,
12, 13, 14, 15, 13, 1, 16, 17,
8, 16, 1, 17, 7, 17, 1, 18,
19, 20, 1, 19, 20, 1, 22, 23,
23, 21, 24, 1, 23, 23, 24, 21,
25, 25, 26, 1, 26, 1, 26, 21,
22, 23, 23, 20, 21, 28, 29, 27,
31, 32, 30, 33, 33, 33, 33, 33,
33, 33, 33, 34, 1, 35, 35, 35,
1, 36, 36, 36, 1, 37, 37, 37,
1, 38, 38, 38, 1, 40, 41, 39,
42, 43, 44, 45, 46, 47, 48, 43,
1, 49, 1, 50, 51, 53, 54, 1,
53, 52, 55, 56, 54, 55, 1, 56,
1, 1, 56, 52, 57, 1, 58, 1,
59, 1, 60, 1, 61, 62, 1, 63,
1, 64, 1, 65, 66, 1, 67, 1,
68, 1, 69, 70, 71, 72, 70, 1,
73, 74, 75, 73, 1, 76, 1, 77,
78, 77, 1, 78, 1, 1, 78, 79,
80, 81, 82, 80, 1, 83, 84, 75,
83, 1, 84, 74, 84, 1, 85, 86,
86, 1, 1, 1, 1, 0
};
static const char _json_trans_targs[] = {
1, 0, 2, 3, 4, 56, 3, 4,
56, 5, 5, 6, 7, 8, 9, 56,
8, 9, 11, 12, 18, 57, 13, 15,
14, 16, 17, 20, 58, 21, 20, 58,
21, 19, 22, 23, 24, 25, 26, 20,
58, 21, 28, 30, 31, 34, 39, 43,
47, 29, 59, 59, 32, 31, 29, 32,
33, 35, 36, 37, 38, 59, 40, 41,
42, 59, 44, 45, 46, 59, 48, 49,
55, 48, 49, 55, 50, 50, 51, 52,
53, 54, 55, 53, 54, 59, 56
};
static const char _json_trans_actions[] = {
0, 0, 0, 21, 77, 53, 0, 47,
23, 17, 0, 0, 15, 19, 19, 50,
0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 3, 13, 0, 0, 35,
5, 11, 0, 38, 7, 7, 7, 41,
44, 9, 62, 56, 25, 0, 0, 0,
31, 29, 33, 59, 15, 0, 27, 0,
0, 0, 0, 0, 0, 68, 0, 0,
0, 71, 0, 0, 0, 65, 21, 77,
53, 0, 47, 23, 17, 0, 0, 15,
19, 19, 50, 0, 0, 74, 0
};
static const int json_start = 1;
static const int json_en_number_machine = 10;
static const int json_en_string_machine = 19;
static const int json_en_value_machine = 27;
static const int json_en_main = 1;
#line 1154 "upb/json/parser.rl"
size_t parse(void *closure, const void *hd, const char *buf, size_t size,
const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
upb_json_parser *parser = closure;
parser->handle = handle;
// Variables used by Ragel's generated code.
int cs = parser->current_state;
int *stack = parser->parser_stack;
int top = parser->parser_top;
const char *p = buf;
const char *pe = buf + size;
capture_resume(parser, buf);
#line 1232 "upb/json/parser.c"
{
int _klen;
unsigned int _trans;
const char *_acts;
unsigned int _nacts;
const char *_keys;
if ( p == pe )
goto _test_eof;
if ( cs == 0 )
goto _out;
_resume:
_keys = _json_trans_keys + _json_key_offsets[cs];
_trans = _json_index_offsets[cs];
_klen = _json_single_lengths[cs];
if ( _klen > 0 ) {
const char *_lower = _keys;
const char *_mid;
const char *_upper = _keys + _klen - 1;
while (1) {
if ( _upper < _lower )
break;
_mid = _lower + ((_upper-_lower) >> 1);
if ( (*p) < *_mid )
_upper = _mid - 1;
else if ( (*p) > *_mid )
_lower = _mid + 1;
else {
_trans += (unsigned int)(_mid - _keys);
goto _match;
}
}
_keys += _klen;
_trans += _klen;
}
_klen = _json_range_lengths[cs];
if ( _klen > 0 ) {
const char *_lower = _keys;
const char *_mid;
const char *_upper = _keys + (_klen<<1) - 2;
while (1) {
if ( _upper < _lower )
break;
_mid = _lower + (((_upper-_lower) >> 1) & ~1);
if ( (*p) < _mid[0] )
_upper = _mid - 2;
else if ( (*p) > _mid[1] )
_lower = _mid + 2;
else {
_trans += (unsigned int)((_mid - _keys)>>1);
goto _match;
}
}
_trans += _klen;
}
_match:
_trans = _json_indicies[_trans];
cs = _json_trans_targs[_trans];
if ( _json_trans_actions[_trans] == 0 )
goto _again;
_acts = _json_actions + _json_trans_actions[_trans];
_nacts = (unsigned int) *_acts++;
while ( _nacts-- > 0 )
{
switch ( *_acts++ )
{
case 0:
#line 1066 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 1:
#line 1067 "upb/json/parser.rl"
{ p--; {stack[top++] = cs; cs = 10; goto _again;} }
break;
case 2:
#line 1071 "upb/json/parser.rl"
{ start_text(parser, p); }
break;
case 3:
#line 1072 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_text(parser, p)); }
break;
case 4:
#line 1078 "upb/json/parser.rl"
{ start_hex(parser); }
break;
case 5:
#line 1079 "upb/json/parser.rl"
{ hexdigit(parser, p); }
break;
case 6:
#line 1080 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_hex(parser)); }
break;
case 7:
#line 1086 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(escape(parser, p)); }
break;
case 8:
#line 1092 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 9:
#line 1095 "upb/json/parser.rl"
{ {stack[top++] = cs; cs = 19; goto _again;} }
break;
case 10:
#line 1097 "upb/json/parser.rl"
{ p--; {stack[top++] = cs; cs = 27; goto _again;} }
break;
case 11:
#line 1102 "upb/json/parser.rl"
{ start_member(parser); }
break;
case 12:
#line 1103 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_membername(parser)); }
break;
case 13:
#line 1106 "upb/json/parser.rl"
{ end_member(parser); }
break;
case 14:
#line 1112 "upb/json/parser.rl"
{ start_object(parser); }
break;
case 15:
#line 1115 "upb/json/parser.rl"
{ end_object(parser); }
break;
case 16:
#line 1121 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_array(parser)); }
break;
case 17:
#line 1125 "upb/json/parser.rl"
{ end_array(parser); }
break;
case 18:
#line 1130 "upb/json/parser.rl"
{ start_number(parser, p); }
break;
case 19:
#line 1131 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_number(parser, p)); }
break;
case 20:
#line 1133 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_stringval(parser)); }
break;
case 21:
#line 1134 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_stringval(parser)); }
break;
case 22:
#line 1136 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(parser_putbool(parser, true)); }
break;
case 23:
#line 1138 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(parser_putbool(parser, false)); }
break;
case 24:
#line 1140 "upb/json/parser.rl"
{ /* null value */ }
break;
case 25:
#line 1142 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_subobject(parser)); }
break;
case 26:
#line 1143 "upb/json/parser.rl"
{ end_subobject(parser); }
break;
case 27:
#line 1148 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
#line 1418 "upb/json/parser.c"
}
}
_again:
if ( cs == 0 )
goto _out;
if ( ++p != pe )
goto _resume;
_test_eof: {}
_out: {}
}
#line 1173 "upb/json/parser.rl"
if (p != pe) {
upb_status_seterrf(parser->status, "Parse error at %s\n", p);
} else {
capture_suspend(parser, &p);
}
error:
// Save parsing state back to parser.
parser->current_state = cs;
parser->parser_top = top;
return p - buf;
}
bool end(void *closure, const void *hd) {
UPB_UNUSED(closure);
UPB_UNUSED(hd);
// Prevent compile warning on unused static constants.
UPB_UNUSED(json_start);
UPB_UNUSED(json_en_number_machine);
UPB_UNUSED(json_en_string_machine);
UPB_UNUSED(json_en_value_machine);
UPB_UNUSED(json_en_main);
return true;
}
static void json_parser_reset(upb_json_parser *p) {
p->top = p->stack;
p->top->f = NULL;
p->top->is_map = false;
p->top->is_mapentry = false;
int cs;
int top;
// Emit Ragel initialization of the parser.
#line 1470 "upb/json/parser.c"
{
cs = json_start;
top = 0;
}
#line 1211 "upb/json/parser.rl"
p->current_state = cs;
p->parser_top = top;
accumulate_clear(p);
p->multipart_state = MULTIPART_INACTIVE;
p->capture = NULL;
p->accumulated = NULL;
}
/* Public API *****************************************************************/
upb_json_parser *upb_json_parser_create(upb_env *env, upb_sink *output) {
#ifndef NDEBUG
const size_t size_before = upb_env_bytesallocated(env);
#endif
upb_json_parser *p = upb_env_malloc(env, sizeof(upb_json_parser));
if (!p) return false;
p->env = env;
p->limit = p->stack + UPB_JSON_MAX_DEPTH;
p->accumulate_buf = NULL;
p->accumulate_buf_size = 0;
upb_byteshandler_init(&p->input_handler_);
upb_byteshandler_setstring(&p->input_handler_, parse, NULL);
upb_byteshandler_setendstr(&p->input_handler_, end, NULL);
upb_bytessink_reset(&p->input_, &p->input_handler_, p);
json_parser_reset(p);
upb_sink_reset(&p->top->sink, output->handlers, output->closure);
p->top->m = upb_handlers_msgdef(output->handlers);
// If this fails, uncomment and increase the value in parser.h.
// fprintf(stderr, "%zd\n", upb_env_bytesallocated(env) - size_before);
assert(upb_env_bytesallocated(env) - size_before <= UPB_JSON_PARSER_SIZE);
return p;
}
upb_bytessink *upb_json_parser_input(upb_json_parser *p) {
return &p->input_;
}
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* This currently uses snprintf() to format primitives, and could be optimized
* further.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
struct upb_json_printer {
upb_sink input_;
// BytesSink closure.
void *subc_;
upb_bytessink *output_;
// We track the depth so that we know when to emit startstr/endstr on the
// output.
int depth_;
// Have we emitted the first element? This state is necessary to emit commas
// without leaving a trailing comma in arrays/maps. We keep this state per
// frame depth.
//
// Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages.
// We count frames (contexts in which we separate elements by commas) as both
// repeated fields and messages (maps), and the worst case is a
// message->repeated field->submessage->repeated field->... nesting.
bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2];
};
// StringPiece; a pointer plus a length.
typedef struct {
const char *ptr;
size_t len;
} strpc;
strpc *newstrpc(upb_handlers *h, const upb_fielddef *f) {
strpc *ret = malloc(sizeof(*ret));
ret->ptr = upb_fielddef_name(f);
ret->len = strlen(ret->ptr);
upb_handlers_addcleanup(h, ret, free);
return ret;
}
// ------------ JSON string printing: values, maps, arrays --------------------
static void print_data(
upb_json_printer *p, const char *buf, unsigned int len) {
// TODO: Will need to change if we support pushback from the sink.
size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL);
UPB_ASSERT_VAR(n, n == len);
}
static void print_comma(upb_json_printer *p) {
if (!p->first_elem_[p->depth_]) {
print_data(p, ",", 1);
}
p->first_elem_[p->depth_] = false;
}
// Helpers that print properly formatted elements to the JSON output stream.
// Used for escaping control chars in strings.
static const char kControlCharLimit = 0x20;
static inline bool is_json_escaped(char c) {
// See RFC 4627.
unsigned char uc = (unsigned char)c;
return uc < kControlCharLimit || uc == '"' || uc == '\\';
}
static inline char* json_nice_escape(char c) {
switch (c) {
case '"': return "\\\"";
case '\\': return "\\\\";
case '\b': return "\\b";
case '\f': return "\\f";
case '\n': return "\\n";
case '\r': return "\\r";
case '\t': return "\\t";
default: return NULL;
}
}
// Write a properly escaped string chunk. The surrounding quotes are *not*
// printed; this is so that the caller has the option of emitting the string
// content in chunks.
static void putstring(upb_json_printer *p, const char *buf, unsigned int len) {
const char* unescaped_run = NULL;
for (unsigned int i = 0; i < len; i++) {
char c = buf[i];
// Handle escaping.
if (is_json_escaped(c)) {
// Use a "nice" escape, like \n, if one exists for this character.
const char* escape = json_nice_escape(c);
// If we don't have a specific 'nice' escape code, use a \uXXXX-style
// escape.
char escape_buf[8];
if (!escape) {
unsigned char byte = (unsigned char)c;
snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte);
escape = escape_buf;
}
// N.B. that we assume that the input encoding is equal to the output
// encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we
// can simply pass the bytes through.
// If there's a current run of unescaped chars, print that run first.
if (unescaped_run) {
print_data(p, unescaped_run, &buf[i] - unescaped_run);
unescaped_run = NULL;
}
// Then print the escape code.
print_data(p, escape, strlen(escape));
} else {
// Add to the current unescaped run of characters.
if (unescaped_run == NULL) {
unescaped_run = &buf[i];
}
}
}
// If the string ended in a run of unescaped characters, print that last run.
if (unescaped_run) {
print_data(p, unescaped_run, &buf[len] - unescaped_run);
}
}
#define CHKLENGTH(x) if (!(x)) return -1;
// Helpers that format floating point values according to our custom formats.
// Right now we use %.8g and %.17g for float/double, respectively, to match
// proto2::util::JsonFormat's defaults. May want to change this later.
static size_t fmt_double(double val, char* buf, size_t length) {
size_t n = snprintf(buf, length, "%.17g", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_float(float val, char* buf, size_t length) {
size_t n = snprintf(buf, length, "%.8g", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_bool(bool val, char* buf, size_t length) {
size_t n = snprintf(buf, length, "%s", (val ? "true" : "false"));
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_int64(long val, char* buf, size_t length) {
size_t n = snprintf(buf, length, "%ld", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_uint64(unsigned long long val, char* buf, size_t length) {
size_t n = snprintf(buf, length, "%llu", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
// Print a map key given a field name. Called by scalar field handlers and by
// startseq for repeated fields.
static bool putkey(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
const strpc *key = handler_data;
print_comma(p);
print_data(p, "\"", 1);
putstring(p, key->ptr, key->len);
print_data(p, "\":", 2);
return true;
}
#define CHKFMT(val) if ((val) == (size_t)-1) return false;
#define CHK(val) if (!(val)) return false;
#define TYPE_HANDLERS(type, fmt_func) \
static bool put##type(void *closure, const void *handler_data, type val) { \
upb_json_printer *p = closure; \
UPB_UNUSED(handler_data); \
char data[64]; \
size_t length = fmt_func(val, data, sizeof(data)); \
CHKFMT(length); \
print_data(p, data, length); \
return true; \
} \
static bool scalar_##type(void *closure, const void *handler_data, \
type val) { \
CHK(putkey(closure, handler_data)); \
CHK(put##type(closure, handler_data, val)); \
return true; \
} \
static bool repeated_##type(void *closure, const void *handler_data, \
type val) { \
upb_json_printer *p = closure; \
print_comma(p); \
CHK(put##type(closure, handler_data, val)); \
return true; \
}
#define TYPE_HANDLERS_MAPKEY(type, fmt_func) \
static bool putmapkey_##type(void *closure, const void *handler_data, \
type val) { \
upb_json_printer *p = closure; \
print_data(p, "\"", 1); \
CHK(put##type(closure, handler_data, val)); \
print_data(p, "\":", 2); \
return true; \
}
TYPE_HANDLERS(double, fmt_double);
TYPE_HANDLERS(float, fmt_float);
TYPE_HANDLERS(bool, fmt_bool);
TYPE_HANDLERS(int32_t, fmt_int64);
TYPE_HANDLERS(uint32_t, fmt_int64);
TYPE_HANDLERS(int64_t, fmt_int64);
TYPE_HANDLERS(uint64_t, fmt_uint64);
// double and float are not allowed to be map keys.
TYPE_HANDLERS_MAPKEY(bool, fmt_bool);
TYPE_HANDLERS_MAPKEY(int32_t, fmt_int64);
TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64);
TYPE_HANDLERS_MAPKEY(int64_t, fmt_int64);
TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64);
#undef TYPE_HANDLERS
#undef TYPE_HANDLERS_MAPKEY
typedef struct {
void *keyname;
const upb_enumdef *enumdef;
} EnumHandlerData;
static bool scalar_enum(void *closure, const void *handler_data,
int32_t val) {
const EnumHandlerData *hd = handler_data;
upb_json_printer *p = closure;
CHK(putkey(closure, hd->keyname));
const char *symbolic_name = upb_enumdef_iton(hd->enumdef, val);
if (symbolic_name) {
print_data(p, "\"", 1);
putstring(p, symbolic_name, strlen(symbolic_name));
print_data(p, "\"", 1);
} else {
putint32_t(closure, NULL, val);
}
return true;
}
static void print_enum_symbolic_name(upb_json_printer *p,
const upb_enumdef *def,
int32_t val) {
const char *symbolic_name = upb_enumdef_iton(def, val);
if (symbolic_name) {
print_data(p, "\"", 1);
putstring(p, symbolic_name, strlen(symbolic_name));
print_data(p, "\"", 1);
} else {
putint32_t(p, NULL, val);
}
}
static bool repeated_enum(void *closure, const void *handler_data,
int32_t val) {
const EnumHandlerData *hd = handler_data;
upb_json_printer *p = closure;
print_comma(p);
print_enum_symbolic_name(p, hd->enumdef, val);
return true;
}
static bool mapvalue_enum(void *closure, const void *handler_data,
int32_t val) {
const EnumHandlerData *hd = handler_data;
upb_json_printer *p = closure;
print_enum_symbolic_name(p, hd->enumdef, val);
return true;
}
static void *scalar_startsubmsg(void *closure, const void *handler_data) {
return putkey(closure, handler_data) ? closure : UPB_BREAK;
}
static void *repeated_startsubmsg(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_comma(p);
return closure;
}
static void start_frame(upb_json_printer *p) {
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "{", 1);
}
static void end_frame(upb_json_printer *p) {
print_data(p, "}", 1);
p->depth_--;
}
static bool printer_startmsg(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
if (p->depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc_);
}
start_frame(p);
return true;
}
static bool printer_endmsg(void *closure, const void *handler_data, upb_status *s) {
UPB_UNUSED(handler_data);
UPB_UNUSED(s);
upb_json_printer *p = closure;
end_frame(p);
if (p->depth_ == 0) {
upb_bytessink_end(p->output_);
}
return true;
}
static void *startseq(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
CHK(putkey(closure, handler_data));
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "[", 1);
return closure;
}
static bool endseq(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_data(p, "]", 1);
p->depth_--;
return true;
}
static void *startmap(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
CHK(putkey(closure, handler_data));
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "{", 1);
return closure;
}
static bool endmap(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_data(p, "}", 1);
p->depth_--;
return true;
}
static size_t putstr(void *closure, const void *handler_data, const char *str,
size_t len, const upb_bufhandle *handle) {
UPB_UNUSED(handler_data);
UPB_UNUSED(handle);
upb_json_printer *p = closure;
putstring(p, str, len);
return len;
}
// This has to Base64 encode the bytes, because JSON has no "bytes" type.
static size_t putbytes(void *closure, const void *handler_data, const char *str,
size_t len, const upb_bufhandle *handle) {
UPB_UNUSED(handler_data);
UPB_UNUSED(handle);
upb_json_printer *p = closure;
// This is the regular base64, not the "web-safe" version.
static const char base64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
// Base64-encode.
char data[16000];
const char *limit = data + sizeof(data);
const unsigned char *from = (const unsigned char*)str;
char *to = data;
size_t remaining = len;
while (remaining > 2) {
// TODO(haberman): handle encoded lengths > sizeof(data)
UPB_ASSERT_VAR(limit, (limit - to) >= 4);
to[0] = base64[from[0] >> 2];
to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)];
to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)];
to[3] = base64[from[2] & 0x3f];
remaining -= 3;
to += 4;
from += 3;
}
switch (remaining) {
case 2:
to[0] = base64[from[0] >> 2];
to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)];
to[2] = base64[(from[1] & 0xf) << 2];
to[3] = '=';
to += 4;
from += 2;
break;
case 1:
to[0] = base64[from[0] >> 2];
to[1] = base64[((from[0] & 0x3) << 4)];
to[2] = '=';
to[3] = '=';
to += 4;
from += 1;
break;
}
size_t bytes = to - data;
print_data(p, "\"", 1);
putstring(p, data, bytes);
print_data(p, "\"", 1);
return len;
}
static void *scalar_startstr(void *closure, const void *handler_data,
size_t size_hint) {
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
upb_json_printer *p = closure;
CHK(putkey(closure, handler_data));
print_data(p, "\"", 1);
return p;
}
static size_t scalar_str(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putstr(closure, handler_data, str, len, handle));
return len;
}
static bool scalar_endstr(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_data(p, "\"", 1);
return true;
}
static void *repeated_startstr(void *closure, const void *handler_data,
size_t size_hint) {
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
upb_json_printer *p = closure;
print_comma(p);
print_data(p, "\"", 1);
return p;
}
static size_t repeated_str(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putstr(closure, handler_data, str, len, handle));
return len;
}
static bool repeated_endstr(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_data(p, "\"", 1);
return true;
}
static void *mapkeyval_startstr(void *closure, const void *handler_data,
size_t size_hint) {
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
upb_json_printer *p = closure;
print_data(p, "\"", 1);
return p;
}
static size_t mapkey_str(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putstr(closure, handler_data, str, len, handle));
return len;
}
static bool mapkey_endstr(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_data(p, "\":", 2);
return true;
}
static bool mapvalue_endstr(void *closure, const void *handler_data) {
UPB_UNUSED(handler_data);
upb_json_printer *p = closure;
print_data(p, "\"", 1);
return true;
}
static size_t scalar_bytes(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putkey(closure, handler_data));
CHK(putbytes(closure, handler_data, str, len, handle));
return len;
}
static size_t repeated_bytes(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
upb_json_printer *p = closure;
print_comma(p);
CHK(putbytes(closure, handler_data, str, len, handle));
return len;
}
static size_t mapkey_bytes(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
upb_json_printer *p = closure;
CHK(putbytes(closure, handler_data, str, len, handle));
print_data(p, ":", 1);
return len;
}
static void set_enum_hd(upb_handlers *h,
const upb_fielddef *f,
upb_handlerattr *attr) {
EnumHandlerData *hd = malloc(sizeof(EnumHandlerData));
hd->enumdef = (const upb_enumdef *)upb_fielddef_subdef(f);
hd->keyname = newstrpc(h, f);
upb_handlers_addcleanup(h, hd, free);
upb_handlerattr_sethandlerdata(attr, hd);
}
// Set up handlers for a mapentry submessage (i.e., an individual key/value pair
// in a map).
//
// TODO: Handle missing key, missing value, out-of-order key/value, or repeated
// key or value cases properly. The right way to do this is to allocate a
// temporary structure at the start of a mapentry submessage, store key and
// value data in it as key and value handlers are called, and then print the
// key/value pair once at the end of the submessage. If we don't do this, we
// should at least detect the case and throw an error. However, so far all of
// our sources that emit mapentry messages do so canonically (with one key
// field, and then one value field), so this is not a pressing concern at the
// moment.
void printer_sethandlers_mapentry(const void *closure, upb_handlers *h) {
UPB_UNUSED(closure);
const upb_msgdef *md = upb_handlers_msgdef(h);
// A mapentry message is printed simply as '"key": value'. Rather than
// special-case key and value for every type below, we just handle both
// fields explicitly here.
const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY);
const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER;
switch (upb_fielddef_type(key_field)) {
case UPB_TYPE_INT32:
upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr);
break;
case UPB_TYPE_INT64:
upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr);
break;
case UPB_TYPE_UINT32:
upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr);
break;
case UPB_TYPE_UINT64:
upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr);
break;
case UPB_TYPE_STRING:
upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr);
upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr);
upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr);
break;
case UPB_TYPE_BYTES:
upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr);
break;
default:
assert(false);
break;
}
switch (upb_fielddef_type(value_field)) {
case UPB_TYPE_INT32:
upb_handlers_setint32(h, value_field, putint32_t, &empty_attr);
break;
case UPB_TYPE_INT64:
upb_handlers_setint64(h, value_field, putint64_t, &empty_attr);
break;
case UPB_TYPE_UINT32:
upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr);
break;
case UPB_TYPE_UINT64:
upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, value_field, putbool, &empty_attr);
break;
case UPB_TYPE_FLOAT:
upb_handlers_setfloat(h, value_field, putfloat, &empty_attr);
break;
case UPB_TYPE_DOUBLE:
upb_handlers_setdouble(h, value_field, putdouble, &empty_attr);
break;
case UPB_TYPE_STRING:
upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr);
upb_handlers_setstring(h, value_field, putstr, &empty_attr);
upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr);
break;
case UPB_TYPE_BYTES:
upb_handlers_setstring(h, value_field, putbytes, &empty_attr);
break;
case UPB_TYPE_ENUM: {
upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER;
set_enum_hd(h, value_field, &enum_attr);
upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr);
upb_handlerattr_uninit(&enum_attr);
break;
}
case UPB_TYPE_MESSAGE:
// No handler necessary -- the submsg handlers will print the message
// as appropriate.
break;
}
upb_handlerattr_uninit(&empty_attr);
}
void printer_sethandlers(const void *closure, upb_handlers *h) {
UPB_UNUSED(closure);
const upb_msgdef *md = upb_handlers_msgdef(h);
bool is_mapentry = upb_msgdef_mapentry(md);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER;
if (is_mapentry) {
// mapentry messages are sufficiently different that we handle them
// separately.
printer_sethandlers_mapentry(closure, h);
return;
}
upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg, &empty_attr);
#define TYPE(type, name, ctype) \
case type: \
if (upb_fielddef_isseq(f)) { \
upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \
} else { \
upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \
} \
break;
upb_msg_field_iter i;
upb_msg_field_begin(&i, md);
for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_handlerattr name_attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&name_attr, newstrpc(h, f));
if (upb_fielddef_ismap(f)) {
upb_handlers_setstartseq(h, f, startmap, &name_attr);
upb_handlers_setendseq(h, f, endmap, &name_attr);
} else if (upb_fielddef_isseq(f)) {
upb_handlers_setstartseq(h, f, startseq, &name_attr);
upb_handlers_setendseq(h, f, endseq, &empty_attr);
}
switch (upb_fielddef_type(f)) {
TYPE(UPB_TYPE_FLOAT, float, float);
TYPE(UPB_TYPE_DOUBLE, double, double);
TYPE(UPB_TYPE_BOOL, bool, bool);
TYPE(UPB_TYPE_INT32, int32, int32_t);
TYPE(UPB_TYPE_UINT32, uint32, uint32_t);
TYPE(UPB_TYPE_INT64, int64, int64_t);
TYPE(UPB_TYPE_UINT64, uint64, uint64_t);
case UPB_TYPE_ENUM: {
// For now, we always emit symbolic names for enums. We may want an
// option later to control this behavior, but we will wait for a real
// need first.
upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER;
set_enum_hd(h, f, &enum_attr);
if (upb_fielddef_isseq(f)) {
upb_handlers_setint32(h, f, repeated_enum, &enum_attr);
} else {
upb_handlers_setint32(h, f, scalar_enum, &enum_attr);
}
upb_handlerattr_uninit(&enum_attr);
break;
}
case UPB_TYPE_STRING:
if (upb_fielddef_isseq(f)) {
upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr);
upb_handlers_setstring(h, f, repeated_str, &empty_attr);
upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr);
} else {
upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr);
upb_handlers_setstring(h, f, scalar_str, &empty_attr);
upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr);
}
break;
case UPB_TYPE_BYTES:
// XXX: this doesn't support strings that span buffers yet. The base64
// encoder will need to be made resumable for this to work properly.
if (upb_fielddef_isseq(f)) {
upb_handlers_setstring(h, f, repeated_bytes, &empty_attr);
} else {
upb_handlers_setstring(h, f, scalar_bytes, &name_attr);
}
break;
case UPB_TYPE_MESSAGE:
if (upb_fielddef_isseq(f)) {
upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr);
} else {
upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr);
}
break;
}
upb_handlerattr_uninit(&name_attr);
}
upb_handlerattr_uninit(&empty_attr);
#undef TYPE
}
static void json_printer_reset(upb_json_printer *p) {
p->depth_ = 0;
}
/* Public API *****************************************************************/
upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
upb_bytessink *output) {
#ifndef NDEBUG
size_t size_before = upb_env_bytesallocated(e);
#endif
upb_json_printer *p = upb_env_malloc(e, sizeof(upb_json_printer));
if (!p) return NULL;
p->output_ = output;
json_printer_reset(p);
upb_sink_reset(&p->input_, h, p);
// If this fails, increase the value in printer.h.
assert(upb_env_bytesallocated(e) - size_before <= UPB_JSON_PRINTER_SIZE);
return p;
}
upb_sink *upb_json_printer_input(upb_json_printer *p) {
return &p->input_;
}
const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
const void *owner) {
return upb_handlers_newfrozen(md, owner, printer_sethandlers, NULL);
}