protobuf/objectivec/GPBTimestamp.pbobjc.h
Thomas Van Lenten 020e4e33d1 Simplify imports of the WKTs within the library itself.
Overdue followup to https://github.com/protocolbuffers/protobuf/pull/7173

Since all the files are at the same level as the runtime headers, there is no
need for things to be framework based imports, they should all just work like
the other headers do.

- Directly generate the bundled header imports into the preamble section when
  generating for a bundled proto.
- Update the preamble generation to skip the CPP wrapper when generating for a
  bundled proto file.
- Regenerate the WKTs.
- Update GPBProtocolBuffer.h/GPBWellKnownTypes.h to also skip the CPP wrapping.

GPB_USE_PROTOBUF_FRAMEWORK_IMPORTS in the podspec and non bundled files still
has to exist because that comes into play for those files to find the runtime
headers.
2022-03-01 17:01:33 -05:00

165 lines
5.7 KiB
Objective-C

// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/protobuf/timestamp.proto
#import "GPBDescriptor.h"
#import "GPBMessage.h"
#import "GPBRootObject.h"
#if GOOGLE_PROTOBUF_OBJC_VERSION < 30004
#error This file was generated by a newer version of protoc which is incompatible with your Protocol Buffer library sources.
#endif
#if 30004 < GOOGLE_PROTOBUF_OBJC_MIN_SUPPORTED_VERSION
#error This file was generated by an older version of protoc which is incompatible with your Protocol Buffer library sources.
#endif
// @@protoc_insertion_point(imports)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
CF_EXTERN_C_BEGIN
NS_ASSUME_NONNULL_BEGIN
#pragma mark - GPBTimestampRoot
/**
* Exposes the extension registry for this file.
*
* The base class provides:
* @code
* + (GPBExtensionRegistry *)extensionRegistry;
* @endcode
* which is a @c GPBExtensionRegistry that includes all the extensions defined by
* this file and all files that it depends on.
**/
GPB_FINAL @interface GPBTimestampRoot : GPBRootObject
@end
#pragma mark - GPBTimestamp
typedef GPB_ENUM(GPBTimestamp_FieldNumber) {
GPBTimestamp_FieldNumber_Seconds = 1,
GPBTimestamp_FieldNumber_Nanos = 2,
};
/**
* A Timestamp represents a point in time independent of any time zone or local
* calendar, encoded as a count of seconds and fractions of seconds at
* nanosecond resolution. The count is relative to an epoch at UTC midnight on
* January 1, 1970, in the proleptic Gregorian calendar which extends the
* Gregorian calendar backwards to year one.
*
* All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
* second table is needed for interpretation, using a [24-hour linear
* smear](https://developers.google.com/time/smear).
*
* The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
* restricting to that range, we ensure that we can convert to and from [RFC
* 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
*
* # Examples
*
* Example 1: Compute Timestamp from POSIX `time()`.
*
* Timestamp timestamp;
* timestamp.set_seconds(time(NULL));
* timestamp.set_nanos(0);
*
* Example 2: Compute Timestamp from POSIX `gettimeofday()`.
*
* struct timeval tv;
* gettimeofday(&tv, NULL);
*
* Timestamp timestamp;
* timestamp.set_seconds(tv.tv_sec);
* timestamp.set_nanos(tv.tv_usec * 1000);
*
* Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
*
* FILETIME ft;
* GetSystemTimeAsFileTime(&ft);
* UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
*
* // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
* // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
* Timestamp timestamp;
* timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
* timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
*
* Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
*
* long millis = System.currentTimeMillis();
*
* Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
* .setNanos((int) ((millis % 1000) * 1000000)).build();
*
*
* Example 5: Compute Timestamp from Java `Instant.now()`.
*
* Instant now = Instant.now();
*
* Timestamp timestamp =
* Timestamp.newBuilder().setSeconds(now.getEpochSecond())
* .setNanos(now.getNano()).build();
*
*
* Example 6: Compute Timestamp from current time in Python.
*
* timestamp = Timestamp()
* timestamp.GetCurrentTime()
*
* # JSON Mapping
*
* In JSON format, the Timestamp type is encoded as a string in the
* [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
* format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
* where {year} is always expressed using four digits while {month}, {day},
* {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
* seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
* are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
* is required. A proto3 JSON serializer should always use UTC (as indicated by
* "Z") when printing the Timestamp type and a proto3 JSON parser should be
* able to accept both UTC and other timezones (as indicated by an offset).
*
* For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
* 01:30 UTC on January 15, 2017.
*
* In JavaScript, one can convert a Date object to this format using the
* standard
* [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
* method. In Python, a standard `datetime.datetime` object can be converted
* to this format using
* [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
* the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
* the Joda Time's [`ISODateTimeFormat.dateTime()`](
* http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
* ) to obtain a formatter capable of generating timestamps in this format.
**/
GPB_FINAL @interface GPBTimestamp : GPBMessage
/**
* Represents seconds of UTC time since Unix epoch
* 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
* 9999-12-31T23:59:59Z inclusive.
**/
@property(nonatomic, readwrite) int64_t seconds;
/**
* Non-negative fractions of a second at nanosecond resolution. Negative
* second values with fractions must still have non-negative nanos values
* that count forward in time. Must be from 0 to 999,999,999
* inclusive.
**/
@property(nonatomic, readwrite) int32_t nanos;
@end
NS_ASSUME_NONNULL_END
CF_EXTERN_C_END
#pragma clang diagnostic pop
// @@protoc_insertion_point(global_scope)