633 lines
20 KiB
JavaScript
633 lines
20 KiB
JavaScript
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
/**
|
|
* @fileoverview Test cases for jspb's helper functions.
|
|
*
|
|
* Test suite is written using Jasmine -- see http://jasmine.github.io/
|
|
*
|
|
* @author aappleby@google.com (Austin Appleby)
|
|
*/
|
|
|
|
goog.require('goog.crypt.base64');
|
|
goog.require('goog.testing.asserts');
|
|
goog.require('jspb.BinaryConstants');
|
|
goog.require('jspb.BinaryWriter');
|
|
goog.require('jspb.utils');
|
|
|
|
|
|
/**
|
|
* @param {number} x
|
|
* @return {number}
|
|
*/
|
|
function truncate(x) {
|
|
var temp = new Float32Array(1);
|
|
temp[0] = x;
|
|
return temp[0];
|
|
}
|
|
|
|
|
|
/**
|
|
* Converts an 64-bit integer in split representation to a 64-bit hash string
|
|
* (8 bits encoded per character).
|
|
* @param {number} bitsLow The low 32 bits of the split 64-bit integer.
|
|
* @param {number} bitsHigh The high 32 bits of the split 64-bit integer.
|
|
* @return {string} The encoded hash string, 8 bits per character.
|
|
*/
|
|
function toHashString(bitsLow, bitsHigh) {
|
|
return String.fromCharCode((bitsLow >>> 0) & 0xFF,
|
|
(bitsLow >>> 8) & 0xFF,
|
|
(bitsLow >>> 16) & 0xFF,
|
|
(bitsLow >>> 24) & 0xFF,
|
|
(bitsHigh >>> 0) & 0xFF,
|
|
(bitsHigh >>> 8) & 0xFF,
|
|
(bitsHigh >>> 16) & 0xFF,
|
|
(bitsHigh >>> 24) & 0xFF);
|
|
}
|
|
|
|
|
|
describe('binaryUtilsTest', function() {
|
|
/**
|
|
* Tests lossless binary-to-decimal conversion.
|
|
*/
|
|
it('testDecimalConversion', function() {
|
|
// Check some magic numbers.
|
|
var result =
|
|
jspb.utils.joinUnsignedDecimalString(0x89e80001, 0x8ac72304);
|
|
assertEquals('10000000000000000001', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0xacd05f15, 0x1b69b4b);
|
|
assertEquals('123456789123456789', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0xeb1f0ad2, 0xab54a98c);
|
|
assertEquals('12345678901234567890', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0xe3b70cb1, 0x891087b8);
|
|
assertEquals('9876543210987654321', result);
|
|
|
|
// Check limits.
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00000000);
|
|
assertEquals('0', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0xFFFFFFFF, 0xFFFFFFFF);
|
|
assertEquals('18446744073709551615', result);
|
|
|
|
// Check each bit of the low dword.
|
|
for (var i = 0; i < 32; i++) {
|
|
var low = (1 << i) >>> 0;
|
|
result = jspb.utils.joinUnsignedDecimalString(low, 0);
|
|
assertEquals('' + Math.pow(2, i), result);
|
|
}
|
|
|
|
// Check the first 20 bits of the high dword.
|
|
for (var i = 0; i < 20; i++) {
|
|
var high = (1 << i) >>> 0;
|
|
result = jspb.utils.joinUnsignedDecimalString(0, high);
|
|
assertEquals('' + Math.pow(2, 32 + i), result);
|
|
}
|
|
|
|
// V8's internal double-to-string conversion is inaccurate for values above
|
|
// 2^52, even if they're representable integers - check the rest of the bits
|
|
// manually against the correct string representations of 2^N.
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00100000);
|
|
assertEquals('4503599627370496', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00200000);
|
|
assertEquals('9007199254740992', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00400000);
|
|
assertEquals('18014398509481984', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x00800000);
|
|
assertEquals('36028797018963968', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x01000000);
|
|
assertEquals('72057594037927936', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x02000000);
|
|
assertEquals('144115188075855872', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x04000000);
|
|
assertEquals('288230376151711744', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x08000000);
|
|
assertEquals('576460752303423488', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x10000000);
|
|
assertEquals('1152921504606846976', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x20000000);
|
|
assertEquals('2305843009213693952', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x40000000);
|
|
assertEquals('4611686018427387904', result);
|
|
|
|
result = jspb.utils.joinUnsignedDecimalString(0x00000000, 0x80000000);
|
|
assertEquals('9223372036854775808', result);
|
|
});
|
|
|
|
|
|
/**
|
|
* Going from hash strings to decimal strings should also be lossless.
|
|
*/
|
|
it('testHashToDecimalConversion', function() {
|
|
var result;
|
|
var convert = jspb.utils.hash64ToDecimalString;
|
|
|
|
result = convert(toHashString(0x00000000, 0x00000000), false);
|
|
assertEquals('0', result);
|
|
|
|
result = convert(toHashString(0x00000000, 0x00000000), true);
|
|
assertEquals('0', result);
|
|
|
|
result = convert(toHashString(0xFFFFFFFF, 0xFFFFFFFF), false);
|
|
assertEquals('18446744073709551615', result);
|
|
|
|
result = convert(toHashString(0xFFFFFFFF, 0xFFFFFFFF), true);
|
|
assertEquals('-1', result);
|
|
|
|
result = convert(toHashString(0x00000000, 0x80000000), false);
|
|
assertEquals('9223372036854775808', result);
|
|
|
|
result = convert(toHashString(0x00000000, 0x80000000), true);
|
|
assertEquals('-9223372036854775808', result);
|
|
|
|
result = convert(toHashString(0xacd05f15, 0x01b69b4b), false);
|
|
assertEquals('123456789123456789', result);
|
|
|
|
result = convert(toHashString(~0xacd05f15 + 1, ~0x01b69b4b), true);
|
|
assertEquals('-123456789123456789', result);
|
|
|
|
// And converting arrays of hashes should work the same way.
|
|
result = jspb.utils.hash64ArrayToDecimalStrings([
|
|
toHashString(0xFFFFFFFF, 0xFFFFFFFF),
|
|
toHashString(0x00000000, 0x80000000),
|
|
toHashString(0xacd05f15, 0x01b69b4b)], false);
|
|
assertEquals(3, result.length);
|
|
assertEquals('18446744073709551615', result[0]);
|
|
assertEquals('9223372036854775808', result[1]);
|
|
assertEquals('123456789123456789', result[2]);
|
|
});
|
|
|
|
|
|
/**
|
|
* Going from hash strings to hex strings should be lossless.
|
|
*/
|
|
it('testHashToHexConversion', function() {
|
|
var result;
|
|
var convert = jspb.utils.hash64ToHexString;
|
|
|
|
result = convert(toHashString(0x00000000, 0x00000000));
|
|
assertEquals('0x0000000000000000', result);
|
|
|
|
result = convert(toHashString(0xFFFFFFFF, 0xFFFFFFFF));
|
|
assertEquals('0xffffffffffffffff', result);
|
|
|
|
result = convert(toHashString(0x12345678, 0x9ABCDEF0));
|
|
assertEquals('0x9abcdef012345678', result);
|
|
});
|
|
|
|
|
|
/**
|
|
* Going from hex strings to hash strings should be lossless.
|
|
*/
|
|
it('testHexToHashConversion', function() {
|
|
var result;
|
|
var convert = jspb.utils.hexStringToHash64;
|
|
|
|
result = convert('0x0000000000000000');
|
|
assertEquals(String.fromCharCode.apply(null,
|
|
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), result);
|
|
|
|
result = convert('0xffffffffffffffff');
|
|
assertEquals(String.fromCharCode.apply(null,
|
|
[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]), result);
|
|
|
|
// Hex string is big-endian, hash string is little-endian.
|
|
result = convert('0x123456789ABCDEF0');
|
|
assertEquals(String.fromCharCode.apply(null,
|
|
[0xF0, 0xDE, 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12]), result);
|
|
|
|
// Capitalization should not matter.
|
|
result = convert('0x0000abcdefABCDEF');
|
|
assertEquals(String.fromCharCode.apply(null,
|
|
[0xEF, 0xCD, 0xAB, 0xEF, 0xCD, 0xAB, 0x00, 0x00]), result);
|
|
});
|
|
|
|
|
|
/**
|
|
* Going from numbers to hash strings should be lossless for up to 53 bits of
|
|
* precision.
|
|
*/
|
|
it('testNumberToHashConversion', function() {
|
|
var result;
|
|
var convert = jspb.utils.numberToHash64;
|
|
|
|
result = convert(0x0000000000000);
|
|
assertEquals('0x0000000000000000', jspb.utils.hash64ToHexString(result));
|
|
|
|
result = convert(0xFFFFFFFFFFFFF);
|
|
assertEquals('0x000fffffffffffff', jspb.utils.hash64ToHexString(result));
|
|
|
|
result = convert(0x123456789ABCD);
|
|
assertEquals('0x000123456789abcd', jspb.utils.hash64ToHexString(result));
|
|
|
|
result = convert(0xDCBA987654321);
|
|
assertEquals('0x000dcba987654321', jspb.utils.hash64ToHexString(result));
|
|
|
|
// 53 bits of precision should not be truncated.
|
|
result = convert(0x10000000000001);
|
|
assertEquals('0x0010000000000001', jspb.utils.hash64ToHexString(result));
|
|
|
|
// 54 bits of precision should be truncated.
|
|
result = convert(0x20000000000001);
|
|
assertNotEquals(
|
|
'0x0020000000000001', jspb.utils.hash64ToHexString(result));
|
|
});
|
|
|
|
|
|
/**
|
|
* Sanity check the behavior of Javascript's strings when doing funny things
|
|
* with unicode characters.
|
|
*/
|
|
it('sanityCheckUnicodeStrings', function() {
|
|
var strings = new Array(65536);
|
|
|
|
// All possible unsigned 16-bit values should be storable in a string, they
|
|
// shouldn't do weird things with the length of the string, and they should
|
|
// come back out of the string unchanged.
|
|
for (var i = 0; i < 65536; i++) {
|
|
strings[i] = 'a' + String.fromCharCode(i) + 'a';
|
|
if (3 != strings[i].length) throw 'fail!';
|
|
if (i != strings[i].charCodeAt(1)) throw 'fail!';
|
|
}
|
|
|
|
// Each unicode character should compare equal to itself and not equal to a
|
|
// different unicode character.
|
|
for (var i = 0; i < 65536; i++) {
|
|
if (strings[i] != strings[i]) throw 'fail!';
|
|
if (strings[i] == strings[(i + 1) % 65536]) throw 'fail!';
|
|
}
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests conversion from 32-bit floating point numbers to split64 numbers.
|
|
*/
|
|
it('testFloat32ToSplit64', function() {
|
|
var f32_eps = jspb.BinaryConstants.FLOAT32_EPS;
|
|
var f32_min = jspb.BinaryConstants.FLOAT32_MIN;
|
|
var f32_max = jspb.BinaryConstants.FLOAT32_MAX;
|
|
|
|
// NaN.
|
|
jspb.utils.splitFloat32(NaN);
|
|
if (!isNaN(jspb.utils.joinFloat32(jspb.utils.split64Low,
|
|
jspb.utils.split64High))) {
|
|
throw 'fail!';
|
|
}
|
|
|
|
/**
|
|
* @param {number} x
|
|
* @param {number=} opt_bits
|
|
*/
|
|
function test(x, opt_bits) {
|
|
jspb.utils.splitFloat32(x);
|
|
if (goog.isDef(opt_bits)) {
|
|
if (opt_bits != jspb.utils.split64Low) throw 'fail!';
|
|
}
|
|
if (truncate(x) != jspb.utils.joinFloat32(jspb.utils.split64Low,
|
|
jspb.utils.split64High)) {
|
|
throw 'fail!';
|
|
}
|
|
}
|
|
|
|
// Positive and negative infinity.
|
|
test(Infinity, 0x7f800000);
|
|
test(-Infinity, 0xff800000);
|
|
|
|
// Positive and negative zero.
|
|
test(0, 0x00000000);
|
|
test(-0, 0x80000000);
|
|
|
|
// Positive and negative epsilon.
|
|
test(f32_eps, 0x00000001);
|
|
test(-f32_eps, 0x80000001);
|
|
|
|
// Positive and negative min.
|
|
test(f32_min, 0x00800000);
|
|
test(-f32_min, 0x80800000);
|
|
|
|
// Positive and negative max.
|
|
test(f32_max, 0x7F7FFFFF);
|
|
test(-f32_max, 0xFF7FFFFF);
|
|
|
|
// Various positive values.
|
|
var cursor = f32_eps * 10;
|
|
while (cursor != Infinity) {
|
|
test(cursor);
|
|
cursor *= 1.1;
|
|
}
|
|
|
|
// Various negative values.
|
|
cursor = -f32_eps * 10;
|
|
while (cursor != -Infinity) {
|
|
test(cursor);
|
|
cursor *= 1.1;
|
|
}
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests conversion from 64-bit floating point numbers to split64 numbers.
|
|
*/
|
|
it('testFloat64ToSplit64', function() {
|
|
var f64_eps = jspb.BinaryConstants.FLOAT64_EPS;
|
|
var f64_min = jspb.BinaryConstants.FLOAT64_MIN;
|
|
var f64_max = jspb.BinaryConstants.FLOAT64_MAX;
|
|
|
|
// NaN.
|
|
jspb.utils.splitFloat64(NaN);
|
|
if (!isNaN(jspb.utils.joinFloat64(jspb.utils.split64Low,
|
|
jspb.utils.split64High))) {
|
|
throw 'fail!';
|
|
}
|
|
|
|
/**
|
|
* @param {number} x
|
|
* @param {number=} opt_highBits
|
|
* @param {number=} opt_lowBits
|
|
*/
|
|
function test(x, opt_highBits, opt_lowBits) {
|
|
jspb.utils.splitFloat64(x);
|
|
if (goog.isDef(opt_highBits)) {
|
|
if (opt_highBits != jspb.utils.split64High) throw 'fail!';
|
|
}
|
|
if (goog.isDef(opt_lowBits)) {
|
|
if (opt_lowBits != jspb.utils.split64Low) throw 'fail!';
|
|
}
|
|
if (x != jspb.utils.joinFloat64(jspb.utils.split64Low,
|
|
jspb.utils.split64High)) {
|
|
throw 'fail!';
|
|
}
|
|
}
|
|
|
|
// Positive and negative infinity.
|
|
test(Infinity, 0x7ff00000, 0x00000000);
|
|
test(-Infinity, 0xfff00000, 0x00000000);
|
|
|
|
// Positive and negative zero.
|
|
test(0, 0x00000000, 0x00000000);
|
|
test(-0, 0x80000000, 0x00000000);
|
|
|
|
// Positive and negative epsilon.
|
|
test(f64_eps, 0x00000000, 0x00000001);
|
|
test(-f64_eps, 0x80000000, 0x00000001);
|
|
|
|
// Positive and negative min.
|
|
test(f64_min, 0x00100000, 0x00000000);
|
|
test(-f64_min, 0x80100000, 0x00000000);
|
|
|
|
// Positive and negative max.
|
|
test(f64_max, 0x7FEFFFFF, 0xFFFFFFFF);
|
|
test(-f64_max, 0xFFEFFFFF, 0xFFFFFFFF);
|
|
|
|
// Various positive values.
|
|
var cursor = f64_eps * 10;
|
|
while (cursor != Infinity) {
|
|
test(cursor);
|
|
cursor *= 1.1;
|
|
}
|
|
|
|
// Various negative values.
|
|
cursor = -f64_eps * 10;
|
|
while (cursor != -Infinity) {
|
|
test(cursor);
|
|
cursor *= 1.1;
|
|
}
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests counting packed varints.
|
|
*/
|
|
it('testCountVarints', function() {
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
var count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.rawWriteVarint(Math.floor(i));
|
|
count++;
|
|
}
|
|
|
|
var buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count, jspb.utils.countVarints(buffer, 0, buffer.length));
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests counting matching varint fields.
|
|
*/
|
|
it('testCountVarintFields', function() {
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
var count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.writeUint64(1, Math.floor(i));
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
var buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countVarintFields(buffer, 0, buffer.length, 1));
|
|
|
|
writer = new jspb.BinaryWriter();
|
|
|
|
count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.writeUint64(123456789, Math.floor(i));
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countVarintFields(buffer, 0, buffer.length, 123456789));
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests counting matching fixed32 fields.
|
|
*/
|
|
it('testCountFixed32Fields', function() {
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
var count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.writeFixed32(1, Math.floor(i));
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
var buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countFixed32Fields(buffer, 0, buffer.length, 1));
|
|
|
|
writer = new jspb.BinaryWriter();
|
|
|
|
count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.writeFixed32(123456789, Math.floor(i));
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countFixed32Fields(buffer, 0, buffer.length, 123456789));
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests counting matching fixed64 fields.
|
|
*/
|
|
it('testCountFixed64Fields', function() {
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
var count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.writeDouble(1, i);
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
var buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countFixed64Fields(buffer, 0, buffer.length, 1));
|
|
|
|
writer = new jspb.BinaryWriter();
|
|
|
|
count = 0;
|
|
for (var i = 1; i < 1000000000; i *= 1.1) {
|
|
writer.writeDouble(123456789, i);
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countFixed64Fields(buffer, 0, buffer.length, 123456789));
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests counting matching delimited fields.
|
|
*/
|
|
it('testCountDelimitedFields', function() {
|
|
var writer = new jspb.BinaryWriter();
|
|
|
|
var count = 0;
|
|
for (var i = 1; i < 1000; i *= 1.1) {
|
|
writer.writeBytes(1, [Math.floor(i)]);
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
var buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countDelimitedFields(buffer, 0, buffer.length, 1));
|
|
|
|
writer = new jspb.BinaryWriter();
|
|
|
|
count = 0;
|
|
for (var i = 1; i < 1000; i *= 1.1) {
|
|
writer.writeBytes(123456789, [Math.floor(i)]);
|
|
count++;
|
|
}
|
|
writer.writeString(2, 'terminator');
|
|
|
|
buffer = new Uint8Array(writer.getResultBuffer());
|
|
assertEquals(count,
|
|
jspb.utils.countDelimitedFields(buffer, 0, buffer.length, 123456789));
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests byte format for debug strings.
|
|
*/
|
|
it('testDebugBytesToTextFormat', function() {
|
|
assertEquals('""', jspb.utils.debugBytesToTextFormat(null));
|
|
assertEquals('"\\x00\\x10\\xff"',
|
|
jspb.utils.debugBytesToTextFormat([0, 16, 255]));
|
|
});
|
|
|
|
|
|
/**
|
|
* Tests converting byte blob sources into byte blobs.
|
|
*/
|
|
it('testByteSourceToUint8Array', function() {
|
|
var convert = jspb.utils.byteSourceToUint8Array;
|
|
|
|
var sourceData = [];
|
|
for (var i = 0; i < 256; i++) {
|
|
sourceData.push(i);
|
|
}
|
|
|
|
var sourceBytes = new Uint8Array(sourceData);
|
|
var sourceBuffer = sourceBytes.buffer;
|
|
var sourceBase64 = goog.crypt.base64.encodeByteArray(sourceData);
|
|
var sourceString = String.fromCharCode.apply(null, sourceData);
|
|
|
|
function check(result) {
|
|
assertEquals(Uint8Array, result.constructor);
|
|
assertEquals(sourceData.length, result.length);
|
|
for (var i = 0; i < result.length; i++) {
|
|
assertEquals(sourceData[i], result[i]);
|
|
}
|
|
}
|
|
|
|
// Converting Uint8Arrays into Uint8Arrays should be a no-op.
|
|
assertEquals(sourceBytes, convert(sourceBytes));
|
|
|
|
// Converting Array.<numbers> into Uint8Arrays should work.
|
|
check(convert(sourceData));
|
|
|
|
// Converting ArrayBuffers into Uint8Arrays should work.
|
|
check(convert(sourceBuffer));
|
|
|
|
// Converting base64-encoded strings into Uint8Arrays should work.
|
|
check(convert(sourceBase64));
|
|
|
|
// Converting binary-data strings into Uint8Arrays should work.
|
|
check(convert(sourceString, /* opt_stringIsRawBytes = */ true));
|
|
});
|
|
});
|