qt5base-lts/examples/graphicsview/boxes/dotted.fsh

67 lines
2.5 KiB
Plaintext
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/
**
** This file is part of the demonstration applications of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
varying vec3 position, normal;
varying vec4 specular, ambient, diffuse, lightDirection;
uniform sampler2D tex;
void main()
{
vec3 N = normalize(normal);
gl_MaterialParameters M = gl_FrontMaterial;
// assume directional light
float NdotL = dot(N, lightDirection.xyz);
float RdotL = dot(reflect(normalize(position), N), lightDirection.xyz);
float r1 = length(fract(7.0 * gl_TexCoord[1].xyz) - 0.5);
float r2 = length(fract(5.0 * gl_TexCoord[1].xyz + 0.2) - 0.5);
float r3 = length(fract(11.0 * gl_TexCoord[1].xyz + 0.7) - 0.5);
vec4 rs = vec4(r1, r2, r3, 0.0);
vec4 unlitColor = gl_Color * (0.8 - clamp(10.0 * (0.4 - rs), 0.0, 0.2));
unlitColor.w = 1.0;
gl_FragColor = (ambient + diffuse * max(NdotL, 0.0)) * unlitColor +
M.specular * specular * pow(max(RdotL, 0.0), M.shininess);
}