208 lines
4.4 KiB
C
208 lines
4.4 KiB
C
|
/*****************************************************************
|
||
|
|
||
|
Implementation of the fractional Brownian motion algorithm. These
|
||
|
functions were originally the work of F. Kenton Musgrave.
|
||
|
For documentation of the different functions please refer to the
|
||
|
book:
|
||
|
"Texturing and modeling: a procedural approach"
|
||
|
by David S. Ebert et. al.
|
||
|
|
||
|
******************************************************************/
|
||
|
|
||
|
#if defined (_MSC_VER)
|
||
|
#include <qglobal.h>
|
||
|
#endif
|
||
|
|
||
|
#include <time.h>
|
||
|
#include <stdlib.h>
|
||
|
#include "fbm.h"
|
||
|
|
||
|
#if defined(Q_CC_MSVC)
|
||
|
#pragma warning(disable:4244)
|
||
|
#endif
|
||
|
|
||
|
/* Definitions used by the noise2() functions */
|
||
|
|
||
|
//#define B 0x100
|
||
|
//#define BM 0xff
|
||
|
#define B 0x20
|
||
|
#define BM 0x1f
|
||
|
|
||
|
#define N 0x1000
|
||
|
#define NP 12 /* 2^N */
|
||
|
#define NM 0xfff
|
||
|
|
||
|
static int p[B + B + 2];
|
||
|
static float g3[B + B + 2][3];
|
||
|
static float g2[B + B + 2][2];
|
||
|
static float g1[B + B + 2];
|
||
|
static int start = 1;
|
||
|
|
||
|
static void init(void);
|
||
|
|
||
|
#define s_curve(t) ( t * t * (3. - 2. * t) )
|
||
|
|
||
|
#define lerp(t, a, b) ( a + t * (b - a) )
|
||
|
|
||
|
#define setup(i,b0,b1,r0,r1)\
|
||
|
t = vec[i] + N;\
|
||
|
b0 = ((int)t) & BM;\
|
||
|
b1 = (b0+1) & BM;\
|
||
|
r0 = t - (int)t;\
|
||
|
r1 = r0 - 1.;
|
||
|
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
|
||
|
|
||
|
/* Fractional Brownian Motion function */
|
||
|
|
||
|
double fBm( Vector point, double H, double lacunarity, double octaves,
|
||
|
int init )
|
||
|
{
|
||
|
|
||
|
double value, frequency, remainder;
|
||
|
int i;
|
||
|
static double exponent_array[10];
|
||
|
float vec[3];
|
||
|
|
||
|
/* precompute and store spectral weights */
|
||
|
if ( init ) {
|
||
|
start = 1;
|
||
|
srand( time(0) );
|
||
|
/* seize required memory for exponent_array */
|
||
|
frequency = 1.0;
|
||
|
for (i=0; i<=octaves; i++) {
|
||
|
/* compute weight for each frequency */
|
||
|
exponent_array[i] = pow( frequency, -H );
|
||
|
frequency *= lacunarity;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
value = 0.0; /* initialize vars to proper values */
|
||
|
frequency = 1.0;
|
||
|
vec[0]=point.x;
|
||
|
vec[1]=point.y;
|
||
|
vec[2]=point.z;
|
||
|
|
||
|
|
||
|
/* inner loop of spectral construction */
|
||
|
for (i=0; i<octaves; i++) {
|
||
|
/* value += noise3( vec ) * exponent_array[i];*/
|
||
|
value += noise3( vec ) * exponent_array[i];
|
||
|
vec[0] *= lacunarity;
|
||
|
vec[1] *= lacunarity;
|
||
|
vec[2] *= lacunarity;
|
||
|
} /* for */
|
||
|
|
||
|
remainder = octaves - (int)octaves;
|
||
|
if ( remainder ) /* add in ``octaves'' remainder */
|
||
|
/* ``i'' and spatial freq. are preset in loop above */
|
||
|
value += remainder * noise3( vec ) * exponent_array[i];
|
||
|
|
||
|
return( value );
|
||
|
|
||
|
} /* fBm() */
|
||
|
|
||
|
|
||
|
float noise3(float vec[3])
|
||
|
{
|
||
|
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
|
||
|
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
|
||
|
register int i, j;
|
||
|
|
||
|
if (start) {
|
||
|
start = 0;
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
setup(0, bx0,bx1, rx0,rx1);
|
||
|
setup(1, by0,by1, ry0,ry1);
|
||
|
setup(2, bz0,bz1, rz0,rz1);
|
||
|
|
||
|
i = p[ bx0 ];
|
||
|
j = p[ bx1 ];
|
||
|
|
||
|
b00 = p[ i + by0 ];
|
||
|
b10 = p[ j + by0 ];
|
||
|
b01 = p[ i + by1 ];
|
||
|
b11 = p[ j + by1 ];
|
||
|
|
||
|
t = s_curve(rx0);
|
||
|
sy = s_curve(ry0);
|
||
|
sz = s_curve(rz0);
|
||
|
|
||
|
|
||
|
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
|
||
|
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
|
||
|
a = lerp(t, u, v);
|
||
|
|
||
|
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
|
||
|
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
|
||
|
b = lerp(t, u, v);
|
||
|
|
||
|
c = lerp(sy, a, b);
|
||
|
|
||
|
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
|
||
|
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
|
||
|
a = lerp(t, u, v);
|
||
|
|
||
|
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
|
||
|
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
|
||
|
b = lerp(t, u, v);
|
||
|
|
||
|
d = lerp(sy, a, b);
|
||
|
|
||
|
return lerp(sz, c, d);
|
||
|
}
|
||
|
|
||
|
static void normalize2(float v[2])
|
||
|
{
|
||
|
float s;
|
||
|
|
||
|
s = sqrt(v[0] * v[0] + v[1] * v[1]);
|
||
|
v[0] = v[0] / s;
|
||
|
v[1] = v[1] / s;
|
||
|
}
|
||
|
|
||
|
static void normalize3(float v[3])
|
||
|
{
|
||
|
float s;
|
||
|
|
||
|
s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
||
|
v[0] = v[0] / s;
|
||
|
v[1] = v[1] / s;
|
||
|
v[2] = v[2] / s;
|
||
|
}
|
||
|
|
||
|
static void init(void)
|
||
|
{
|
||
|
int i, j, k;
|
||
|
|
||
|
for (i = 0 ; i < B ; i++) {
|
||
|
p[i] = i;
|
||
|
|
||
|
g1[i] = (float)((rand() % (B + B)) - B) / B;
|
||
|
|
||
|
for (j = 0 ; j < 2 ; j++)
|
||
|
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
|
||
|
normalize2(g2[i]);
|
||
|
|
||
|
for (j = 0 ; j < 3 ; j++)
|
||
|
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
|
||
|
normalize3(g3[i]);
|
||
|
}
|
||
|
|
||
|
while (--i) {
|
||
|
k = p[i];
|
||
|
p[i] = p[j = rand() % B];
|
||
|
p[j] = k;
|
||
|
}
|
||
|
|
||
|
for (i = 0 ; i < B + 2 ; i++) {
|
||
|
p[B + i] = p[i];
|
||
|
g1[B + i] = g1[i];
|
||
|
for (j = 0 ; j < 2 ; j++)
|
||
|
g2[B + i][j] = g2[i][j];
|
||
|
for (j = 0 ; j < 3 ; j++)
|
||
|
g3[B + i][j] = g3[i][j];
|
||
|
}
|
||
|
}
|