qt5base-lts/examples/widgets/graphicsview/boxes/granite.fsh

77 lines
2.7 KiB
Plaintext
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/
**
** This file is part of the demonstration applications of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
varying vec3 position, normal;
varying vec4 specular, ambient, diffuse, lightDirection;
uniform sampler2D tex;
uniform sampler3D noise;
//const vec4 graniteColors[3] = {vec4(0.0, 0.0, 0.0, 1), vec4(0.30, 0.15, 0.10, 1), vec4(0.80, 0.70, 0.75, 1)};
uniform vec4 graniteColors[3];
float steep(float x)
{
return clamp(5.0 * x - 2.0, 0.0, 1.0);
}
void main()
{
vec2 turbulence = vec2(0, 0);
float scale = 1.0;
for (int i = 0; i < 4; ++i) {
turbulence += scale * (texture3D(noise, gl_TexCoord[1].xyz / scale).xy - 0.5);
scale *= 0.5;
}
vec3 N = normalize(normal);
// assume directional light
gl_MaterialParameters M = gl_FrontMaterial;
float NdotL = dot(N, lightDirection.xyz);
float RdotL = dot(reflect(normalize(position), N), lightDirection.xyz);
vec4 unlitColor = mix(graniteColors[1], mix(graniteColors[0], graniteColors[2], steep(0.5 + turbulence.y)), 4.0 * abs(turbulence.x));
gl_FragColor = (ambient + diffuse * max(NdotL, 0.0)) * unlitColor +
M.specular * specular * pow(max(RdotL, 0.0), M.shininess);
}