qt5base-lts/tests/auto/qtessellator/tst_tessellator.cpp

379 lines
9.4 KiB
C++
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the test suite of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QtTest/QtTest>
#include <QCoreApplication>
#include <QVector>
#include <qdebug.h>
#include <qpolygon.h>
#include <qmatrix.h>
#include "oldtessellator.h"
#include "testtessellator.h"
#include "utils.h"
#include "simple.h"
#include "arc.h"
#include "math.h"
//TESTED_CLASS=
//TESTED_FILES=
class tst_QTessellator : public QObject
{
Q_OBJECT
public:
tst_QTessellator() {
}
private slots:
void testStandardSet();
void testRandom();
void testArc();
void testRects();
void testConvexRects();
void testConvex();
};
QPointF creatPoint()
{
qreal x = int(20.0 * (rand() / (RAND_MAX + 1.0)));
qreal y = int(20.0 * (rand() / (RAND_MAX + 1.0)));
return QPointF(x, y);
}
bool test(const QPointF *pg, int pgSize, bool winding, tessellate_function tessellate = test_tesselate_polygon, qreal maxDiff = 0.005)
{
QVector<XTrapezoid> traps;
qreal area1 = 0;
qreal area2 = 0;
old_tesselate_polygon(&traps, pg, pgSize, winding);
area1 = compute_area_for_x(traps);
traps.clear();
tessellate(&traps, pg, pgSize, winding);
area2 = compute_area_for_x(traps);
bool result = (qAbs(area2 - area1) < maxDiff);
if (!result && area1)
result = (qAbs(area1 - area2)/area1 < maxDiff);
if (!result)
qDebug() << area1 << area2;
return result;
}
void simplifyTestFailure(QVector<QPointF> failure, bool winding)
{
int i = 1;
while (i < failure.size() - 1) {
QVector<QPointF> t = failure;
t.remove(i);
if (test(t.data(), t.size(), winding)) {
++i;
continue;
}
failure = t;
i = 1;
}
for (int x = 0; x < failure.size(); ++x) {
fprintf(stderr, "%lf,%lf, ", failure[x].x(), failure[x].y());
}
fprintf(stderr, "\n\n");
}
void tst_QTessellator::testStandardSet()
{
QVector<FullData> sampleSet;
sampleSet.append(simpleData());
foreach(FullData data, sampleSet) {
for (int i = 0; i < data.size(); ++i) {
if (!test(data[i].data(), data[i].size(), false)) {
simplifyTestFailure(data[i], false);
QCOMPARE(true, false);
}
if (!test(data[i].data(), data[i].size(), true)) {
simplifyTestFailure(data[i], true);
QCOMPARE(true, false);
}
}
}
}
void fillRandomVec(QVector<QPointF> &vec)
{
int size = vec.size(); --size;
for (int i = 0; i < size; ++i) {
vec[i] = creatPoint();
}
vec[size] = vec[0];
}
void tst_QTessellator::testRandom()
{
int failures = 0;
for (int i = 5; i < 12; ++i) {
QVector<QPointF> vec(i);
#ifdef QT_ARCH_ARM
int k = 200;
#else
int k = 5000;
#endif
while (--k) {
fillRandomVec(vec);
if (!test(vec.data(), vec.size(), false)) {
simplifyTestFailure(vec, false);
++failures;
}
if (!test(vec.data(), vec.size(), true)) {
simplifyTestFailure(vec, true);
++failures;
}
}
}
QVERIFY(failures == 0);
}
// we need a higher threshold for failure here than in the above tests, as this basically draws
// a very thin outline, where the discretization in the new tesselator shows
bool test_arc(const QPolygonF &poly, bool winding)
{
QVector<XTrapezoid> traps;
qreal area1 = 0;
qreal area2 = 0;
old_tesselate_polygon(&traps, poly.data(), poly.size(), winding);
area1 = compute_area_for_x(traps);
traps.clear();
test_tesselate_polygon(&traps, poly.data(), poly.size(), winding);
area2 = compute_area_for_x(traps);
bool result = (area2 - area1 < .02);
if (!result && area1)
result = (qAbs(area1 - area2)/area1 < .02);
return result;
}
void tst_QTessellator::testArc()
{
FullData arc = arcData();
QMatrix mat;
#ifdef QT_ARCH_ARM
const int stop = 5;
#else
const int stop = 1000;
#endif
for (int i = 0; i < stop; ++i) {
mat.rotate(qreal(.01));
mat.scale(qreal(.99), qreal(.99));
QPolygonF poly = arc.at(0);
QPolygonF vec = poly * mat;
QVERIFY(test_arc(vec, true));
QVERIFY(test_arc(vec, false));
}
}
static bool isConvex(const QVector<QPointF> &v)
{
int nPoints = v.size() - 1;
qreal lastCross = 0;
for (int i = 0; i < nPoints; ++i) {
QPointF a = v[i];
QPointF b = v[(i + 1) % nPoints];
QPointF d1 = b - a;
for (int j = 0; j < nPoints; ++j) {
if (j == i || j == i + 1)
continue;
QPointF p = v[j];
QPointF d2 = p - a;
qreal cross = d1.x() * d2.y() - d1.y() * d2.x();
if (!qFuzzyCompare(cross + 1, 1)
&& !qFuzzyCompare(cross + 1, 1)
&& (lastCross > 0) != (cross > 0))
return false;
lastCross = cross;
}
}
return true;
}
static void fillRectVec(QVector<QPointF> &v)
{
int numRects = v.size() / 5;
int first = 0;
v[first++] = QPointF(0, 0);
v[first++] = QPointF(10, 0);
v[first++] = QPointF(10, 10);
v[first++] = QPointF(0, 10);
v[first++] = QPointF(0, 0);
v[first++] = QPointF(0, 0);
v[first++] = QPointF(2, 2);
v[first++] = QPointF(4, 0);
v[first++] = QPointF(2, -2);
v[first++] = QPointF(0, 0);
v[first++] = QPointF(0, 0);
v[first++] = QPointF(4, 4);
v[first++] = QPointF(6, 2);
v[first++] = QPointF(2, -2);
v[first++] = QPointF(0, 0);
for (int i = first / 5; i < numRects; ++i) {
QPointF a = creatPoint();
QPointF b = creatPoint();
QPointF delta = a - b;
QPointF perp(delta.y(), -delta.x());
perp *= ((int)(20.0 * rand() / (RAND_MAX + 1.0))) / 20.0;
int j = 5 * i;
v[j++] = a + perp;
v[j++] = a - perp;
v[j++] = b - perp;
v[j++] = b + perp;
v[j++] = a + perp;
}
}
#ifdef QT_ARCH_ARM
const int numRects = 500;
#else
const int numRects = 5000;
#endif
void tst_QTessellator::testConvexRects()
{
return;
int failures = 0;
QVector<QPointF> vec(numRects * 5);
fillRectVec(vec);
for (int rect = 0; rect < numRects; ++rect) {
QVector<QPointF> v(5);
for (int i = 0; i < 5; ++i)
v[i] = vec[5 * rect + i];
if (!test(v.data(), v.size(), false, test_tessellate_polygon_convex)) {
simplifyTestFailure(v, false);
++failures;
}
if (!test(v.data(), v.size(), true, test_tessellate_polygon_convex)) {
simplifyTestFailure(v, true);
++failures;
}
}
QVERIFY(failures == 0);
}
void tst_QTessellator::testConvex()
{
int failures = 0;
for (int i = 4; i < 10; ++i) {
QVector<QPointF> vec(i);
int k = 5000;
while (k--) {
fillRandomVec(vec);
if (!isConvex(vec))
continue;
if (!test(vec.data(), vec.size(), false, test_tessellate_polygon_convex)) {
simplifyTestFailure(vec, false);
++failures;
}
if (!test(vec.data(), vec.size(), true, test_tessellate_polygon_convex)) {
simplifyTestFailure(vec, true);
++failures;
}
}
}
QVERIFY(failures == 0);
}
void tst_QTessellator::testRects()
{
int failures = 0;
QVector<QPointF> vec(numRects * 5);
fillRectVec(vec);
for (int rect = 0; rect < numRects; ++rect) {
QVector<QPointF> v(5);
for (int i = 0; i < 5; ++i)
v[i] = vec[5 * rect + i];
if (!test(v.data(), v.size(), false, test_tessellate_polygon_rect, qreal(0.05))) {
simplifyTestFailure(v, false);
++failures;
}
if (!test(v.data(), v.size(), true, test_tessellate_polygon_rect, qreal(0.05))) {
simplifyTestFailure(v, true);
++failures;
}
}
QVERIFY(failures == 0);
}
QTEST_MAIN(tst_QTessellator)
#include "tst_tessellator.moc"