qt5base-lts/src/opengl/qglshaderprogram.cpp

3223 lines
90 KiB
C++
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/
**
** This file is part of the QtOpenGL module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qglshaderprogram.h"
#include "qglextensions_p.h"
#include "qgl_p.h"
#include <QtCore/private/qobject_p.h>
#include <QtCore/qdebug.h>
#include <QtCore/qfile.h>
#include <QtCore/qvarlengtharray.h>
#include <QtCore/qvector.h>
QT_BEGIN_NAMESPACE
/*!
\class QGLShaderProgram
\brief The QGLShaderProgram class allows OpenGL shader programs to be linked and used.
\since 4.6
\ingroup painting-3D
\section1 Introduction
This class supports shader programs written in the OpenGL Shading
Language (GLSL) and in the OpenGL/ES Shading Language (GLSL/ES).
QGLShader and QGLShaderProgram shelter the programmer from the details of
compiling and linking vertex and fragment shaders.
The following example creates a vertex shader program using the
supplied source \c{code}. Once compiled and linked, the shader
program is activated in the current QGLContext by calling
QGLShaderProgram::bind():
\snippet code/src_opengl_qglshaderprogram.cpp 0
\section1 Writing portable shaders
Shader programs can be difficult to reuse across OpenGL implementations
because of varying levels of support for standard vertex attributes and
uniform variables. In particular, GLSL/ES lacks all of the
standard variables that are present on desktop OpenGL systems:
\c{gl_Vertex}, \c{gl_Normal}, \c{gl_Color}, and so on. Desktop OpenGL
lacks the variable qualifiers \c{highp}, \c{mediump}, and \c{lowp}.
The QGLShaderProgram class makes the process of writing portable shaders
easier by prefixing all shader programs with the following lines on
desktop OpenGL:
\code
#define highp
#define mediump
#define lowp
\endcode
This makes it possible to run most GLSL/ES shader programs
on desktop systems. The programmer should restrict themselves
to just features that are present in GLSL/ES, and avoid
standard variable names that only work on the desktop.
\section1 Simple shader example
\snippet code/src_opengl_qglshaderprogram.cpp 1
With the above shader program active, we can draw a green triangle
as follows:
\snippet code/src_opengl_qglshaderprogram.cpp 2
\section1 Binary shaders and programs
Binary shaders may be specified using \c{glShaderBinary()} on
the return value from QGLShader::shaderId(). The QGLShader instance
containing the binary can then be added to the shader program with
addShader() and linked in the usual fashion with link().
Binary programs may be specified using \c{glProgramBinaryOES()}
on the return value from programId(). Then the application should
call link(), which will notice that the program has already been
specified and linked, allowing other operations to be performed
on the shader program.
\sa QGLShader
*/
/*!
\class QGLShader
\brief The QGLShader class allows OpenGL shaders to be compiled.
\since 4.6
\ingroup painting-3D
This class supports shaders written in the OpenGL Shading Language (GLSL)
and in the OpenGL/ES Shading Language (GLSL/ES).
QGLShader and QGLShaderProgram shelter the programmer from the details of
compiling and linking vertex and fragment shaders.
\sa QGLShaderProgram
*/
/*!
\enum QGLShader::ShaderTypeBit
This enum specifies the type of QGLShader that is being created.
\value Vertex Vertex shader written in the OpenGL Shading Language (GLSL).
\value Fragment Fragment shader written in the OpenGL Shading Language (GLSL).
\value Geometry Geometry shaders written in the OpenGL Shading
Language (GLSL), based on the GL_EXT_geometry_shader4 extension.
*/
#ifndef GL_FRAGMENT_SHADER
#define GL_FRAGMENT_SHADER 0x8B30
#endif
#ifndef GL_VERTEX_SHADER
#define GL_VERTEX_SHADER 0x8B31
#endif
#ifndef GL_COMPILE_STATUS
#define GL_COMPILE_STATUS 0x8B81
#endif
#ifndef GL_LINK_STATUS
#define GL_LINK_STATUS 0x8B82
#endif
#ifndef GL_INFO_LOG_LENGTH
#define GL_INFO_LOG_LENGTH 0x8B84
#endif
#ifndef GL_ACTIVE_UNIFORMS
#define GL_ACTIVE_UNIFORMS 0x8B86
#endif
#ifndef GL_ACTIVE_UNIFORM_MAX_LENGTH
#define GL_ACTIVE_UNIFORM_MAX_LENGTH 0x8B87
#endif
#ifndef GL_ACTIVE_ATTRIBUTES
#define GL_ACTIVE_ATTRIBUTES 0x8B89
#endif
#ifndef GL_ACTIVE_ATTRIBUTE_MAX_LENGTH
#define GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 0x8B8A
#endif
#ifndef GL_CURRENT_VERTEX_ATTRIB
#define GL_CURRENT_VERTEX_ATTRIB 0x8626
#endif
#ifndef GL_SHADER_SOURCE_LENGTH
#define GL_SHADER_SOURCE_LENGTH 0x8B88
#endif
#ifndef GL_SHADER_BINARY_FORMATS
#define GL_SHADER_BINARY_FORMATS 0x8DF8
#endif
#ifndef GL_NUM_SHADER_BINARY_FORMATS
#define GL_NUM_SHADER_BINARY_FORMATS 0x8DF9
#endif
class QGLShaderPrivate : public QObjectPrivate
{
Q_DECLARE_PUBLIC(QGLShader)
public:
QGLShaderPrivate(const QGLContext *, QGLShader::ShaderType type)
: shaderGuard(0)
, shaderType(type)
, compiled(false)
{
}
~QGLShaderPrivate();
QGLSharedResourceGuardBase *shaderGuard;
QGLShader::ShaderType shaderType;
bool compiled;
QString log;
bool create();
bool compile(QGLShader *q);
void deleteShader();
};
namespace {
void freeShaderFunc(QGLContext *ctx, GLuint id)
{
Q_UNUSED(ctx);
glDeleteShader(id);
}
}
#define ctx QGLContext::currentContext()
QGLShaderPrivate::~QGLShaderPrivate()
{
if (shaderGuard)
shaderGuard->free();
}
bool QGLShaderPrivate::create()
{
QGLContext *context = const_cast<QGLContext *>(QGLContext::currentContext());
if (!context)
return false;
if (qt_resolve_glsl_extensions(context)) {
GLuint shader;
if (shaderType == QGLShader::Vertex)
shader = glCreateShader(GL_VERTEX_SHADER);
OpenGL: Use official glext.h and gl2ext.h headers The Khronos group makes the glext.h (Desktop OpenGL) and gl2ext.h (OpenGL ES2) headers officially available nowadays. Most (all?) Linux systems ship this by default. On Windows platforms the glext.h file needs to be downloaded from http://www.opengl.org/registry/api/glext.h and placed alongside the system OpenGL header. Making use of the official header reduces the maintenance overhead for OpenGL support in Qt by removing the need to copy and paste definitions into the Qt sources. As the Khronos-provided headers are standardised and backwards and forwards compatible we can utilise these for all platforms rather than just for Windows. This means that all definitions required by Qt will be present even if the system ships out-dated equivalents. Mac OS X needs special handling in that we should always use the system-provided headers there. This is because Apple controls the OpenGL driver and the headers that go along with it. As such there is no possibility that the driver exposes additional functionality compared with the system-provided OpenGL headers. Apple has also decided to make different decisions about some OpenGL typedefs compared to other implementations. For example, Apple typdefs GLhandleARB to void* whereas other platforms use unsigned int. The alternative, which is to use the system provided glext.h (or gl2ext.h) header means that Qt code would need to check for the availability of such definitions wherever it is not guaranteed to be provided by core OpenGL/ES just to compile. The proposed approach means that Qt can compile regardless of the system's OpenGL extension support. We just need to be rigourous in runtime checking of support for extensions but that is already a requirement (and is missing in a few places, see TODO's added in this commit). The official Khronos headers are added to Qt as qopenglext.h - Desktop OpenGL qopengles2ext.h - OpenGL ES2 They need to be public but not part of QtGui module include, hence the headers have been modified by adding #if 0 #pragma qt_no_master_include #endif to them. This has been tested on: Gentoo Linux with GCC 4.6.3 Windows 7 with MSVC 2010 Mac OSX 10.8 with Apple clang 4.0 (based on LLVM 3.1svn) QNX with qcc (based on GCC 4.4) A small change is needed to QtDeclarative when building for OpenGL ES 2 after applying this commit. See https://codereview.qt-project.org/#change,31794 Change-Id: I4b3d2b1680baf4c78be9a87b4d8de076d23e8f82 Reviewed-by: Gunnar Sletta <gunnar.sletta@nokia.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-06-08 08:39:17 +00:00
#if !defined(QT_OPENGL_ES_2)
else if (shaderType == QGLShader::Geometry)
shader = glCreateShader(GL_GEOMETRY_SHADER_EXT);
OpenGL: Use official glext.h and gl2ext.h headers The Khronos group makes the glext.h (Desktop OpenGL) and gl2ext.h (OpenGL ES2) headers officially available nowadays. Most (all?) Linux systems ship this by default. On Windows platforms the glext.h file needs to be downloaded from http://www.opengl.org/registry/api/glext.h and placed alongside the system OpenGL header. Making use of the official header reduces the maintenance overhead for OpenGL support in Qt by removing the need to copy and paste definitions into the Qt sources. As the Khronos-provided headers are standardised and backwards and forwards compatible we can utilise these for all platforms rather than just for Windows. This means that all definitions required by Qt will be present even if the system ships out-dated equivalents. Mac OS X needs special handling in that we should always use the system-provided headers there. This is because Apple controls the OpenGL driver and the headers that go along with it. As such there is no possibility that the driver exposes additional functionality compared with the system-provided OpenGL headers. Apple has also decided to make different decisions about some OpenGL typedefs compared to other implementations. For example, Apple typdefs GLhandleARB to void* whereas other platforms use unsigned int. The alternative, which is to use the system provided glext.h (or gl2ext.h) header means that Qt code would need to check for the availability of such definitions wherever it is not guaranteed to be provided by core OpenGL/ES just to compile. The proposed approach means that Qt can compile regardless of the system's OpenGL extension support. We just need to be rigourous in runtime checking of support for extensions but that is already a requirement (and is missing in a few places, see TODO's added in this commit). The official Khronos headers are added to Qt as qopenglext.h - Desktop OpenGL qopengles2ext.h - OpenGL ES2 They need to be public but not part of QtGui module include, hence the headers have been modified by adding #if 0 #pragma qt_no_master_include #endif to them. This has been tested on: Gentoo Linux with GCC 4.6.3 Windows 7 with MSVC 2010 Mac OSX 10.8 with Apple clang 4.0 (based on LLVM 3.1svn) QNX with qcc (based on GCC 4.4) A small change is needed to QtDeclarative when building for OpenGL ES 2 after applying this commit. See https://codereview.qt-project.org/#change,31794 Change-Id: I4b3d2b1680baf4c78be9a87b4d8de076d23e8f82 Reviewed-by: Gunnar Sletta <gunnar.sletta@nokia.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-06-08 08:39:17 +00:00
#endif
else
shader = glCreateShader(GL_FRAGMENT_SHADER);
if (!shader) {
qWarning("%s: Could not create shader of type %d.",
Q_FUNC_INFO, int(shaderType));
return false;
}
shaderGuard = createSharedResourceGuard(context, shader, freeShaderFunc);
return true;
} else {
return false;
}
}
bool QGLShaderPrivate::compile(QGLShader *q)
{
GLuint shader = shaderGuard ? shaderGuard->id() : 0;
if (!shader)
return false;
glCompileShader(shader);
GLint value = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &value);
compiled = (value != 0);
value = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &value);
if (!compiled && value > 1) {
char *logbuf = new char [value];
GLint len;
glGetShaderInfoLog(shader, value, &len, logbuf);
log = QString::fromLatin1(logbuf);
QString name = q->objectName();
const char *types[] = {
"Fragment",
"Vertex",
"Geometry",
""
};
const char *type = types[3];
if (shaderType == QGLShader::Fragment)
type = types[0];
else if (shaderType == QGLShader::Vertex)
type = types[1];
else if (shaderType == QGLShader::Geometry)
type = types[2];
if (name.isEmpty())
qWarning("QGLShader::compile(%s): %s", type, qPrintable(log));
else
qWarning("QGLShader::compile(%s)[%s]: %s", type, qPrintable(name), qPrintable(log));
delete [] logbuf;
}
return compiled;
}
void QGLShaderPrivate::deleteShader()
{
if (shaderGuard) {
shaderGuard->free();
shaderGuard = 0;
}
}
/*!
Constructs a new QGLShader object of the specified \a type
and attaches it to \a parent. If shader programs are not supported,
QGLShaderProgram::hasOpenGLShaderPrograms() will return false.
This constructor is normally followed by a call to compileSourceCode()
or compileSourceFile().
The shader will be associated with the current QGLContext.
\sa compileSourceCode(), compileSourceFile()
*/
QGLShader::QGLShader(QGLShader::ShaderType type, QObject *parent)
: QObject(*new QGLShaderPrivate(QGLContext::currentContext(), type), parent)
{
Q_D(QGLShader);
d->create();
}
/*!
Constructs a new QGLShader object of the specified \a type
and attaches it to \a parent. If shader programs are not supported,
then QGLShaderProgram::hasOpenGLShaderPrograms() will return false.
This constructor is normally followed by a call to compileSourceCode()
or compileSourceFile().
The shader will be associated with \a context.
\sa compileSourceCode(), compileSourceFile()
*/
QGLShader::QGLShader(QGLShader::ShaderType type, const QGLContext *context, QObject *parent)
: QObject(*new QGLShaderPrivate(context ? context : QGLContext::currentContext(), type), parent)
{
Q_D(QGLShader);
#ifndef QT_NO_DEBUG
if (context && !QGLContext::areSharing(context, QGLContext::currentContext())) {
qWarning("QGLShader::QGLShader: \'context\' must be the current context or sharing with it.");
return;
}
#endif
d->create();
}
/*!
Deletes this shader. If the shader has been attached to a
QGLShaderProgram object, then the actual shader will stay around
until the QGLShaderProgram is destroyed.
*/
QGLShader::~QGLShader()
{
}
/*!
Returns the type of this shader.
*/
QGLShader::ShaderType QGLShader::shaderType() const
{
Q_D(const QGLShader);
return d->shaderType;
}
// The precision qualifiers are useful on OpenGL/ES systems,
// but usually not present on desktop systems. Define the
// keywords to empty strings on desktop systems.
#if !defined(QT_OPENGL_ES) || defined(QT_OPENGL_FORCE_SHADER_DEFINES)
#define QGL_DEFINE_QUALIFIERS 1
static const char qualifierDefines[] =
"#define lowp\n"
"#define mediump\n"
"#define highp\n";
#else
// The "highp" qualifier doesn't exist in fragment shaders
// on all ES platforms. When it doesn't exist, use "mediump".
#define QGL_REDEFINE_HIGHP 1
static const char redefineHighp[] =
"#ifndef GL_FRAGMENT_PRECISION_HIGH\n"
"#define highp mediump\n"
"#endif\n";
#endif
/*!
Sets the \a source code for this shader and compiles it.
Returns true if the source was successfully compiled, false otherwise.
\sa compileSourceFile()
*/
bool QGLShader::compileSourceCode(const char *source)
{
Q_D(QGLShader);
if (d->shaderGuard && d->shaderGuard->id()) {
QVarLengthArray<const char *, 4> src;
QVarLengthArray<GLint, 4> srclen;
int headerLen = 0;
while (source && source[headerLen] == '#') {
// Skip #version and #extension directives at the start of
// the shader code. We need to insert the qualifierDefines
// and redefineHighp just after them.
if (qstrncmp(source + headerLen, "#version", 8) != 0 &&
qstrncmp(source + headerLen, "#extension", 10) != 0) {
break;
}
while (source[headerLen] != '\0' && source[headerLen] != '\n')
++headerLen;
if (source[headerLen] == '\n')
++headerLen;
}
if (headerLen > 0) {
src.append(source);
srclen.append(GLint(headerLen));
}
#ifdef QGL_DEFINE_QUALIFIERS
src.append(qualifierDefines);
srclen.append(GLint(sizeof(qualifierDefines) - 1));
#endif
#ifdef QGL_REDEFINE_HIGHP
if (d->shaderType == Fragment) {
src.append(redefineHighp);
srclen.append(GLint(sizeof(redefineHighp) - 1));
}
#endif
src.append(source + headerLen);
srclen.append(GLint(qstrlen(source + headerLen)));
glShaderSource(d->shaderGuard->id(), src.size(), src.data(), srclen.data());
return d->compile(this);
} else {
return false;
}
}
/*!
\overload
Sets the \a source code for this shader and compiles it.
Returns true if the source was successfully compiled, false otherwise.
\sa compileSourceFile()
*/
bool QGLShader::compileSourceCode(const QByteArray& source)
{
return compileSourceCode(source.constData());
}
/*!
\overload
Sets the \a source code for this shader and compiles it.
Returns true if the source was successfully compiled, false otherwise.
\sa compileSourceFile()
*/
bool QGLShader::compileSourceCode(const QString& source)
{
return compileSourceCode(source.toLatin1().constData());
}
/*!
Sets the source code for this shader to the contents of \a fileName
and compiles it. Returns true if the file could be opened and the
source compiled, false otherwise.
\sa compileSourceCode()
*/
bool QGLShader::compileSourceFile(const QString& fileName)
{
QFile file(fileName);
if (!file.open(QFile::ReadOnly)) {
qWarning() << "QGLShader: Unable to open file" << fileName;
return false;
}
QByteArray contents = file.readAll();
return compileSourceCode(contents.constData());
}
/*!
Returns the source code for this shader.
\sa compileSourceCode()
*/
QByteArray QGLShader::sourceCode() const
{
Q_D(const QGLShader);
GLuint shader = d->shaderGuard ? d->shaderGuard->id() : 0;
if (!shader)
return QByteArray();
GLint size = 0;
glGetShaderiv(shader, GL_SHADER_SOURCE_LENGTH, &size);
if (size <= 0)
return QByteArray();
GLint len = 0;
char *source = new char [size];
glGetShaderSource(shader, size, &len, source);
QByteArray src(source);
delete [] source;
return src;
}
/*!
Returns true if this shader has been compiled; false otherwise.
\sa compileSourceCode(), compileSourceFile()
*/
bool QGLShader::isCompiled() const
{
Q_D(const QGLShader);
return d->compiled;
}
/*!
Returns the errors and warnings that occurred during the last compile.
\sa compileSourceCode(), compileSourceFile()
*/
QString QGLShader::log() const
{
Q_D(const QGLShader);
return d->log;
}
/*!
Returns the OpenGL identifier associated with this shader.
\sa QGLShaderProgram::programId()
*/
GLuint QGLShader::shaderId() const
{
Q_D(const QGLShader);
return d->shaderGuard ? d->shaderGuard->id() : 0;
}
#undef ctx
class QGLShaderProgramPrivate : public QObjectPrivate
{
Q_DECLARE_PUBLIC(QGLShaderProgram)
public:
QGLShaderProgramPrivate(const QGLContext *)
: programGuard(0)
, linked(false)
, inited(false)
, removingShaders(false)
, geometryVertexCount(64)
, geometryInputType(0)
, geometryOutputType(0)
{
}
~QGLShaderProgramPrivate();
QGLSharedResourceGuardBase *programGuard;
bool linked;
bool inited;
bool removingShaders;
int geometryVertexCount;
GLenum geometryInputType;
GLenum geometryOutputType;
QString log;
QList<QGLShader *> shaders;
QList<QGLShader *> anonShaders;
bool hasShader(QGLShader::ShaderType type) const;
};
namespace {
void freeProgramFunc(QGLContext *ctx, GLuint id)
{
Q_UNUSED(ctx);
glDeleteProgram(id);
}
}
QGLShaderProgramPrivate::~QGLShaderProgramPrivate()
{
if (programGuard)
programGuard->free();
}
bool QGLShaderProgramPrivate::hasShader(QGLShader::ShaderType type) const
{
foreach (QGLShader *shader, shaders) {
if (shader->shaderType() == type)
return true;
}
return false;
}
#define ctx QGLContext::currentContext()
/*!
Constructs a new shader program and attaches it to \a parent.
The program will be invalid until addShader() is called.
The shader program will be associated with the current QGLContext.
\sa addShader()
*/
QGLShaderProgram::QGLShaderProgram(QObject *parent)
: QObject(*new QGLShaderProgramPrivate(QGLContext::currentContext()), parent)
{
}
/*!
Constructs a new shader program and attaches it to \a parent.
The program will be invalid until addShader() is called.
The shader program will be associated with \a context.
\sa addShader()
*/
QGLShaderProgram::QGLShaderProgram(const QGLContext *context, QObject *parent)
: QObject(*new QGLShaderProgramPrivate(context), parent)
{
}
/*!
Deletes this shader program.
*/
QGLShaderProgram::~QGLShaderProgram()
{
}
bool QGLShaderProgram::init()
{
Q_D(QGLShaderProgram);
if ((d->programGuard && d->programGuard->id()) || d->inited)
return true;
d->inited = true;
QGLContext *context = const_cast<QGLContext *>(QGLContext::currentContext());
if (!context)
return false;
if (qt_resolve_glsl_extensions(context)) {
GLuint program = glCreateProgram();
if (!program) {
qWarning() << "QGLShaderProgram: could not create shader program";
return false;
}
if (d->programGuard)
delete d->programGuard;
d->programGuard = createSharedResourceGuard(context, program, freeProgramFunc);
return true;
} else {
qWarning() << "QGLShaderProgram: shader programs are not supported";
return false;
}
}
/*!
Adds a compiled \a shader to this shader program. Returns true
if the shader could be added, or false otherwise.
Ownership of the \a shader object remains with the caller.
It will not be deleted when this QGLShaderProgram instance
is deleted. This allows the caller to add the same shader
to multiple shader programs.
\sa addShaderFromSourceCode(), addShaderFromSourceFile()
\sa removeShader(), link(), removeAllShaders()
*/
bool QGLShaderProgram::addShader(QGLShader *shader)
{
Q_D(QGLShaderProgram);
if (!init())
return false;
if (d->shaders.contains(shader))
return true; // Already added to this shader program.
if (d->programGuard && d->programGuard->id() && shader) {
if (!shader->d_func()->shaderGuard || !shader->d_func()->shaderGuard->id())
return false;
if (d->programGuard->group() != shader->d_func()->shaderGuard->group()) {
qWarning("QGLShaderProgram::addShader: Program and shader are not associated with same context.");
return false;
}
glAttachShader(d->programGuard->id(), shader->d_func()->shaderGuard->id());
d->linked = false; // Program needs to be relinked.
d->shaders.append(shader);
connect(shader, SIGNAL(destroyed()), this, SLOT(shaderDestroyed()));
return true;
} else {
return false;
}
}
/*!
Compiles \a source as a shader of the specified \a type and
adds it to this shader program. Returns true if compilation
was successful, false otherwise. The compilation errors
and warnings will be made available via log().
This function is intended to be a short-cut for quickly
adding vertex and fragment shaders to a shader program without
creating an instance of QGLShader first.
\sa addShader(), addShaderFromSourceFile()
\sa removeShader(), link(), log(), removeAllShaders()
*/
bool QGLShaderProgram::addShaderFromSourceCode(QGLShader::ShaderType type, const char *source)
{
Q_D(QGLShaderProgram);
if (!init())
return false;
QGLShader *shader = new QGLShader(type, this);
if (!shader->compileSourceCode(source)) {
d->log = shader->log();
delete shader;
return false;
}
d->anonShaders.append(shader);
return addShader(shader);
}
/*!
\overload
Compiles \a source as a shader of the specified \a type and
adds it to this shader program. Returns true if compilation
was successful, false otherwise. The compilation errors
and warnings will be made available via log().
This function is intended to be a short-cut for quickly
adding vertex and fragment shaders to a shader program without
creating an instance of QGLShader first.
\sa addShader(), addShaderFromSourceFile()
\sa removeShader(), link(), log(), removeAllShaders()
*/
bool QGLShaderProgram::addShaderFromSourceCode(QGLShader::ShaderType type, const QByteArray& source)
{
return addShaderFromSourceCode(type, source.constData());
}
/*!
\overload
Compiles \a source as a shader of the specified \a type and
adds it to this shader program. Returns true if compilation
was successful, false otherwise. The compilation errors
and warnings will be made available via log().
This function is intended to be a short-cut for quickly
adding vertex and fragment shaders to a shader program without
creating an instance of QGLShader first.
\sa addShader(), addShaderFromSourceFile()
\sa removeShader(), link(), log(), removeAllShaders()
*/
bool QGLShaderProgram::addShaderFromSourceCode(QGLShader::ShaderType type, const QString& source)
{
return addShaderFromSourceCode(type, source.toLatin1().constData());
}
/*!
Compiles the contents of \a fileName as a shader of the specified
\a type and adds it to this shader program. Returns true if
compilation was successful, false otherwise. The compilation errors
and warnings will be made available via log().
This function is intended to be a short-cut for quickly
adding vertex and fragment shaders to a shader program without
creating an instance of QGLShader first.
\sa addShader(), addShaderFromSourceCode()
*/
bool QGLShaderProgram::addShaderFromSourceFile
(QGLShader::ShaderType type, const QString& fileName)
{
Q_D(QGLShaderProgram);
if (!init())
return false;
QGLShader *shader = new QGLShader(type, this);
if (!shader->compileSourceFile(fileName)) {
d->log = shader->log();
delete shader;
return false;
}
d->anonShaders.append(shader);
return addShader(shader);
}
/*!
Removes \a shader from this shader program. The object is not deleted.
The shader program must be valid in the current QGLContext.
\sa addShader(), link(), removeAllShaders()
*/
void QGLShaderProgram::removeShader(QGLShader *shader)
{
Q_D(QGLShaderProgram);
if (d->programGuard && d->programGuard->id()
&& shader && shader->d_func()->shaderGuard)
{
glDetachShader(d->programGuard->id(), shader->d_func()->shaderGuard->id());
}
d->linked = false; // Program needs to be relinked.
if (shader) {
d->shaders.removeAll(shader);
d->anonShaders.removeAll(shader);
disconnect(shader, SIGNAL(destroyed()), this, SLOT(shaderDestroyed()));
}
}
/*!
Returns a list of all shaders that have been added to this shader
program using addShader().
\sa addShader(), removeShader()
*/
QList<QGLShader *> QGLShaderProgram::shaders() const
{
Q_D(const QGLShaderProgram);
return d->shaders;
}
/*!
Removes all of the shaders that were added to this program previously.
The QGLShader objects for the shaders will not be deleted if they
were constructed externally. QGLShader objects that are constructed
internally by QGLShaderProgram will be deleted.
\sa addShader(), removeShader()
*/
void QGLShaderProgram::removeAllShaders()
{
Q_D(QGLShaderProgram);
d->removingShaders = true;
foreach (QGLShader *shader, d->shaders) {
if (d->programGuard && d->programGuard->id()
&& shader && shader->d_func()->shaderGuard)
{
glDetachShader(d->programGuard->id(), shader->d_func()->shaderGuard->id());
}
}
foreach (QGLShader *shader, d->anonShaders) {
// Delete shader objects that were created anonymously.
delete shader;
}
d->shaders.clear();
d->anonShaders.clear();
d->linked = false; // Program needs to be relinked.
d->removingShaders = false;
}
/*!
Links together the shaders that were added to this program with
addShader(). Returns true if the link was successful or
false otherwise. If the link failed, the error messages can
be retrieved with log().
Subclasses can override this function to initialize attributes
and uniform variables for use in specific shader programs.
If the shader program was already linked, calling this
function again will force it to be re-linked.
\sa addShader(), log()
*/
bool QGLShaderProgram::link()
{
Q_D(QGLShaderProgram);
GLuint program = d->programGuard ? d->programGuard->id() : 0;
if (!program)
return false;
GLint value;
if (d->shaders.isEmpty()) {
// If there are no explicit shaders, then it is possible that the
// application added a program binary with glProgramBinaryOES(),
// or otherwise populated the shaders itself. Check to see if the
// program is already linked and bail out if so.
value = 0;
glGetProgramiv(program, GL_LINK_STATUS, &value);
d->linked = (value != 0);
if (d->linked)
return true;
}
OpenGL: Use official glext.h and gl2ext.h headers The Khronos group makes the glext.h (Desktop OpenGL) and gl2ext.h (OpenGL ES2) headers officially available nowadays. Most (all?) Linux systems ship this by default. On Windows platforms the glext.h file needs to be downloaded from http://www.opengl.org/registry/api/glext.h and placed alongside the system OpenGL header. Making use of the official header reduces the maintenance overhead for OpenGL support in Qt by removing the need to copy and paste definitions into the Qt sources. As the Khronos-provided headers are standardised and backwards and forwards compatible we can utilise these for all platforms rather than just for Windows. This means that all definitions required by Qt will be present even if the system ships out-dated equivalents. Mac OS X needs special handling in that we should always use the system-provided headers there. This is because Apple controls the OpenGL driver and the headers that go along with it. As such there is no possibility that the driver exposes additional functionality compared with the system-provided OpenGL headers. Apple has also decided to make different decisions about some OpenGL typedefs compared to other implementations. For example, Apple typdefs GLhandleARB to void* whereas other platforms use unsigned int. The alternative, which is to use the system provided glext.h (or gl2ext.h) header means that Qt code would need to check for the availability of such definitions wherever it is not guaranteed to be provided by core OpenGL/ES just to compile. The proposed approach means that Qt can compile regardless of the system's OpenGL extension support. We just need to be rigourous in runtime checking of support for extensions but that is already a requirement (and is missing in a few places, see TODO's added in this commit). The official Khronos headers are added to Qt as qopenglext.h - Desktop OpenGL qopengles2ext.h - OpenGL ES2 They need to be public but not part of QtGui module include, hence the headers have been modified by adding #if 0 #pragma qt_no_master_include #endif to them. This has been tested on: Gentoo Linux with GCC 4.6.3 Windows 7 with MSVC 2010 Mac OSX 10.8 with Apple clang 4.0 (based on LLVM 3.1svn) QNX with qcc (based on GCC 4.4) A small change is needed to QtDeclarative when building for OpenGL ES 2 after applying this commit. See https://codereview.qt-project.org/#change,31794 Change-Id: I4b3d2b1680baf4c78be9a87b4d8de076d23e8f82 Reviewed-by: Gunnar Sletta <gunnar.sletta@nokia.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-06-08 08:39:17 +00:00
#if !defined(QT_OPENGL_ES_2)
// Set up the geometry shader parameters
if (glProgramParameteriEXT) {
foreach (QGLShader *shader, d->shaders) {
if (shader->shaderType() & QGLShader::Geometry) {
glProgramParameteriEXT(program, GL_GEOMETRY_INPUT_TYPE_EXT,
d->geometryInputType);
glProgramParameteriEXT(program, GL_GEOMETRY_OUTPUT_TYPE_EXT,
d->geometryOutputType);
glProgramParameteriEXT(program, GL_GEOMETRY_VERTICES_OUT_EXT,
d->geometryVertexCount);
break;
}
}
}
OpenGL: Use official glext.h and gl2ext.h headers The Khronos group makes the glext.h (Desktop OpenGL) and gl2ext.h (OpenGL ES2) headers officially available nowadays. Most (all?) Linux systems ship this by default. On Windows platforms the glext.h file needs to be downloaded from http://www.opengl.org/registry/api/glext.h and placed alongside the system OpenGL header. Making use of the official header reduces the maintenance overhead for OpenGL support in Qt by removing the need to copy and paste definitions into the Qt sources. As the Khronos-provided headers are standardised and backwards and forwards compatible we can utilise these for all platforms rather than just for Windows. This means that all definitions required by Qt will be present even if the system ships out-dated equivalents. Mac OS X needs special handling in that we should always use the system-provided headers there. This is because Apple controls the OpenGL driver and the headers that go along with it. As such there is no possibility that the driver exposes additional functionality compared with the system-provided OpenGL headers. Apple has also decided to make different decisions about some OpenGL typedefs compared to other implementations. For example, Apple typdefs GLhandleARB to void* whereas other platforms use unsigned int. The alternative, which is to use the system provided glext.h (or gl2ext.h) header means that Qt code would need to check for the availability of such definitions wherever it is not guaranteed to be provided by core OpenGL/ES just to compile. The proposed approach means that Qt can compile regardless of the system's OpenGL extension support. We just need to be rigourous in runtime checking of support for extensions but that is already a requirement (and is missing in a few places, see TODO's added in this commit). The official Khronos headers are added to Qt as qopenglext.h - Desktop OpenGL qopengles2ext.h - OpenGL ES2 They need to be public but not part of QtGui module include, hence the headers have been modified by adding #if 0 #pragma qt_no_master_include #endif to them. This has been tested on: Gentoo Linux with GCC 4.6.3 Windows 7 with MSVC 2010 Mac OSX 10.8 with Apple clang 4.0 (based on LLVM 3.1svn) QNX with qcc (based on GCC 4.4) A small change is needed to QtDeclarative when building for OpenGL ES 2 after applying this commit. See https://codereview.qt-project.org/#change,31794 Change-Id: I4b3d2b1680baf4c78be9a87b4d8de076d23e8f82 Reviewed-by: Gunnar Sletta <gunnar.sletta@nokia.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-06-08 08:39:17 +00:00
#endif
glLinkProgram(program);
value = 0;
glGetProgramiv(program, GL_LINK_STATUS, &value);
d->linked = (value != 0);
value = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &value);
d->log = QString();
if (value > 1) {
char *logbuf = new char [value];
GLint len;
glGetProgramInfoLog(program, value, &len, logbuf);
d->log = QString::fromLatin1(logbuf);
QString name = objectName();
if (name.isEmpty())
qWarning() << "QGLShader::link:" << d->log;
else
qWarning() << "QGLShader::link[" << name << "]:" << d->log;
delete [] logbuf;
}
return d->linked;
}
/*!
Returns true if this shader program has been linked; false otherwise.
\sa link()
*/
bool QGLShaderProgram::isLinked() const
{
Q_D(const QGLShaderProgram);
return d->linked;
}
/*!
Returns the errors and warnings that occurred during the last link()
or addShader() with explicitly specified source code.
\sa link()
*/
QString QGLShaderProgram::log() const
{
Q_D(const QGLShaderProgram);
return d->log;
}
/*!
Binds this shader program to the active QGLContext and makes
it the current shader program. Any previously bound shader program
is released. This is equivalent to calling \c{glUseProgram()} on
programId(). Returns true if the program was successfully bound;
false otherwise. If the shader program has not yet been linked,
or it needs to be re-linked, this function will call link().
\sa link(), release()
*/
bool QGLShaderProgram::bind()
{
Q_D(QGLShaderProgram);
GLuint program = d->programGuard ? d->programGuard->id() : 0;
if (!program)
return false;
if (!d->linked && !link())
return false;
#ifndef QT_NO_DEBUG
if (d->programGuard->group() != QOpenGLContextGroup::currentContextGroup()) {
qWarning("QGLShaderProgram::bind: program is not valid in the current context.");
return false;
}
#endif
glUseProgram(program);
return true;
}
#undef ctx
#define ctx QGLContext::currentContext()
/*!
Releases the active shader program from the current QGLContext.
This is equivalent to calling \c{glUseProgram(0)}.
\sa bind()
*/
void QGLShaderProgram::release()
{
#ifndef QT_NO_DEBUG
Q_D(QGLShaderProgram);
if (d->programGuard && d->programGuard->group() != QOpenGLContextGroup::currentContextGroup())
qWarning("QGLShaderProgram::release: program is not valid in the current context.");
#endif
#if defined(QT_OPENGL_ES_2)
glUseProgram(0);
#else
if (glUseProgram)
glUseProgram(0);
#endif
}
/*!
Returns the OpenGL identifier associated with this shader program.
\sa QGLShader::shaderId()
*/
GLuint QGLShaderProgram::programId() const
{
Q_D(const QGLShaderProgram);
GLuint id = d->programGuard ? d->programGuard->id() : 0;
if (id)
return id;
// Create the identifier if we don't have one yet. This is for
// applications that want to create the attached shader configuration
// themselves, particularly those using program binaries.
if (!const_cast<QGLShaderProgram *>(this)->init())
return 0;
return d->programGuard ? d->programGuard->id() : 0;
}
/*!
Binds the attribute \a name to the specified \a location. This
function can be called before or after the program has been linked.
Any attributes that have not been explicitly bound when the program
is linked will be assigned locations automatically.
When this function is called after the program has been linked,
the program will need to be relinked for the change to take effect.
\sa attributeLocation()
*/
void QGLShaderProgram::bindAttributeLocation(const char *name, int location)
{
Q_D(QGLShaderProgram);
if (!init() || !d->programGuard || !d->programGuard->id())
return;
glBindAttribLocation(d->programGuard->id(), location, name);
d->linked = false; // Program needs to be relinked.
}
/*!
\overload
Binds the attribute \a name to the specified \a location. This
function can be called before or after the program has been linked.
Any attributes that have not been explicitly bound when the program
is linked will be assigned locations automatically.
When this function is called after the program has been linked,
the program will need to be relinked for the change to take effect.
\sa attributeLocation()
*/
void QGLShaderProgram::bindAttributeLocation(const QByteArray& name, int location)
{
bindAttributeLocation(name.constData(), location);
}
/*!
\overload
Binds the attribute \a name to the specified \a location. This
function can be called before or after the program has been linked.
Any attributes that have not been explicitly bound when the program
is linked will be assigned locations automatically.
When this function is called after the program has been linked,
the program will need to be relinked for the change to take effect.
\sa attributeLocation()
*/
void QGLShaderProgram::bindAttributeLocation(const QString& name, int location)
{
bindAttributeLocation(name.toLatin1().constData(), location);
}
/*!
Returns the location of the attribute \a name within this shader
program's parameter list. Returns -1 if \a name is not a valid
attribute for this shader program.
\sa uniformLocation(), bindAttributeLocation()
*/
int QGLShaderProgram::attributeLocation(const char *name) const
{
Q_D(const QGLShaderProgram);
if (d->linked && d->programGuard && d->programGuard->id()) {
return glGetAttribLocation(d->programGuard->id(), name);
} else {
qWarning() << "QGLShaderProgram::attributeLocation(" << name
<< "): shader program is not linked";
return -1;
}
}
/*!
\overload
Returns the location of the attribute \a name within this shader
program's parameter list. Returns -1 if \a name is not a valid
attribute for this shader program.
\sa uniformLocation(), bindAttributeLocation()
*/
int QGLShaderProgram::attributeLocation(const QByteArray& name) const
{
return attributeLocation(name.constData());
}
/*!
\overload
Returns the location of the attribute \a name within this shader
program's parameter list. Returns -1 if \a name is not a valid
attribute for this shader program.
\sa uniformLocation(), bindAttributeLocation()
*/
int QGLShaderProgram::attributeLocation(const QString& name) const
{
return attributeLocation(name.toLatin1().constData());
}
/*!
Sets the attribute at \a location in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(int location, GLfloat value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glVertexAttrib1fv(location, &value);
}
/*!
\overload
Sets the attribute called \a name in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(const char *name, GLfloat value)
{
setAttributeValue(attributeLocation(name), value);
}
/*!
Sets the attribute at \a location in the current context to
the 2D vector (\a x, \a y).
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(int location, GLfloat x, GLfloat y)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[2] = {x, y};
glVertexAttrib2fv(location, values);
}
}
/*!
\overload
Sets the attribute called \a name in the current context to
the 2D vector (\a x, \a y).
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(const char *name, GLfloat x, GLfloat y)
{
setAttributeValue(attributeLocation(name), x, y);
}
/*!
Sets the attribute at \a location in the current context to
the 3D vector (\a x, \a y, \a z).
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue
(int location, GLfloat x, GLfloat y, GLfloat z)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[3] = {x, y, z};
glVertexAttrib3fv(location, values);
}
}
/*!
\overload
Sets the attribute called \a name in the current context to
the 3D vector (\a x, \a y, \a z).
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue
(const char *name, GLfloat x, GLfloat y, GLfloat z)
{
setAttributeValue(attributeLocation(name), x, y, z);
}
/*!
Sets the attribute at \a location in the current context to
the 4D vector (\a x, \a y, \a z, \a w).
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue
(int location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {x, y, z, w};
glVertexAttrib4fv(location, values);
}
}
/*!
\overload
Sets the attribute called \a name in the current context to
the 4D vector (\a x, \a y, \a z, \a w).
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue
(const char *name, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
setAttributeValue(attributeLocation(name), x, y, z, w);
}
/*!
Sets the attribute at \a location in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(int location, const QVector2D& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glVertexAttrib2fv(location, reinterpret_cast<const GLfloat *>(&value));
}
/*!
\overload
Sets the attribute called \a name in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(const char *name, const QVector2D& value)
{
setAttributeValue(attributeLocation(name), value);
}
/*!
Sets the attribute at \a location in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(int location, const QVector3D& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glVertexAttrib3fv(location, reinterpret_cast<const GLfloat *>(&value));
}
/*!
\overload
Sets the attribute called \a name in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(const char *name, const QVector3D& value)
{
setAttributeValue(attributeLocation(name), value);
}
/*!
Sets the attribute at \a location in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(int location, const QVector4D& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glVertexAttrib4fv(location, reinterpret_cast<const GLfloat *>(&value));
}
/*!
\overload
Sets the attribute called \a name in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(const char *name, const QVector4D& value)
{
setAttributeValue(attributeLocation(name), value);
}
/*!
Sets the attribute at \a location in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(int location, const QColor& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {GLfloat(value.redF()), GLfloat(value.greenF()),
GLfloat(value.blueF()), GLfloat(value.alphaF())};
glVertexAttrib4fv(location, values);
}
}
/*!
\overload
Sets the attribute called \a name in the current context to \a value.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue(const char *name, const QColor& value)
{
setAttributeValue(attributeLocation(name), value);
}
/*!
Sets the attribute at \a location in the current context to the
contents of \a values, which contains \a columns elements, each
consisting of \a rows elements. The \a rows value should be
1, 2, 3, or 4. This function is typically used to set matrix
values and column vectors.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue
(int location, const GLfloat *values, int columns, int rows)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (rows < 1 || rows > 4) {
qWarning() << "QGLShaderProgram::setAttributeValue: rows" << rows << "not supported";
return;
}
if (location != -1) {
while (columns-- > 0) {
if (rows == 1)
glVertexAttrib1fv(location, values);
else if (rows == 2)
glVertexAttrib2fv(location, values);
else if (rows == 3)
glVertexAttrib3fv(location, values);
else
glVertexAttrib4fv(location, values);
values += rows;
++location;
}
}
}
/*!
\overload
Sets the attribute called \a name in the current context to the
contents of \a values, which contains \a columns elements, each
consisting of \a rows elements. The \a rows value should be
1, 2, 3, or 4. This function is typically used to set matrix
values and column vectors.
\sa setUniformValue()
*/
void QGLShaderProgram::setAttributeValue
(const char *name, const GLfloat *values, int columns, int rows)
{
setAttributeValue(attributeLocation(name), values, columns, rows);
}
/*!
Sets an array of vertex \a values on the attribute at \a location
in this shader program. The \a tupleSize indicates the number of
components per vertex (1, 2, 3, or 4), and the \a stride indicates
the number of bytes between vertices. A default \a stride value
of zero indicates that the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on the \a location. Otherwise the value specified with
setAttributeValue() for \a location will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(int location, const GLfloat *values, int tupleSize, int stride)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
glVertexAttribPointer(location, tupleSize, GL_FLOAT, GL_FALSE,
stride, values);
}
}
/*!
Sets an array of 2D vertex \a values on the attribute at \a location
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on the \a location. Otherwise the value specified with
setAttributeValue() for \a location will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(int location, const QVector2D *values, int stride)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
glVertexAttribPointer(location, 2, GL_FLOAT, GL_FALSE,
stride, values);
}
}
/*!
Sets an array of 3D vertex \a values on the attribute at \a location
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on the \a location. Otherwise the value specified with
setAttributeValue() for \a location will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(int location, const QVector3D *values, int stride)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
glVertexAttribPointer(location, 3, GL_FLOAT, GL_FALSE,
stride, values);
}
}
/*!
Sets an array of 4D vertex \a values on the attribute at \a location
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on the \a location. Otherwise the value specified with
setAttributeValue() for \a location will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(int location, const QVector4D *values, int stride)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
glVertexAttribPointer(location, 4, GL_FLOAT, GL_FALSE,
stride, values);
}
}
/*!
Sets an array of vertex \a values on the attribute at \a location
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The \a type indicates the type of elements in the \a values array,
usually \c{GL_FLOAT}, \c{GL_UNSIGNED_BYTE}, etc. The \a tupleSize
indicates the number of components per vertex: 1, 2, 3, or 4.
The array will become active when enableAttributeArray() is called
on the \a location. Otherwise the value specified with
setAttributeValue() for \a location will be used.
The setAttributeBuffer() function can be used to set the attribute
array to an offset within a vertex buffer.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray(), setAttributeBuffer()
\since 4.7
*/
void QGLShaderProgram::setAttributeArray
(int location, GLenum type, const void *values, int tupleSize, int stride)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
glVertexAttribPointer(location, tupleSize, type, GL_TRUE,
stride, values);
}
}
/*!
\overload
Sets an array of vertex \a values on the attribute called \a name
in this shader program. The \a tupleSize indicates the number of
components per vertex (1, 2, 3, or 4), and the \a stride indicates
the number of bytes between vertices. A default \a stride value
of zero indicates that the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on \a name. Otherwise the value specified with setAttributeValue()
for \a name will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(const char *name, const GLfloat *values, int tupleSize, int stride)
{
setAttributeArray(attributeLocation(name), values, tupleSize, stride);
}
/*!
\overload
Sets an array of 2D vertex \a values on the attribute called \a name
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on \a name. Otherwise the value specified with setAttributeValue()
for \a name will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(const char *name, const QVector2D *values, int stride)
{
setAttributeArray(attributeLocation(name), values, stride);
}
/*!
\overload
Sets an array of 3D vertex \a values on the attribute called \a name
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on \a name. Otherwise the value specified with setAttributeValue()
for \a name will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(const char *name, const QVector3D *values, int stride)
{
setAttributeArray(attributeLocation(name), values, stride);
}
/*!
\overload
Sets an array of 4D vertex \a values on the attribute called \a name
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The array will become active when enableAttributeArray() is called
on \a name. Otherwise the value specified with setAttributeValue()
for \a name will be used.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray()
*/
void QGLShaderProgram::setAttributeArray
(const char *name, const QVector4D *values, int stride)
{
setAttributeArray(attributeLocation(name), values, stride);
}
/*!
\overload
Sets an array of vertex \a values on the attribute called \a name
in this shader program. The \a stride indicates the number of bytes
between vertices. A default \a stride value of zero indicates that
the vertices are densely packed in \a values.
The \a type indicates the type of elements in the \a values array,
usually \c{GL_FLOAT}, \c{GL_UNSIGNED_BYTE}, etc. The \a tupleSize
indicates the number of components per vertex: 1, 2, 3, or 4.
The array will become active when enableAttributeArray() is called
on the \a name. Otherwise the value specified with
setAttributeValue() for \a name will be used.
The setAttributeBuffer() function can be used to set the attribute
array to an offset within a vertex buffer.
\sa setAttributeValue(), setUniformValue(), enableAttributeArray()
\sa disableAttributeArray(), setAttributeBuffer()
\since 4.7
*/
void QGLShaderProgram::setAttributeArray
(const char *name, GLenum type, const void *values, int tupleSize, int stride)
{
setAttributeArray(attributeLocation(name), type, values, tupleSize, stride);
}
/*!
Sets an array of vertex values on the attribute at \a location in
this shader program, starting at a specific \a offset in the
currently bound vertex buffer. The \a stride indicates the number
of bytes between vertices. A default \a stride value of zero
indicates that the vertices are densely packed in the value array.
The \a type indicates the type of elements in the vertex value
array, usually \c{GL_FLOAT}, \c{GL_UNSIGNED_BYTE}, etc. The \a
tupleSize indicates the number of components per vertex: 1, 2, 3,
or 4.
The array will become active when enableAttributeArray() is called
on the \a location. Otherwise the value specified with
setAttributeValue() for \a location will be used.
\sa setAttributeArray()
\since 4.7
*/
void QGLShaderProgram::setAttributeBuffer
(int location, GLenum type, int offset, int tupleSize, int stride)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
glVertexAttribPointer(location, tupleSize, type, GL_TRUE, stride,
reinterpret_cast<const void *>(offset));
}
}
/*!
\overload
Sets an array of vertex values on the attribute called \a name
in this shader program, starting at a specific \a offset in the
currently bound vertex buffer. The \a stride indicates the number
of bytes between vertices. A default \a stride value of zero
indicates that the vertices are densely packed in the value array.
The \a type indicates the type of elements in the vertex value
array, usually \c{GL_FLOAT}, \c{GL_UNSIGNED_BYTE}, etc. The \a
tupleSize indicates the number of components per vertex: 1, 2, 3,
or 4.
The array will become active when enableAttributeArray() is called
on the \a name. Otherwise the value specified with
setAttributeValue() for \a name will be used.
\sa setAttributeArray()
\since 4.7
*/
void QGLShaderProgram::setAttributeBuffer
(const char *name, GLenum type, int offset, int tupleSize, int stride)
{
setAttributeBuffer(attributeLocation(name), type, offset, tupleSize, stride);
}
/*!
Enables the vertex array at \a location in this shader program
so that the value set by setAttributeArray() on \a location
will be used by the shader program.
\sa disableAttributeArray(), setAttributeArray(), setAttributeValue()
\sa setUniformValue()
*/
void QGLShaderProgram::enableAttributeArray(int location)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glEnableVertexAttribArray(location);
}
/*!
\overload
Enables the vertex array called \a name in this shader program
so that the value set by setAttributeArray() on \a name
will be used by the shader program.
\sa disableAttributeArray(), setAttributeArray(), setAttributeValue()
\sa setUniformValue()
*/
void QGLShaderProgram::enableAttributeArray(const char *name)
{
enableAttributeArray(attributeLocation(name));
}
/*!
Disables the vertex array at \a location in this shader program
that was enabled by a previous call to enableAttributeArray().
\sa enableAttributeArray(), setAttributeArray(), setAttributeValue()
\sa setUniformValue()
*/
void QGLShaderProgram::disableAttributeArray(int location)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glDisableVertexAttribArray(location);
}
/*!
\overload
Disables the vertex array called \a name in this shader program
that was enabled by a previous call to enableAttributeArray().
\sa enableAttributeArray(), setAttributeArray(), setAttributeValue()
\sa setUniformValue()
*/
void QGLShaderProgram::disableAttributeArray(const char *name)
{
disableAttributeArray(attributeLocation(name));
}
/*!
Returns the location of the uniform variable \a name within this shader
program's parameter list. Returns -1 if \a name is not a valid
uniform variable for this shader program.
\sa attributeLocation()
*/
int QGLShaderProgram::uniformLocation(const char *name) const
{
Q_D(const QGLShaderProgram);
Q_UNUSED(d);
if (d->linked && d->programGuard && d->programGuard->id()) {
return glGetUniformLocation(d->programGuard->id(), name);
} else {
qWarning() << "QGLShaderProgram::uniformLocation(" << name
<< "): shader program is not linked";
return -1;
}
}
/*!
\overload
Returns the location of the uniform variable \a name within this shader
program's parameter list. Returns -1 if \a name is not a valid
uniform variable for this shader program.
\sa attributeLocation()
*/
int QGLShaderProgram::uniformLocation(const QByteArray& name) const
{
return uniformLocation(name.constData());
}
/*!
\overload
Returns the location of the uniform variable \a name within this shader
program's parameter list. Returns -1 if \a name is not a valid
uniform variable for this shader program.
\sa attributeLocation()
*/
int QGLShaderProgram::uniformLocation(const QString& name) const
{
return uniformLocation(name.toLatin1().constData());
}
/*!
Sets the uniform variable at \a location in the current context to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, GLfloat value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform1fv(location, 1, &value);
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, GLfloat value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, GLint value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform1i(location, value);
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, GLint value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to \a value.
This function should be used when setting sampler values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, GLuint value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform1i(location, value);
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to \a value. This function should be used when setting sampler values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, GLuint value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to
the 2D vector (\a x, \a y).
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, GLfloat x, GLfloat y)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[2] = {x, y};
glUniform2fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable called \a name in the current context to
the 2D vector (\a x, \a y).
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, GLfloat x, GLfloat y)
{
setUniformValue(uniformLocation(name), x, y);
}
/*!
Sets the uniform variable at \a location in the current context to
the 3D vector (\a x, \a y, \a z).
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue
(int location, GLfloat x, GLfloat y, GLfloat z)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[3] = {x, y, z};
glUniform3fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable called \a name in the current context to
the 3D vector (\a x, \a y, \a z).
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue
(const char *name, GLfloat x, GLfloat y, GLfloat z)
{
setUniformValue(uniformLocation(name), x, y, z);
}
/*!
Sets the uniform variable at \a location in the current context to
the 4D vector (\a x, \a y, \a z, \a w).
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue
(int location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {x, y, z, w};
glUniform4fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable called \a name in the current context to
the 4D vector (\a x, \a y, \a z, \a w).
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue
(const char *name, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
setUniformValue(uniformLocation(name), x, y, z, w);
}
/*!
Sets the uniform variable at \a location in the current context to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QVector2D& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform2fv(location, 1, reinterpret_cast<const GLfloat *>(&value));
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QVector2D& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QVector3D& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform3fv(location, 1, reinterpret_cast<const GLfloat *>(&value));
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QVector3D& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QVector4D& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform4fv(location, 1, reinterpret_cast<const GLfloat *>(&value));
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QVector4D& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to
the red, green, blue, and alpha components of \a color.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QColor& color)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {GLfloat(color.redF()), GLfloat(color.greenF()),
GLfloat(color.blueF()), GLfloat(color.alphaF())};
glUniform4fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable called \a name in the current context to
the red, green, blue, and alpha components of \a color.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QColor& color)
{
setUniformValue(uniformLocation(name), color);
}
/*!
Sets the uniform variable at \a location in the current context to
the x and y coordinates of \a point.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QPoint& point)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {GLfloat(point.x()), GLfloat(point.y())};
glUniform2fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable associated with \a name in the current
context to the x and y coordinates of \a point.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QPoint& point)
{
setUniformValue(uniformLocation(name), point);
}
/*!
Sets the uniform variable at \a location in the current context to
the x and y coordinates of \a point.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QPointF& point)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {GLfloat(point.x()), GLfloat(point.y())};
glUniform2fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable associated with \a name in the current
context to the x and y coordinates of \a point.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QPointF& point)
{
setUniformValue(uniformLocation(name), point);
}
/*!
Sets the uniform variable at \a location in the current context to
the width and height of the given \a size.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QSize& size)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {GLfloat(size.width()), GLfloat(size.height())};
glUniform2fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable associated with \a name in the current
context to the width and height of the given \a size.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QSize& size)
{
setUniformValue(uniformLocation(name), size);
}
/*!
Sets the uniform variable at \a location in the current context to
the width and height of the given \a size.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QSizeF& size)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat values[4] = {GLfloat(size.width()), GLfloat(size.height())};
glUniform2fv(location, 1, values);
}
}
/*!
\overload
Sets the uniform variable associated with \a name in the current
context to the width and height of the given \a size.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QSizeF& size)
{
setUniformValue(uniformLocation(name), size);
}
/*!
Sets the uniform variable at \a location in the current context
to a 2x2 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix2x2& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniformMatrix2fv(location, 1, GL_FALSE, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 2x2 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix2x2& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 2x3 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix2x3& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniform3fv(location, 2, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 2x3 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix2x3& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 2x4 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix2x4& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniform4fv(location, 2, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 2x4 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix2x4& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 3x2 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix3x2& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniform2fv(location, 3, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 3x2 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix3x2& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 3x3 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix3x3& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniformMatrix3fv(location, 1, GL_FALSE, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 3x3 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix3x3& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 3x4 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix3x4& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniform4fv(location, 3, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 3x4 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix3x4& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 4x2 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix4x2& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniform2fv(location, 4, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 4x2 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix4x2& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 4x3 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix4x3& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniform3fv(location, 4, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 4x3 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix4x3& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context
to a 4x4 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const QMatrix4x4& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
Make gui/math3d classes use float rather than qreal This corrects the mismatch between using floats for internal storage and qreal in the API of QVector*D which leads to lots of implicit casts between double and float. This change also stops users from being surprised by the loss of precision when using these classes on desktop platforms and removes the need for the private constructors taking a dummy int as the final argument. The QMatrix4x4 and QQuaternion classes have been changed to use float for their internal storage since these are meant to be used in conjunction with the QVector*D classes. This is to prevent unexpected loss of precision and to improve performance. The on-disk format has also been changed from double to float thereby reducing the storage required when streaming vectors and matrices. This is potentially a large saving when working with complex 3D meshes etc. This also has a significant performance improvement when passing matrices to QOpenGLShaderProgram (and QGLShaderProgram) as we no longer have to iterate and convert the data to floats. This is an operation that could easily be needed many times per frame. This change also opens the door for further optimisations of these classes to be implemented by using SIMD intrinsics. This needs to be applied in conjunction with https://codereview.qt-project.org/#change,33548 Task-number: QTBUG-21035 Task-number: QTBUG-20661 Change-Id: I9321b06040ffb93ae1cbd72fd2013267ac901b2e Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-08-20 19:55:40 +00:00
glUniformMatrix4fv(location, 1, GL_FALSE, value.constData());
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 4x4 matrix \a value.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const QMatrix4x4& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
\overload
Sets the uniform variable at \a location in the current context
to a 2x2 matrix \a value. The matrix elements must be specified
in column-major order.
\sa setAttributeValue()
\since 4.7
*/
void QGLShaderProgram::setUniformValue(int location, const GLfloat value[2][2])
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniformMatrix2fv(location, 1, GL_FALSE, value[0]);
}
/*!
\overload
Sets the uniform variable at \a location in the current context
to a 3x3 matrix \a value. The matrix elements must be specified
in column-major order.
\sa setAttributeValue()
\since 4.7
*/
void QGLShaderProgram::setUniformValue(int location, const GLfloat value[3][3])
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniformMatrix3fv(location, 1, GL_FALSE, value[0]);
}
/*!
\overload
Sets the uniform variable at \a location in the current context
to a 4x4 matrix \a value. The matrix elements must be specified
in column-major order.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(int location, const GLfloat value[4][4])
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniformMatrix4fv(location, 1, GL_FALSE, value[0]);
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 2x2 matrix \a value. The matrix elements must be specified
in column-major order.
\sa setAttributeValue()
\since 4.7
*/
void QGLShaderProgram::setUniformValue(const char *name, const GLfloat value[2][2])
{
setUniformValue(uniformLocation(name), value);
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 3x3 matrix \a value. The matrix elements must be specified
in column-major order.
\sa setAttributeValue()
\since 4.7
*/
void QGLShaderProgram::setUniformValue(const char *name, const GLfloat value[3][3])
{
setUniformValue(uniformLocation(name), value);
}
/*!
\overload
Sets the uniform variable called \a name in the current context
to a 4x4 matrix \a value. The matrix elements must be specified
in column-major order.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValue(const char *name, const GLfloat value[4][4])
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable at \a location in the current context to a
3x3 transformation matrix \a value that is specified as a QTransform value.
To set a QTransform value as a 4x4 matrix in a shader, use
\c{setUniformValue(location, QMatrix4x4(value))}.
*/
void QGLShaderProgram::setUniformValue(int location, const QTransform& value)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
GLfloat mat[3][3] = {
{GLfloat(value.m11()), GLfloat(value.m12()), GLfloat(value.m13())},
{GLfloat(value.m21()), GLfloat(value.m22()), GLfloat(value.m23())},
{GLfloat(value.m31()), GLfloat(value.m32()), GLfloat(value.m33())}
};
glUniformMatrix3fv(location, 1, GL_FALSE, mat[0]);
}
}
/*!
\overload
Sets the uniform variable called \a name in the current context to a
3x3 transformation matrix \a value that is specified as a QTransform value.
To set a QTransform value as a 4x4 matrix in a shader, use
\c{setUniformValue(name, QMatrix4x4(value))}.
*/
void QGLShaderProgram::setUniformValue
(const char *name, const QTransform& value)
{
setUniformValue(uniformLocation(name), value);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const GLint *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform1iv(location, count, values);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray
(const char *name, const GLint *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count elements of \a values. This overload
should be used when setting an array of sampler values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const GLuint *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform1iv(location, count, reinterpret_cast<const GLint *>(values));
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count elements of \a values. This overload
should be used when setting an array of sampler values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray
(const char *name, const GLuint *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count elements of \a values. Each element
has \a tupleSize components. The \a tupleSize must be 1, 2, 3, or 4.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const GLfloat *values, int count, int tupleSize)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1) {
if (tupleSize == 1)
glUniform1fv(location, count, values);
else if (tupleSize == 2)
glUniform2fv(location, count, values);
else if (tupleSize == 3)
glUniform3fv(location, count, values);
else if (tupleSize == 4)
glUniform4fv(location, count, values);
else
qWarning() << "QGLShaderProgram::setUniformValue: size" << tupleSize << "not supported";
}
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count elements of \a values. Each element
has \a tupleSize components. The \a tupleSize must be 1, 2, 3, or 4.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray
(const char *name, const GLfloat *values, int count, int tupleSize)
{
setUniformValueArray(uniformLocation(name), values, count, tupleSize);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 2D vector elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QVector2D *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform2fv(location, count, reinterpret_cast<const GLfloat *>(values));
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 2D vector elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QVector2D *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 3D vector elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QVector3D *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform3fv(location, count, reinterpret_cast<const GLfloat *>(values));
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 3D vector elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QVector3D *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 4D vector elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QVector4D *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
if (location != -1)
glUniform4fv(location, count, reinterpret_cast<const GLfloat *>(values));
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 4D vector elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QVector4D *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
// We have to repack matrix arrays from qreal to GLfloat.
#define setUniformMatrixArray(func,location,values,count,type,cols,rows) \
if (location == -1 || count <= 0) \
return; \
if (sizeof(type) == sizeof(GLfloat) * cols * rows) { \
func(location, count, GL_FALSE, \
reinterpret_cast<const GLfloat *>(values[0].constData())); \
} else { \
QVarLengthArray<GLfloat> temp(cols * rows * count); \
for (int index = 0; index < count; ++index) { \
for (int index2 = 0; index2 < (cols * rows); ++index2) { \
temp.data()[cols * rows * index + index2] = \
values[index].constData()[index2]; \
} \
} \
func(location, count, GL_FALSE, temp.constData()); \
}
#if !defined(QT_OPENGL_ES_2)
#define setUniformGenericMatrixArray(func,colfunc,location,values,count,type,cols,rows) \
if (location == -1 || count <= 0) \
return; \
if (sizeof(type) == sizeof(GLfloat) * cols * rows) { \
const GLfloat *data = reinterpret_cast<const GLfloat *> \
(values[0].constData()); \
if (func) \
func(location, count, GL_FALSE, data); \
else \
colfunc(location, count * cols, data); \
} else { \
QVarLengthArray<GLfloat> temp(cols * rows * count); \
for (int index = 0; index < count; ++index) { \
for (int index2 = 0; index2 < (cols * rows); ++index2) { \
temp.data()[cols * rows * index + index2] = \
values[index].constData()[index2]; \
} \
} \
if (func) \
func(location, count, GL_FALSE, temp.constData()); \
else \
colfunc(location, count * cols, temp.constData()); \
}
#else
#define setUniformGenericMatrixArray(func,colfunc,location,values,count,type,cols,rows) \
if (location == -1 || count <= 0) \
return; \
if (sizeof(type) == sizeof(GLfloat) * cols * rows) { \
const GLfloat *data = reinterpret_cast<const GLfloat *> \
(values[0].constData()); \
colfunc(location, count * cols, data); \
} else { \
QVarLengthArray<GLfloat> temp(cols * rows * count); \
for (int index = 0; index < count; ++index) { \
for (int index2 = 0; index2 < (cols * rows); ++index2) { \
temp.data()[cols * rows * index + index2] = \
values[index].constData()[index2]; \
} \
} \
colfunc(location, count * cols, temp.constData()); \
}
#endif
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 2x2 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix2x2 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformMatrixArray
(glUniformMatrix2fv, location, values, count, QMatrix2x2, 2, 2);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 2x2 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix2x2 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 2x3 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix2x3 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformGenericMatrixArray
(glUniformMatrix2x3fv, glUniform3fv, location, values, count,
QMatrix2x3, 2, 3);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 2x3 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix2x3 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 2x4 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix2x4 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformGenericMatrixArray
(glUniformMatrix2x4fv, glUniform4fv, location, values, count,
QMatrix2x4, 2, 4);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 2x4 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix2x4 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 3x2 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix3x2 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformGenericMatrixArray
(glUniformMatrix3x2fv, glUniform2fv, location, values, count,
QMatrix3x2, 3, 2);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 3x2 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix3x2 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 3x3 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix3x3 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformMatrixArray
(glUniformMatrix3fv, location, values, count, QMatrix3x3, 3, 3);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 3x3 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix3x3 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 3x4 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix3x4 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformGenericMatrixArray
(glUniformMatrix3x4fv, glUniform4fv, location, values, count,
QMatrix3x4, 3, 4);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 3x4 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix3x4 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 4x2 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix4x2 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformGenericMatrixArray
(glUniformMatrix4x2fv, glUniform2fv, location, values, count,
QMatrix4x2, 4, 2);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 4x2 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix4x2 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 4x3 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix4x3 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformGenericMatrixArray
(glUniformMatrix4x3fv, glUniform3fv, location, values, count,
QMatrix4x3, 4, 3);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 4x3 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix4x3 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
/*!
Sets the uniform variable array at \a location in the current
context to the \a count 4x4 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(int location, const QMatrix4x4 *values, int count)
{
Q_D(QGLShaderProgram);
Q_UNUSED(d);
setUniformMatrixArray
(glUniformMatrix4fv, location, values, count, QMatrix4x4, 4, 4);
}
/*!
\overload
Sets the uniform variable array called \a name in the current
context to the \a count 4x4 matrix elements of \a values.
\sa setAttributeValue()
*/
void QGLShaderProgram::setUniformValueArray(const char *name, const QMatrix4x4 *values, int count)
{
setUniformValueArray(uniformLocation(name), values, count);
}
#undef ctx
/*!
Returns the hardware limit for how many vertices a geometry shader
can output.
\since 4.7
\sa setGeometryOutputVertexCount()
*/
int QGLShaderProgram::maxGeometryOutputVertices() const
{
OpenGL: Use official glext.h and gl2ext.h headers The Khronos group makes the glext.h (Desktop OpenGL) and gl2ext.h (OpenGL ES2) headers officially available nowadays. Most (all?) Linux systems ship this by default. On Windows platforms the glext.h file needs to be downloaded from http://www.opengl.org/registry/api/glext.h and placed alongside the system OpenGL header. Making use of the official header reduces the maintenance overhead for OpenGL support in Qt by removing the need to copy and paste definitions into the Qt sources. As the Khronos-provided headers are standardised and backwards and forwards compatible we can utilise these for all platforms rather than just for Windows. This means that all definitions required by Qt will be present even if the system ships out-dated equivalents. Mac OS X needs special handling in that we should always use the system-provided headers there. This is because Apple controls the OpenGL driver and the headers that go along with it. As such there is no possibility that the driver exposes additional functionality compared with the system-provided OpenGL headers. Apple has also decided to make different decisions about some OpenGL typedefs compared to other implementations. For example, Apple typdefs GLhandleARB to void* whereas other platforms use unsigned int. The alternative, which is to use the system provided glext.h (or gl2ext.h) header means that Qt code would need to check for the availability of such definitions wherever it is not guaranteed to be provided by core OpenGL/ES just to compile. The proposed approach means that Qt can compile regardless of the system's OpenGL extension support. We just need to be rigourous in runtime checking of support for extensions but that is already a requirement (and is missing in a few places, see TODO's added in this commit). The official Khronos headers are added to Qt as qopenglext.h - Desktop OpenGL qopengles2ext.h - OpenGL ES2 They need to be public but not part of QtGui module include, hence the headers have been modified by adding #if 0 #pragma qt_no_master_include #endif to them. This has been tested on: Gentoo Linux with GCC 4.6.3 Windows 7 with MSVC 2010 Mac OSX 10.8 with Apple clang 4.0 (based on LLVM 3.1svn) QNX with qcc (based on GCC 4.4) A small change is needed to QtDeclarative when building for OpenGL ES 2 after applying this commit. See https://codereview.qt-project.org/#change,31794 Change-Id: I4b3d2b1680baf4c78be9a87b4d8de076d23e8f82 Reviewed-by: Gunnar Sletta <gunnar.sletta@nokia.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-06-08 08:39:17 +00:00
GLint n = 0;
#if !defined(QT_OPENGL_ES_2)
glGetIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES_EXT, &n);
OpenGL: Use official glext.h and gl2ext.h headers The Khronos group makes the glext.h (Desktop OpenGL) and gl2ext.h (OpenGL ES2) headers officially available nowadays. Most (all?) Linux systems ship this by default. On Windows platforms the glext.h file needs to be downloaded from http://www.opengl.org/registry/api/glext.h and placed alongside the system OpenGL header. Making use of the official header reduces the maintenance overhead for OpenGL support in Qt by removing the need to copy and paste definitions into the Qt sources. As the Khronos-provided headers are standardised and backwards and forwards compatible we can utilise these for all platforms rather than just for Windows. This means that all definitions required by Qt will be present even if the system ships out-dated equivalents. Mac OS X needs special handling in that we should always use the system-provided headers there. This is because Apple controls the OpenGL driver and the headers that go along with it. As such there is no possibility that the driver exposes additional functionality compared with the system-provided OpenGL headers. Apple has also decided to make different decisions about some OpenGL typedefs compared to other implementations. For example, Apple typdefs GLhandleARB to void* whereas other platforms use unsigned int. The alternative, which is to use the system provided glext.h (or gl2ext.h) header means that Qt code would need to check for the availability of such definitions wherever it is not guaranteed to be provided by core OpenGL/ES just to compile. The proposed approach means that Qt can compile regardless of the system's OpenGL extension support. We just need to be rigourous in runtime checking of support for extensions but that is already a requirement (and is missing in a few places, see TODO's added in this commit). The official Khronos headers are added to Qt as qopenglext.h - Desktop OpenGL qopengles2ext.h - OpenGL ES2 They need to be public but not part of QtGui module include, hence the headers have been modified by adding #if 0 #pragma qt_no_master_include #endif to them. This has been tested on: Gentoo Linux with GCC 4.6.3 Windows 7 with MSVC 2010 Mac OSX 10.8 with Apple clang 4.0 (based on LLVM 3.1svn) QNX with qcc (based on GCC 4.4) A small change is needed to QtDeclarative when building for OpenGL ES 2 after applying this commit. See https://codereview.qt-project.org/#change,31794 Change-Id: I4b3d2b1680baf4c78be9a87b4d8de076d23e8f82 Reviewed-by: Gunnar Sletta <gunnar.sletta@nokia.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com>
2012-06-08 08:39:17 +00:00
#endif
return n;
}
/*!
Sets the maximum number of vertices the current geometry shader
program will produce, if active, to \a count.
\since 4.7
This parameter takes effect the next time the program is linked.
*/
void QGLShaderProgram::setGeometryOutputVertexCount(int count)
{
#ifndef QT_NO_DEBUG
int max = maxGeometryOutputVertices();
if (count > max) {
qWarning("QGLShaderProgram::setGeometryOutputVertexCount: count: %d higher than maximum: %d",
count, max);
}
#endif
d_func()->geometryVertexCount = count;
}
/*!
Returns the maximum number of vertices the current geometry shader
program will produce, if active.
\since 4.7
This parameter takes effect the ntext time the program is linked.
*/
int QGLShaderProgram::geometryOutputVertexCount() const
{
return d_func()->geometryVertexCount;
}
/*!
Sets the input type from \a inputType.
This parameter takes effect the next time the program is linked.
*/
void QGLShaderProgram::setGeometryInputType(GLenum inputType)
{
d_func()->geometryInputType = inputType;
}
/*!
Returns the geometry shader input type, if active.
This parameter takes effect the next time the program is linked.
\since 4.7
*/
GLenum QGLShaderProgram::geometryInputType() const
{
return d_func()->geometryInputType;
}
/*!
Sets the output type from the geometry shader, if active, to
\a outputType.
This parameter takes effect the next time the program is linked.
\since 4.7
*/
void QGLShaderProgram::setGeometryOutputType(GLenum outputType)
{
d_func()->geometryOutputType = outputType;
}
/*!
Returns the geometry shader output type, if active.
This parameter takes effect the next time the program is linked.
\since 4.7
*/
GLenum QGLShaderProgram::geometryOutputType() const
{
return d_func()->geometryOutputType;
}
/*!
Returns true if shader programs written in the OpenGL Shading
Language (GLSL) are supported on this system; false otherwise.
The \a context is used to resolve the GLSL extensions.
If \a context is null, then QGLContext::currentContext() is used.
*/
bool QGLShaderProgram::hasOpenGLShaderPrograms(const QGLContext *context)
{
#if !defined(QT_OPENGL_ES_2)
if (!context)
context = QGLContext::currentContext();
if (!context)
return false;
return qt_resolve_glsl_extensions(const_cast<QGLContext *>(context));
#else
Q_UNUSED(context);
return true;
#endif
}
/*!
\internal
*/
void QGLShaderProgram::shaderDestroyed()
{
Q_D(QGLShaderProgram);
QGLShader *shader = qobject_cast<QGLShader *>(sender());
if (shader && !d->removingShaders)
removeShader(shader);
}
#undef ctx
#undef context
/*!
Returns true if shader programs of type \a type are supported on
this system; false otherwise.
The \a context is used to resolve the GLSL extensions.
If \a context is null, then QGLContext::currentContext() is used.
\since 4.7
*/
bool QGLShader::hasOpenGLShaders(ShaderType type, const QGLContext *context)
{
if (!context)
context = QGLContext::currentContext();
if (!context)
return false;
if ((type & ~(Geometry | Vertex | Fragment)) || type == 0)
return false;
bool resolved = qt_resolve_glsl_extensions(const_cast<QGLContext *>(context));
if (!resolved)
return false;
if ((type & Geometry) && !QByteArray((const char *) glGetString(GL_EXTENSIONS)).contains("GL_EXT_geometry_shader4"))
return false;
return true;
}
QT_END_NAMESPACE