2011-04-27 10:05:43 +00:00
|
|
|
/****************************************************************************
|
|
|
|
**
|
2012-09-19 12:28:29 +00:00
|
|
|
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).
|
|
|
|
** Contact: http://www.qt-project.org/legal
|
2011-04-27 10:05:43 +00:00
|
|
|
**
|
|
|
|
** This file is part of the test suite of the Qt Toolkit.
|
|
|
|
**
|
|
|
|
** $QT_BEGIN_LICENSE:LGPL$
|
2012-09-19 12:28:29 +00:00
|
|
|
** Commercial License Usage
|
|
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
|
|
** accordance with the commercial license agreement provided with the
|
|
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
|
|
** a written agreement between you and Digia. For licensing terms and
|
|
|
|
** conditions see http://qt.digia.com/licensing. For further information
|
|
|
|
** use the contact form at http://qt.digia.com/contact-us.
|
|
|
|
**
|
2011-04-27 10:05:43 +00:00
|
|
|
** GNU Lesser General Public License Usage
|
2012-09-19 12:28:29 +00:00
|
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
|
|
** General Public License version 2.1 as published by the Free Software
|
|
|
|
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
|
|
** packaging of this file. Please review the following information to
|
|
|
|
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
|
|
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
|
|
**
|
|
|
|
** In addition, as a special exception, Digia gives you certain additional
|
|
|
|
** rights. These rights are described in the Digia Qt LGPL Exception
|
2011-04-27 10:05:43 +00:00
|
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
|
|
**
|
2011-05-24 09:34:08 +00:00
|
|
|
** GNU General Public License Usage
|
2012-09-19 12:28:29 +00:00
|
|
|
** Alternatively, this file may be used under the terms of the GNU
|
|
|
|
** General Public License version 3.0 as published by the Free Software
|
|
|
|
** Foundation and appearing in the file LICENSE.GPL included in the
|
|
|
|
** packaging of this file. Please review the following information to
|
|
|
|
** ensure the GNU General Public License version 3.0 requirements will be
|
|
|
|
** met: http://www.gnu.org/copyleft/gpl.html.
|
2011-04-27 10:05:43 +00:00
|
|
|
**
|
2012-01-24 06:17:24 +00:00
|
|
|
**
|
2011-04-27 10:05:43 +00:00
|
|
|
** $QT_END_LICENSE$
|
|
|
|
**
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
These functions are based on:
|
|
|
|
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
|
|
|
|
|
|
|
|
These are functions for producing 32-bit hashes for hash table lookup.
|
|
|
|
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
|
|
|
|
are externally useful functions. Routines to test the hash are included
|
|
|
|
if SELF_TEST is defined. You can use this free for any purpose. It's in
|
|
|
|
the public domain. It has no warranty.
|
|
|
|
|
|
|
|
You probably want to use hashlittle(). hashlittle() and hashbig()
|
|
|
|
hash byte arrays. hashlittle() is is faster than hashbig() on
|
|
|
|
little-endian machines. Intel and AMD are little-endian machines.
|
|
|
|
On second thought, you probably want hashlittle2(), which is identical to
|
|
|
|
hashlittle() except it returns two 32-bit hashes for the price of one.
|
|
|
|
You could implement hashbig2() if you wanted but I haven't bothered here.
|
|
|
|
|
|
|
|
If you want to find a hash of, say, exactly 7 integers, do
|
|
|
|
a = i1; b = i2; c = i3;
|
|
|
|
mix(a,b,c);
|
|
|
|
a += i4; b += i5; c += i6;
|
|
|
|
mix(a,b,c);
|
|
|
|
a += i7;
|
|
|
|
final(a,b,c);
|
|
|
|
then use c as the hash value. If you have a variable length array of
|
|
|
|
4-byte integers to hash, use hashword(). If you have a byte array (like
|
|
|
|
a character string), use hashlittle(). If you have several byte arrays, or
|
|
|
|
a mix of things, see the comments above hashlittle().
|
|
|
|
|
|
|
|
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
|
|
|
|
then mix those integers. This is fast (you can do a lot more thorough
|
|
|
|
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
|
|
|
|
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <QtGlobal>
|
|
|
|
|
|
|
|
#if Q_BYTE_ORDER == Q_BIG_ENDIAN
|
|
|
|
# define HASH_LITTLE_ENDIAN 0
|
|
|
|
# define HASH_BIG_ENDIAN 1
|
|
|
|
#else
|
|
|
|
# define HASH_LITTLE_ENDIAN 1
|
|
|
|
# define HASH_BIG_ENDIAN 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define hashsize(n) ((quint32)1<<(n))
|
|
|
|
#define hashmask(n) (hashsize(n)-1)
|
|
|
|
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
|
|
|
|
|
|
|
/*
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
mix -- mix 3 32-bit values reversibly.
|
|
|
|
|
|
|
|
This is reversible, so any information in (a,b,c) before mix() is
|
|
|
|
still in (a,b,c) after mix().
|
|
|
|
|
|
|
|
If four pairs of (a,b,c) inputs are run through mix(), or through
|
|
|
|
mix() in reverse, there are at least 32 bits of the output that
|
|
|
|
are sometimes the same for one pair and different for another pair.
|
|
|
|
This was tested for:
|
|
|
|
* pairs that differed by one bit, by two bits, in any combination
|
|
|
|
of top bits of (a,b,c), or in any combination of bottom bits of
|
|
|
|
(a,b,c).
|
|
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
|
|
is commonly produced by subtraction) look like a single 1-bit
|
|
|
|
difference.
|
|
|
|
* the base values were pseudorandom, all zero but one bit set, or
|
|
|
|
all zero plus a counter that starts at zero.
|
|
|
|
|
|
|
|
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
|
|
|
satisfy this are
|
|
|
|
4 6 8 16 19 4
|
|
|
|
9 15 3 18 27 15
|
|
|
|
14 9 3 7 17 3
|
|
|
|
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
|
|
|
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
|
|
|
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
|
|
|
the operations, constants, and arrangements of the variables.
|
|
|
|
|
|
|
|
This does not achieve avalanche. There are input bits of (a,b,c)
|
|
|
|
that fail to affect some output bits of (a,b,c), especially of a. The
|
|
|
|
most thoroughly mixed value is c, but it doesn't really even achieve
|
|
|
|
avalanche in c.
|
|
|
|
|
|
|
|
This allows some parallelism. Read-after-writes are good at doubling
|
|
|
|
the number of bits affected, so the goal of mixing pulls in the opposite
|
|
|
|
direction as the goal of parallelism. I did what I could. Rotates
|
|
|
|
seem to cost as much as shifts on every machine I could lay my hands
|
|
|
|
on, and rotates are much kinder to the top and bottom bits, so I used
|
|
|
|
rotates.
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
#define mix(a,b,c) \
|
|
|
|
{ \
|
|
|
|
a -= c; a ^= rot(c, 4); c += b; \
|
|
|
|
b -= a; b ^= rot(a, 6); a += c; \
|
|
|
|
c -= b; c ^= rot(b, 8); b += a; \
|
|
|
|
a -= c; a ^= rot(c,16); c += b; \
|
|
|
|
b -= a; b ^= rot(a,19); a += c; \
|
|
|
|
c -= b; c ^= rot(b, 4); b += a; \
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
final -- final mixing of 3 32-bit values (a,b,c) into c
|
|
|
|
|
|
|
|
Pairs of (a,b,c) values differing in only a few bits will usually
|
|
|
|
produce values of c that look totally different. This was tested for
|
|
|
|
* pairs that differed by one bit, by two bits, in any combination
|
|
|
|
of top bits of (a,b,c), or in any combination of bottom bits of
|
|
|
|
(a,b,c).
|
|
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
|
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
|
|
|
is commonly produced by subtraction) look like a single 1-bit
|
|
|
|
difference.
|
|
|
|
* the base values were pseudorandom, all zero but one bit set, or
|
|
|
|
all zero plus a counter that starts at zero.
|
|
|
|
|
|
|
|
These constants passed:
|
|
|
|
14 11 25 16 4 14 24
|
|
|
|
12 14 25 16 4 14 24
|
|
|
|
and these came close:
|
|
|
|
4 8 15 26 3 22 24
|
|
|
|
10 8 15 26 3 22 24
|
|
|
|
11 8 15 26 3 22 24
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
#define final(a,b,c) \
|
|
|
|
{ \
|
|
|
|
c ^= b; c -= rot(b,14); \
|
|
|
|
a ^= c; a -= rot(c,11); \
|
|
|
|
b ^= a; b -= rot(a,25); \
|
|
|
|
c ^= b; c -= rot(b,16); \
|
|
|
|
a ^= c; a -= rot(c,4); \
|
|
|
|
b ^= a; b -= rot(a,14); \
|
|
|
|
c ^= b; c -= rot(b,24); \
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
--------------------------------------------------------------------
|
|
|
|
This works on all machines. To be useful, it requires
|
|
|
|
-- that the key be an array of quint32's, and
|
|
|
|
-- that the length be the number of quint32's in the key
|
|
|
|
|
|
|
|
The function hashword() is identical to hashlittle() on little-endian
|
|
|
|
machines, and identical to hashbig() on big-endian machines,
|
|
|
|
except that the length has to be measured in quint32s rather than in
|
|
|
|
bytes. hashlittle() is more complicated than hashword() only because
|
|
|
|
hashlittle() has to dance around fitting the key bytes into registers.
|
|
|
|
--------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
quint32 hashword(
|
|
|
|
const quint32 *k, /* the key, an array of quint32 values */
|
|
|
|
size_t length, /* the length of the key, in quint32s */
|
|
|
|
quint32 initval) /* the previous hash, or an arbitrary value */
|
|
|
|
{
|
|
|
|
quint32 a,b,c;
|
|
|
|
|
|
|
|
/* Set up the internal state */
|
|
|
|
a = b = c = 0xdeadbeef + (((quint32)length)<<2) + initval;
|
|
|
|
|
|
|
|
/*------------------------------------------------- handle most of the key */
|
|
|
|
while (length > 3)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
b += k[1];
|
|
|
|
c += k[2];
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 3;
|
|
|
|
k += 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*------------------------------------------- handle the last 3 quint32's */
|
|
|
|
switch(length) /* all the case statements fall through */
|
|
|
|
{
|
|
|
|
case 3 : c+=k[2];
|
|
|
|
case 2 : b+=k[1];
|
|
|
|
case 1 : a+=k[0];
|
|
|
|
final(a,b,c);
|
|
|
|
case 0: /* case 0: nothing left to add */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*------------------------------------------------------ report the result */
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
--------------------------------------------------------------------
|
|
|
|
hashword2() -- same as hashword(), but take two seeds and return two
|
|
|
|
32-bit values. pc and pb must both be nonnull, and *pc and *pb must
|
|
|
|
both be initialized with seeds. If you pass in (*pb)==0, the output
|
|
|
|
(*pc) will be the same as the return value from hashword().
|
|
|
|
--------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
void hashword2 (
|
|
|
|
const quint32 *k, /* the key, an array of quint32 values */
|
|
|
|
size_t length, /* the length of the key, in quint32s */
|
|
|
|
quint32 *pc, /* IN: seed OUT: primary hash value */
|
|
|
|
quint32 *pb) /* IN: more seed OUT: secondary hash value */
|
|
|
|
{
|
|
|
|
quint32 a,b,c;
|
|
|
|
|
|
|
|
/* Set up the internal state */
|
|
|
|
a = b = c = 0xdeadbeef + ((quint32)(length<<2)) + *pc;
|
|
|
|
c += *pb;
|
|
|
|
|
|
|
|
/*------------------------------------------------- handle most of the key */
|
|
|
|
while (length > 3)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
b += k[1];
|
|
|
|
c += k[2];
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 3;
|
|
|
|
k += 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*------------------------------------------- handle the last 3 quint32's */
|
|
|
|
switch(length) /* all the case statements fall through */
|
|
|
|
{
|
|
|
|
case 3 : c+=k[2];
|
|
|
|
case 2 : b+=k[1];
|
|
|
|
case 1 : a+=k[0];
|
|
|
|
final(a,b,c);
|
|
|
|
case 0: /* case 0: nothing left to add */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*------------------------------------------------------ report the result */
|
|
|
|
*pc=c; *pb=b;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
hashlittle() -- hash a variable-length key into a 32-bit value
|
|
|
|
k : the key (the unaligned variable-length array of bytes)
|
|
|
|
length : the length of the key, counting by bytes
|
|
|
|
initval : can be any 4-byte value
|
|
|
|
Returns a 32-bit value. Every bit of the key affects every bit of
|
|
|
|
the return value. Two keys differing by one or two bits will have
|
|
|
|
totally different hash values.
|
|
|
|
|
|
|
|
The best hash table sizes are powers of 2. There is no need to do
|
|
|
|
mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
|
|
|
use a bitmask. For example, if you need only 10 bits, do
|
|
|
|
h = (h & hashmask(10));
|
|
|
|
In which case, the hash table should have hashsize(10) elements.
|
|
|
|
|
|
|
|
If you are hashing n strings (quint8 **)k, do it like this:
|
|
|
|
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
|
|
|
|
|
|
|
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
|
|
|
code any way you wish, private, educational, or commercial. It's free.
|
|
|
|
|
|
|
|
Use for hash table lookup, or anything where one collision in 2^^32 is
|
|
|
|
acceptable. Do NOT use for cryptographic purposes.
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
quint32 hashlittle( const void *key, size_t length, quint32 initval)
|
|
|
|
{
|
|
|
|
quint32 a,b,c; /* internal state */
|
|
|
|
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
|
|
|
|
|
|
|
/* Set up the internal state */
|
|
|
|
a = b = c = 0xdeadbeef + ((quint32)length) + initval;
|
|
|
|
|
|
|
|
u.ptr = key;
|
|
|
|
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
|
|
const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
|
|
|
|
|
|
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
b += k[1];
|
|
|
|
c += k[2];
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
|
|
/*
|
|
|
|
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
|
|
|
* then masks off the part it's not allowed to read. Because the
|
|
|
|
* string is aligned, the masked-off tail is in the same word as the
|
|
|
|
* rest of the string. Every machine with memory protection I've seen
|
|
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will
|
|
|
|
* still catch it and complain. The masking trick does make the hash
|
|
|
|
* noticably faster for short strings (like English words).
|
|
|
|
*/
|
|
|
|
#ifndef VALGRIND
|
|
|
|
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
|
|
|
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
|
|
|
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
|
|
|
case 4 : a+=k[0]; break;
|
|
|
|
case 3 : a+=k[0]&0xffffff; break;
|
|
|
|
case 2 : a+=k[0]&0xffff; break;
|
|
|
|
case 1 : a+=k[0]&0xff; break;
|
|
|
|
case 0 : return c; /* zero length strings require no mixing */
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* make valgrind happy */
|
|
|
|
|
|
|
|
const quint8 *k8 = (const quint8 *)k;
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 11: c+=((quint32)k8[10])<<16; /* fall through */
|
|
|
|
case 10: c+=((quint32)k8[9])<<8; /* fall through */
|
|
|
|
case 9 : c+=k8[8]; /* fall through */
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
case 7 : b+=((quint32)k8[6])<<16; /* fall through */
|
|
|
|
case 6 : b+=((quint32)k8[5])<<8; /* fall through */
|
|
|
|
case 5 : b+=k8[4]; /* fall through */
|
|
|
|
case 4 : a+=k[0]; break;
|
|
|
|
case 3 : a+=((quint32)k8[2])<<16; /* fall through */
|
|
|
|
case 2 : a+=((quint32)k8[1])<<8; /* fall through */
|
|
|
|
case 1 : a+=k8[0]; break;
|
|
|
|
case 0 : return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !valgrind */
|
|
|
|
|
|
|
|
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
|
|
|
const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */
|
|
|
|
const quint8 *k8;
|
|
|
|
|
|
|
|
/*--------------- all but last block: aligned reads and different mixing */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0] + (((quint32)k[1])<<16);
|
|
|
|
b += k[2] + (((quint32)k[3])<<16);
|
|
|
|
c += k[4] + (((quint32)k[5])<<16);
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 6;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
|
|
k8 = (const quint8 *)k;
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[4]+(((quint32)k[5])<<16);
|
|
|
|
b+=k[2]+(((quint32)k[3])<<16);
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 11: c+=((quint32)k8[10])<<16; /* fall through */
|
|
|
|
case 10: c+=k[4];
|
|
|
|
b+=k[2]+(((quint32)k[3])<<16);
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 9 : c+=k8[8]; /* fall through */
|
|
|
|
case 8 : b+=k[2]+(((quint32)k[3])<<16);
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 7 : b+=((quint32)k8[6])<<16; /* fall through */
|
|
|
|
case 6 : b+=k[2];
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 5 : b+=k8[4]; /* fall through */
|
|
|
|
case 4 : a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 3 : a+=((quint32)k8[2])<<16; /* fall through */
|
|
|
|
case 2 : a+=k[0];
|
|
|
|
break;
|
|
|
|
case 1 : a+=k8[0];
|
|
|
|
break;
|
|
|
|
case 0 : return c; /* zero length requires no mixing */
|
|
|
|
}
|
|
|
|
|
|
|
|
} else { /* need to read the key one byte at a time */
|
|
|
|
const quint8 *k = (const quint8 *)key;
|
|
|
|
|
|
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
a += ((quint32)k[1])<<8;
|
|
|
|
a += ((quint32)k[2])<<16;
|
|
|
|
a += ((quint32)k[3])<<24;
|
|
|
|
b += k[4];
|
|
|
|
b += ((quint32)k[5])<<8;
|
|
|
|
b += ((quint32)k[6])<<16;
|
|
|
|
b += ((quint32)k[7])<<24;
|
|
|
|
c += k[8];
|
|
|
|
c += ((quint32)k[9])<<8;
|
|
|
|
c += ((quint32)k[10])<<16;
|
|
|
|
c += ((quint32)k[11])<<24;
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 12;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */
|
|
|
|
switch(length) /* all the case statements fall through */
|
|
|
|
{
|
|
|
|
case 12: c+=((quint32)k[11])<<24;
|
|
|
|
case 11: c+=((quint32)k[10])<<16;
|
|
|
|
case 10: c+=((quint32)k[9])<<8;
|
|
|
|
case 9 : c+=k[8];
|
|
|
|
case 8 : b+=((quint32)k[7])<<24;
|
|
|
|
case 7 : b+=((quint32)k[6])<<16;
|
|
|
|
case 6 : b+=((quint32)k[5])<<8;
|
|
|
|
case 5 : b+=k[4];
|
|
|
|
case 4 : a+=((quint32)k[3])<<24;
|
|
|
|
case 3 : a+=((quint32)k[2])<<16;
|
|
|
|
case 2 : a+=((quint32)k[1])<<8;
|
|
|
|
case 1 : a+=k[0];
|
|
|
|
break;
|
|
|
|
case 0 : return c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
final(a,b,c);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* hashlittle2: return 2 32-bit hash values
|
|
|
|
*
|
|
|
|
* This is identical to hashlittle(), except it returns two 32-bit hash
|
|
|
|
* values instead of just one. This is good enough for hash table
|
|
|
|
* lookup with 2^^64 buckets, or if you want a second hash if you're not
|
|
|
|
* happy with the first, or if you want a probably-unique 64-bit ID for
|
|
|
|
* the key. *pc is better mixed than *pb, so use *pc first. If you want
|
|
|
|
* a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
|
|
|
|
*/
|
|
|
|
void hashlittle2(
|
|
|
|
const void *key, /* the key to hash */
|
|
|
|
size_t length, /* length of the key */
|
|
|
|
quint32 *pc, /* IN: primary initval, OUT: primary hash */
|
|
|
|
quint32 *pb) /* IN: secondary initval, OUT: secondary hash */
|
|
|
|
{
|
|
|
|
quint32 a,b,c; /* internal state */
|
|
|
|
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
|
|
|
|
|
|
|
|
/* Set up the internal state */
|
|
|
|
a = b = c = 0xdeadbeef + ((quint32)length) + *pc;
|
|
|
|
c += *pb;
|
|
|
|
|
|
|
|
u.ptr = key;
|
|
|
|
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
|
|
const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
|
|
|
|
|
|
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
b += k[1];
|
|
|
|
c += k[2];
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
|
|
/*
|
|
|
|
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
|
|
|
* then masks off the part it's not allowed to read. Because the
|
|
|
|
* string is aligned, the masked-off tail is in the same word as the
|
|
|
|
* rest of the string. Every machine with memory protection I've seen
|
|
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will
|
|
|
|
* still catch it and complain. The masking trick does make the hash
|
|
|
|
* noticably faster for short strings (like English words).
|
|
|
|
*/
|
|
|
|
#ifndef VALGRIND
|
|
|
|
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
|
|
|
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
|
|
|
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
|
|
|
case 4 : a+=k[0]; break;
|
|
|
|
case 3 : a+=k[0]&0xffffff; break;
|
|
|
|
case 2 : a+=k[0]&0xffff; break;
|
|
|
|
case 1 : a+=k[0]&0xff; break;
|
|
|
|
case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* make valgrind happy */
|
|
|
|
|
|
|
|
const quint8 *k8 = (const quint8 *)k;
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 11: c+=((quint32)k8[10])<<16; /* fall through */
|
|
|
|
case 10: c+=((quint32)k8[9])<<8; /* fall through */
|
|
|
|
case 9 : c+=k8[8]; /* fall through */
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
case 7 : b+=((quint32)k8[6])<<16; /* fall through */
|
|
|
|
case 6 : b+=((quint32)k8[5])<<8; /* fall through */
|
|
|
|
case 5 : b+=k8[4]; /* fall through */
|
|
|
|
case 4 : a+=k[0]; break;
|
|
|
|
case 3 : a+=((quint32)k8[2])<<16; /* fall through */
|
|
|
|
case 2 : a+=((quint32)k8[1])<<8; /* fall through */
|
|
|
|
case 1 : a+=k8[0]; break;
|
|
|
|
case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !valgrind */
|
|
|
|
|
|
|
|
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
|
|
|
const quint16 *k = (const quint16 *)key; /* read 16-bit chunks */
|
|
|
|
const quint8 *k8;
|
|
|
|
|
|
|
|
/*--------------- all but last block: aligned reads and different mixing */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0] + (((quint32)k[1])<<16);
|
|
|
|
b += k[2] + (((quint32)k[3])<<16);
|
|
|
|
c += k[4] + (((quint32)k[5])<<16);
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 6;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
|
|
k8 = (const quint8 *)k;
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[4]+(((quint32)k[5])<<16);
|
|
|
|
b+=k[2]+(((quint32)k[3])<<16);
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 11: c+=((quint32)k8[10])<<16; /* fall through */
|
|
|
|
case 10: c+=k[4];
|
|
|
|
b+=k[2]+(((quint32)k[3])<<16);
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 9 : c+=k8[8]; /* fall through */
|
|
|
|
case 8 : b+=k[2]+(((quint32)k[3])<<16);
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 7 : b+=((quint32)k8[6])<<16; /* fall through */
|
|
|
|
case 6 : b+=k[2];
|
|
|
|
a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 5 : b+=k8[4]; /* fall through */
|
|
|
|
case 4 : a+=k[0]+(((quint32)k[1])<<16);
|
|
|
|
break;
|
|
|
|
case 3 : a+=((quint32)k8[2])<<16; /* fall through */
|
|
|
|
case 2 : a+=k[0];
|
|
|
|
break;
|
|
|
|
case 1 : a+=k8[0];
|
|
|
|
break;
|
|
|
|
case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
}
|
|
|
|
|
|
|
|
} else { /* need to read the key one byte at a time */
|
|
|
|
const quint8 *k = (const quint8 *)key;
|
|
|
|
|
|
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
a += ((quint32)k[1])<<8;
|
|
|
|
a += ((quint32)k[2])<<16;
|
|
|
|
a += ((quint32)k[3])<<24;
|
|
|
|
b += k[4];
|
|
|
|
b += ((quint32)k[5])<<8;
|
|
|
|
b += ((quint32)k[6])<<16;
|
|
|
|
b += ((quint32)k[7])<<24;
|
|
|
|
c += k[8];
|
|
|
|
c += ((quint32)k[9])<<8;
|
|
|
|
c += ((quint32)k[10])<<16;
|
|
|
|
c += ((quint32)k[11])<<24;
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 12;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */
|
|
|
|
switch(length) /* all the case statements fall through */
|
|
|
|
{
|
|
|
|
case 12: c+=((quint32)k[11])<<24;
|
|
|
|
case 11: c+=((quint32)k[10])<<16;
|
|
|
|
case 10: c+=((quint32)k[9])<<8;
|
|
|
|
case 9 : c+=k[8];
|
|
|
|
case 8 : b+=((quint32)k[7])<<24;
|
|
|
|
case 7 : b+=((quint32)k[6])<<16;
|
|
|
|
case 6 : b+=((quint32)k[5])<<8;
|
|
|
|
case 5 : b+=k[4];
|
|
|
|
case 4 : a+=((quint32)k[3])<<24;
|
|
|
|
case 3 : a+=((quint32)k[2])<<16;
|
|
|
|
case 2 : a+=((quint32)k[1])<<8;
|
|
|
|
case 1 : a+=k[0];
|
|
|
|
break;
|
|
|
|
case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
final(a,b,c);
|
|
|
|
*pc=c; *pb=b;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* hashbig():
|
|
|
|
* This is the same as hashword() on big-endian machines. It is different
|
|
|
|
* from hashlittle() on all machines. hashbig() takes advantage of
|
|
|
|
* big-endian byte ordering.
|
|
|
|
*/
|
|
|
|
quint32 hashbig( const void *key, size_t length, quint32 initval)
|
|
|
|
{
|
|
|
|
quint32 a,b,c;
|
|
|
|
union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
|
|
|
|
|
|
|
|
/* Set up the internal state */
|
|
|
|
a = b = c = 0xdeadbeef + ((quint32)length) + initval;
|
|
|
|
|
|
|
|
u.ptr = key;
|
|
|
|
if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
|
|
|
|
const quint32 *k = (const quint32 *)key; /* read 32-bit chunks */
|
|
|
|
|
|
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += k[0];
|
|
|
|
b += k[1];
|
|
|
|
c += k[2];
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */
|
|
|
|
/*
|
|
|
|
* "k[2]<<8" actually reads beyond the end of the string, but
|
|
|
|
* then shifts out the part it's not allowed to read. Because the
|
|
|
|
* string is aligned, the illegal read is in the same word as the
|
|
|
|
* rest of the string. Every machine with memory protection I've seen
|
|
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will
|
|
|
|
* still catch it and complain. The masking trick does make the hash
|
|
|
|
* noticably faster for short strings (like English words).
|
|
|
|
*/
|
|
|
|
#ifndef VALGRIND
|
|
|
|
|
|
|
|
switch(length)
|
|
|
|
{
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
|
|
|
|
case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
|
|
|
|
case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
|
|
|
|
case 4 : a+=k[0]; break;
|
|
|
|
case 3 : a+=k[0]&0xffffff00; break;
|
|
|
|
case 2 : a+=k[0]&0xffff0000; break;
|
|
|
|
case 1 : a+=k[0]&0xff000000; break;
|
|
|
|
case 0 : return c; /* zero length strings require no mixing */
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* make valgrind happy */
|
|
|
|
|
|
|
|
const quint8 *k8 = (const quint8 *)k;
|
|
|
|
switch(length) /* all the case statements fall through */
|
|
|
|
{
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
|
|
|
case 11: c+=((quint32)k8[10])<<8; /* fall through */
|
|
|
|
case 10: c+=((quint32)k8[9])<<16; /* fall through */
|
|
|
|
case 9 : c+=((quint32)k8[8])<<24; /* fall through */
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break;
|
|
|
|
case 7 : b+=((quint32)k8[6])<<8; /* fall through */
|
|
|
|
case 6 : b+=((quint32)k8[5])<<16; /* fall through */
|
|
|
|
case 5 : b+=((quint32)k8[4])<<24; /* fall through */
|
|
|
|
case 4 : a+=k[0]; break;
|
|
|
|
case 3 : a+=((quint32)k8[2])<<8; /* fall through */
|
|
|
|
case 2 : a+=((quint32)k8[1])<<16; /* fall through */
|
|
|
|
case 1 : a+=((quint32)k8[0])<<24; break;
|
|
|
|
case 0 : return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !VALGRIND */
|
|
|
|
|
|
|
|
} else { /* need to read the key one byte at a time */
|
|
|
|
const quint8 *k = (const quint8 *)key;
|
|
|
|
|
|
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
|
|
|
while (length > 12)
|
|
|
|
{
|
|
|
|
a += ((quint32)k[0])<<24;
|
|
|
|
a += ((quint32)k[1])<<16;
|
|
|
|
a += ((quint32)k[2])<<8;
|
|
|
|
a += ((quint32)k[3]);
|
|
|
|
b += ((quint32)k[4])<<24;
|
|
|
|
b += ((quint32)k[5])<<16;
|
|
|
|
b += ((quint32)k[6])<<8;
|
|
|
|
b += ((quint32)k[7]);
|
|
|
|
c += ((quint32)k[8])<<24;
|
|
|
|
c += ((quint32)k[9])<<16;
|
|
|
|
c += ((quint32)k[10])<<8;
|
|
|
|
c += ((quint32)k[11]);
|
|
|
|
mix(a,b,c);
|
|
|
|
length -= 12;
|
|
|
|
k += 12;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */
|
|
|
|
switch(length) /* all the case statements fall through */
|
|
|
|
{
|
|
|
|
case 12: c+=k[11];
|
|
|
|
case 11: c+=((quint32)k[10])<<8;
|
|
|
|
case 10: c+=((quint32)k[9])<<16;
|
|
|
|
case 9 : c+=((quint32)k[8])<<24;
|
|
|
|
case 8 : b+=k[7];
|
|
|
|
case 7 : b+=((quint32)k[6])<<8;
|
|
|
|
case 6 : b+=((quint32)k[5])<<16;
|
|
|
|
case 5 : b+=((quint32)k[4])<<24;
|
|
|
|
case 4 : a+=k[3];
|
|
|
|
case 3 : a+=((quint32)k[2])<<8;
|
|
|
|
case 2 : a+=((quint32)k[1])<<16;
|
|
|
|
case 1 : a+=((quint32)k[0])<<24;
|
|
|
|
break;
|
|
|
|
case 0 : return c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
final(a,b,c);
|
|
|
|
return c;
|
|
|
|
}
|