qt5base-lts/cmake/QtToolchainHelpers.cmake

174 lines
9.1 KiB
CMake
Raw Normal View History

# Create a CMake toolchain file for convenient configuration of both internal Qt builds
# as well as CMake application projects.
# Expects various global variables to be set.
function(qt_internal_create_toolchain_file)
if(NOT "${QT_HOST_PATH}" STREQUAL "")
# TODO: Figure out how to make these relocatable.
get_filename_component(__qt_host_path_absolute "${QT_HOST_PATH}" ABSOLUTE)
set(init_qt_host_path "
set(__qt_initial_qt_host_path \"${__qt_host_path_absolute}\")
if(NOT DEFINED QT_HOST_PATH AND EXISTS \"\${__qt_initial_qt_host_path}\")
set(QT_HOST_PATH \"\${__qt_initial_qt_host_path}\" CACHE PATH \"\" FORCE)
endif()")
get_filename_component(__qt_host_path_cmake_dir_absolute
"${Qt${PROJECT_VERSION_MAJOR}HostInfo_DIR}/.." ABSOLUTE)
set(init_qt_host_path_cmake_dir
"
set(__qt_initial_qt_host_path_cmake_dir \"${__qt_host_path_cmake_dir_absolute}\")
if(NOT DEFINED QT_HOST_PATH_CMAKE_DIR AND EXISTS \"\${__qt_initial_qt_host_path_cmake_dir}\")
set(QT_HOST_PATH_CMAKE_DIR \"\${__qt_initial_qt_host_path_cmake_dir}\" CACHE PATH \"\" FORCE)
endif()")
set(init_qt_host_path_checks "
if(\"\${QT_HOST_PATH}\" STREQUAL \"\" OR NOT EXISTS \"\${QT_HOST_PATH}\")
message(FATAL_ERROR \"To use a cross-compiled Qt, please specify a path to a host Qt installation by setting the QT_HOST_PATH cache variable.\")
endif()
if(\"\${QT_HOST_PATH_CMAKE_DIR}\" STREQUAL \"\" OR NOT EXISTS \"\${QT_HOST_PATH_CMAKE_DIR}\")
message(FATAL_ERROR \"To use a cross-compiled Qt, please specify a path to a host Qt installation CMake directory by setting the QT_HOST_PATH_CMAKE_DIR cache variable.\")
endif()")
endif()
if(CMAKE_TOOLCHAIN_FILE)
file(TO_CMAKE_PATH "${CMAKE_TOOLCHAIN_FILE}" __qt_chainload_toolchain_file)
set(init_original_toolchain_file
"set(__qt_chainload_toolchain_file \"${__qt_chainload_toolchain_file}\")")
endif()
if(VCPKG_CHAINLOAD_TOOLCHAIN_FILE)
list(APPEND init_vcpkg
"set(VCPKG_CHAINLOAD_TOOLCHAIN_FILE \"${VCPKG_CHAINLOAD_TOOLCHAIN_FILE}\")")
endif()
if(VCPKG_TARGET_TRIPLET)
list(APPEND init_vcpkg
"set(VCPKG_TARGET_TRIPLET \"${VCPKG_TARGET_TRIPLET}\" CACHE STRING \"\")")
endif()
# By default we don't want to allow mixing compilers for building different repositories, so we
# embed the initially chosen compilers into the toolchain.
# This is because on Windows compilers aren't easily mixed.
# We want to avoid that qtbase is built using cl.exe for example, and then for another repo
# gcc is picked up from %PATH%.
# The same goes when using a custom compiler on other platforms, such as ICC.
#
# There are a few exceptions though.
#
# When crosscompiling using Boot2Qt, the environment setup shell script sets up the CXX env var,
# which is used by CMake to determine the initial compiler that should be used.
# Unfortunately, the CXX env var contains not only the compiler name, but also a few required
# arch-specific compiler flags. This means that when building qtsvg, if the Qt created toolchain
# file sets the CMAKE_CXX_COMPILER variable, the CXX env var is ignored and thus the extra
# arch specific compiler flags are not picked up anymore, leading to a configuration failure.
#
# To avoid this issue, disable automatic embedding of the compilers into the qt toolchain when
# cross compiling. This is merely a heuristic, becacuse we don't have enough data to decide
# when to do it or not.
# For example on Linux one might want to allow mixing of clang and gcc (maybe).
#
# To allow such use cases when the default is wrong, one can provide a flag to explicitly opt-in
# or opt-out of the compiler embedding into the Qt toolchain.
#
# Passing -DQT_EMBED_TOOLCHAIN_COMPILER=ON will force embedding of the compilers.
# Passing -DQT_EMBED_TOOLCHAIN_COMPILER=OFF will disable embedding of the compilers.
set(__qt_embed_toolchain_compilers TRUE)
if(CMAKE_CROSSCOMPILING)
set(__qt_embed_toolchain_compilers FALSE)
endif()
if(DEFINED QT_EMBED_TOOLCHAIN_COMPILER)
if(QT_EMBED_TOOLCHAIN_COMPILER)
set(__qt_embed_toolchain_compilers TRUE)
else()
set(__qt_embed_toolchain_compilers FALSE)
endif()
endif()
if(__qt_embed_toolchain_compilers)
list(APPEND init_platform "
set(__qt_initial_c_compiler \"${CMAKE_C_COMPILER}\")
set(__qt_initial_cxx_compiler \"${CMAKE_CXX_COMPILER}\")
if(NOT DEFINED CMAKE_C_COMPILER AND EXISTS \"\${__qt_initial_c_compiler}\")
set(CMAKE_C_COMPILER \"\${__qt_initial_c_compiler}\" CACHE STRING \"\")
endif()
if(NOT DEFINED CMAKE_CXX_COMPILER AND EXISTS \"\${__qt_initial_cxx_compiler}\")
set(CMAKE_CXX_COMPILER \"\${__qt_initial_cxx_compiler}\" CACHE STRING \"\")
endif()")
endif()
unset(init_additional_used_variables)
if(APPLE)
# For simulator_and_device build, we should not explicitly set the sysroot.
list(LENGTH CMAKE_OSX_ARCHITECTURES _qt_osx_architectures_count)
if(CMAKE_OSX_SYSROOT AND NOT _qt_osx_architectures_count GREATER 1 AND UIKIT)
list(APPEND init_platform "
set(__qt_initial_cmake_osx_sysroot \"${CMAKE_OSX_SYSROOT}\")
if(NOT DEFINED CMAKE_OSX_SYSROOT AND EXISTS \"\${__qt_initial_cmake_osx_sysroot}\")
set(CMAKE_OSX_SYSROOT \"\${__qt_initial_cmake_osx_sysroot}\" CACHE PATH \"\")
endif()")
endif()
if(CMAKE_OSX_DEPLOYMENT_TARGET)
list(APPEND init_platform
"set(CMAKE_OSX_DEPLOYMENT_TARGET \"${CMAKE_OSX_DEPLOYMENT_TARGET}\" CACHE STRING \"\")")
endif()
CMake: Fix building multi-arch universal macOS Qt Use the same approach we use for iOS, which is to set multiple CMAKE_OSX_ARCHITECTURES values and let the clang front end deal with lipo-ing the final libraries. For now, Qt can be configured to build universal macOS libraries by passing 2 architectures to CMake, either via: -DCMAKE_OSX_ARCHITECTURES="x86_64;arm64" or -DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" Currently we recommend specifying the intel x86_64 arch as the first one, to get an intel slice configuration that is comparable to a non-universal intel build. Specifying the arm64 slice first could pessimize optimizations and reduce the feature set for the intel slice due to the limitation that we run configure tests only once. The first specified architecture is the one used to do all the configure tests. It 'mostly' defines the common feature set of both architecture slices, with the excepion of some special handling for sse2 and neon instructions. In the future we might want to run at least the Qt architecture config test for all specified architectures, so that we can extract all the supported sub-arches and instruction sets in a reliable way. For now, we use the same sse2 hack as for iOS simulator_and_device builds, otherwise QtGui fails to link due to missing qt_memfill32_sse2 and other symbols. The hack is somewhat augmented to ensure that reconfiguration still succeeds (same issue happened with iOS). Previously the sse2 feature condition was broken due to force setting the feature to be ON. Now the condition also checks for a special QT_FORCE_FEATURE_sse2 variable which we set internally. Note that we shouldn't build for arm64e, because the binaries get killed when running on AS with the following message: kernel: exec_mach_imgact: not running binary built against preview arm64e ABI. Aslo, by default, we disable the arm64 slice for qt sql plugins, mostly because the CI provisioned sql libraries that we depend on only contain x86_64 slices, and trying to build the sql plugins for both slices will fail with linker errors. This behavior can be disabled for all targets marked by qt_internal_force_macos_intel_arch, by setting the QT_FORCE_MACOS_ALL_ARCHES CMake option to ON. To disble it per-target one can set QT_FORCE_MACOS_ALL_ARCHES_${target} to ON. Task-number: QTBUG-85447 Change-Id: Iccb5dfcc1a21a8a8292bd3817df0ea46c3445f75 Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
2021-03-24 15:03:35 +00:00
if(UIKIT OR (MACOS AND QT_IS_MACOS_UNIVERSAL))
set(_qt_osx_architectures_escaped "${CMAKE_OSX_ARCHITECTURES}")
string(REPLACE ";" "LITERAL_SEMICOLON"
_qt_osx_architectures_escaped "${_qt_osx_architectures_escaped}")
list(APPEND init_platform
"set(CMAKE_OSX_ARCHITECTURES \"${_qt_osx_architectures_escaped}\" CACHE STRING \"\")")
CMake: Fix building multi-arch universal macOS Qt Use the same approach we use for iOS, which is to set multiple CMAKE_OSX_ARCHITECTURES values and let the clang front end deal with lipo-ing the final libraries. For now, Qt can be configured to build universal macOS libraries by passing 2 architectures to CMake, either via: -DCMAKE_OSX_ARCHITECTURES="x86_64;arm64" or -DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" Currently we recommend specifying the intel x86_64 arch as the first one, to get an intel slice configuration that is comparable to a non-universal intel build. Specifying the arm64 slice first could pessimize optimizations and reduce the feature set for the intel slice due to the limitation that we run configure tests only once. The first specified architecture is the one used to do all the configure tests. It 'mostly' defines the common feature set of both architecture slices, with the excepion of some special handling for sse2 and neon instructions. In the future we might want to run at least the Qt architecture config test for all specified architectures, so that we can extract all the supported sub-arches and instruction sets in a reliable way. For now, we use the same sse2 hack as for iOS simulator_and_device builds, otherwise QtGui fails to link due to missing qt_memfill32_sse2 and other symbols. The hack is somewhat augmented to ensure that reconfiguration still succeeds (same issue happened with iOS). Previously the sse2 feature condition was broken due to force setting the feature to be ON. Now the condition also checks for a special QT_FORCE_FEATURE_sse2 variable which we set internally. Note that we shouldn't build for arm64e, because the binaries get killed when running on AS with the following message: kernel: exec_mach_imgact: not running binary built against preview arm64e ABI. Aslo, by default, we disable the arm64 slice for qt sql plugins, mostly because the CI provisioned sql libraries that we depend on only contain x86_64 slices, and trying to build the sql plugins for both slices will fail with linker errors. This behavior can be disabled for all targets marked by qt_internal_force_macos_intel_arch, by setting the QT_FORCE_MACOS_ALL_ARCHES CMake option to ON. To disble it per-target one can set QT_FORCE_MACOS_ALL_ARCHES_${target} to ON. Task-number: QTBUG-85447 Change-Id: Iccb5dfcc1a21a8a8292bd3817df0ea46c3445f75 Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
2021-03-24 15:03:35 +00:00
endif()
CMake: Fix building multi-arch universal macOS Qt Use the same approach we use for iOS, which is to set multiple CMAKE_OSX_ARCHITECTURES values and let the clang front end deal with lipo-ing the final libraries. For now, Qt can be configured to build universal macOS libraries by passing 2 architectures to CMake, either via: -DCMAKE_OSX_ARCHITECTURES="x86_64;arm64" or -DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" Currently we recommend specifying the intel x86_64 arch as the first one, to get an intel slice configuration that is comparable to a non-universal intel build. Specifying the arm64 slice first could pessimize optimizations and reduce the feature set for the intel slice due to the limitation that we run configure tests only once. The first specified architecture is the one used to do all the configure tests. It 'mostly' defines the common feature set of both architecture slices, with the excepion of some special handling for sse2 and neon instructions. In the future we might want to run at least the Qt architecture config test for all specified architectures, so that we can extract all the supported sub-arches and instruction sets in a reliable way. For now, we use the same sse2 hack as for iOS simulator_and_device builds, otherwise QtGui fails to link due to missing qt_memfill32_sse2 and other symbols. The hack is somewhat augmented to ensure that reconfiguration still succeeds (same issue happened with iOS). Previously the sse2 feature condition was broken due to force setting the feature to be ON. Now the condition also checks for a special QT_FORCE_FEATURE_sse2 variable which we set internally. Note that we shouldn't build for arm64e, because the binaries get killed when running on AS with the following message: kernel: exec_mach_imgact: not running binary built against preview arm64e ABI. Aslo, by default, we disable the arm64 slice for qt sql plugins, mostly because the CI provisioned sql libraries that we depend on only contain x86_64 slices, and trying to build the sql plugins for both slices will fail with linker errors. This behavior can be disabled for all targets marked by qt_internal_force_macos_intel_arch, by setting the QT_FORCE_MACOS_ALL_ARCHES CMake option to ON. To disble it per-target one can set QT_FORCE_MACOS_ALL_ARCHES_${target} to ON. Task-number: QTBUG-85447 Change-Id: Iccb5dfcc1a21a8a8292bd3817df0ea46c3445f75 Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
2021-03-24 15:03:35 +00:00
if(UIKIT)
list(APPEND init_platform
"set(CMAKE_SYSTEM_NAME \"${CMAKE_SYSTEM_NAME}\" CACHE STRING \"\")")
list(APPEND init_platform "if(CMAKE_GENERATOR STREQUAL \"Xcode\" AND NOT QT_NO_XCODE_EMIT_EPN)")
list(APPEND init_platform " set_property(GLOBAL PROPERTY XCODE_EMIT_EFFECTIVE_PLATFORM_NAME OFF)")
list(APPEND init_platform "endif()")
endif()
elseif(ANDROID)
foreach(var ANDROID_NATIVE_API_LEVEL ANDROID_STL ANDROID_ABI
ANDROID_SDK_ROOT ANDROID_NDK_ROOT)
list(APPEND init_additional_used_variables
"list(APPEND __qt_toolchain_used_variables ${var})")
endforeach()
list(APPEND init_platform
"set(ANDROID_NATIVE_API_LEVEL \"${ANDROID_NATIVE_API_LEVEL}\" CACHE STRING \"\")")
list(APPEND init_platform "set(ANDROID_STL \"${ANDROID_STL}\" CACHE STRING \"\")")
list(APPEND init_platform "set(ANDROID_ABI \"${ANDROID_ABI}\" CACHE STRING \"\")")
list(APPEND init_platform "if (NOT DEFINED ANDROID_SDK_ROOT)")
file(TO_CMAKE_PATH "${ANDROID_SDK_ROOT}" __qt_android_sdk_root)
list(APPEND init_platform
" set(ANDROID_SDK_ROOT \"${__qt_android_sdk_root}\" CACHE STRING \"\")")
list(APPEND init_platform "endif()")
list(APPEND init_platform "if(NOT \"$\{ANDROID_NDK_ROOT\}\" STREQUAL \"\")")
list(APPEND init_platform
" set(__qt_toolchain_file_candidate \"$\{ANDROID_NDK_ROOT\}/build/cmake/android.toolchain.cmake\")")
list(APPEND init_platform " if(EXISTS \"$\{__qt_toolchain_file_candidate\}\")")
list(APPEND init_platform
" message(STATUS \"Android toolchain file within NDK detected: $\{__qt_toolchain_file_candidate\}\")")
list(APPEND init_platform " set(__qt_chainload_toolchain_file \"$\{__qt_toolchain_file_candidate\}\")")
list(APPEND init_platform " else()")
list(APPEND init_platform
" message(FATAL_ERROR \"Cannot find the toolchain file '$\{__qt_toolchain_file_candidate\}'. \"")
list(APPEND init_platform
" \"Please specify the toolchain file with -DQT_CHAINLOAD_TOOLCHAIN_FILE=<file>.\")")
list(APPEND init_platform " endif()")
list(APPEND init_platform "endif()")
endif()
string(REPLACE ";" "\n" init_additional_used_variables
"${init_additional_used_variables}")
string(REPLACE ";" "\n" init_vcpkg "${init_vcpkg}")
string(REPLACE ";" "\n" init_platform "${init_platform}")
string(REPLACE "LITERAL_SEMICOLON" ";" init_platform "${init_platform}")
qt_compute_relative_path_from_cmake_config_dir_to_prefix()
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/cmake/qt.toolchain.cmake.in"
"${__GlobalConfig_build_dir}/qt.toolchain.cmake" @ONLY)
qt_install(FILES "${__GlobalConfig_build_dir}/qt.toolchain.cmake"
DESTINATION "${__GlobalConfig_install_dir}" COMPONENT Devel)
endfunction()