qt5base-lts/tests/manual/qvulkaninstance/main.cpp

714 lines
26 KiB
C++
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2017 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the test suite of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:GPL-EXCEPT$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 as published by the Free Software
** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QGuiApplication>
#include <QVulkanInstance>
#include <QVulkanFunctions>
#include <QWindow>
#include <QLoggingCategory>
#include <qevent.h>
static const int SWAPCHAIN_BUFFER_COUNT = 2;
static const int FRAME_LAG = 2;
class VWindow : public QWindow
{
public:
VWindow() { setSurfaceType(VulkanSurface); }
~VWindow() { releaseResources(); }
private:
void exposeEvent(QExposeEvent *) override;
void resizeEvent(QResizeEvent *) override;
bool event(QEvent *) override;
void init();
void releaseResources();
void recreateSwapChain();
void createDefaultRenderPass();
void releaseSwapChain();
void render();
void buildDrawCalls();
bool m_inited = false;
VkSurfaceKHR m_vkSurface;
VkPhysicalDevice m_vkPhysDev;
VkPhysicalDeviceProperties m_physDevProps;
VkDevice m_vkDev = 0;
QVulkanDeviceFunctions *m_devFuncs;
VkQueue m_vkGfxQueue;
VkQueue m_vkPresQueue;
VkCommandPool m_vkCmdPool = 0;
PFN_vkCreateSwapchainKHR m_vkCreateSwapchainKHR = nullptr;
PFN_vkDestroySwapchainKHR m_vkDestroySwapchainKHR;
PFN_vkGetSwapchainImagesKHR m_vkGetSwapchainImagesKHR;
PFN_vkAcquireNextImageKHR m_vkAcquireNextImageKHR;
PFN_vkQueuePresentKHR m_vkQueuePresentKHR;
PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR m_vkGetPhysicalDeviceSurfaceCapabilitiesKHR;
PFN_vkGetPhysicalDeviceSurfaceFormatsKHR m_vkGetPhysicalDeviceSurfaceFormatsKHR;
QSize m_swapChainImageSize;
VkFormat m_colorFormat;
VkSwapchainKHR m_swapChain = 0;
uint32_t m_swapChainBufferCount = 0;
struct ImageResources {
VkImage image = 0;
VkImageView imageView = 0;
VkCommandBuffer cmdBuf = 0;
VkFence cmdFence = 0;
bool cmdFenceWaitable = false;
VkFramebuffer fb = 0;
} m_imageRes[SWAPCHAIN_BUFFER_COUNT];
uint32_t m_currentImage;
struct FrameResources {
VkFence fence = 0;
bool fenceWaitable = false;
VkSemaphore imageSem = 0;
VkSemaphore drawSem = 0;
} m_frameRes[FRAME_LAG];
uint32_t m_currentFrame;
VkRenderPass m_defaultRenderPass = 0;
};
void VWindow::exposeEvent(QExposeEvent *)
{
if (isExposed() && !m_inited) {
qDebug("initializing");
m_inited = true;
init();
recreateSwapChain();
render();
}
// Release everything when unexposed - the meaning of which is platform specific.
// Can be essential on mobile, to release resources while in background.
#if 1
if (!isExposed() && m_inited) {
m_inited = false;
releaseSwapChain();
releaseResources();
}
#endif
}
void VWindow::resizeEvent(QResizeEvent *)
{
// Nothing to do here - recreating the swapchain is handled in render(),
// in fact calling recreateSwapChain() from here leads to problems.
}
bool VWindow::event(QEvent *e)
{
switch (e->type()) {
case QEvent::UpdateRequest:
render();
break;
// Now the fun part: the swapchain must be destroyed before the surface as per
// spec. This is not ideal for us because the surface is managed by the
// QPlatformWindow which may be gone already when the unexpose comes, making the
// validation layer scream. The solution is to listen to the PlatformSurface events.
case QEvent::PlatformSurface:
if (static_cast<QPlatformSurfaceEvent *>(e)->surfaceEventType() == QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed)
releaseSwapChain();
break;
default:
break;
}
return QWindow::event(e);
}
void VWindow::init()
{
m_vkSurface = QVulkanInstance::surfaceForWindow(this);
if (!m_vkSurface)
qFatal("Failed to get surface for window");
QVulkanInstance *inst = vulkanInstance();
QVulkanFunctions *f = inst->functions();
uint32_t devCount = 0;
f->vkEnumeratePhysicalDevices(inst->vkInstance(), &devCount, nullptr);
qDebug("%d physical devices", devCount);
if (!devCount)
qFatal("No physical devices");
// Just pick the first physical device for now.
devCount = 1;
VkResult err = f->vkEnumeratePhysicalDevices(inst->vkInstance(), &devCount, &m_vkPhysDev);
if (err != VK_SUCCESS)
qFatal("Failed to enumerate physical devices: %d", err);
f->vkGetPhysicalDeviceProperties(m_vkPhysDev, &m_physDevProps);
qDebug("Device name: %s Driver version: %d.%d.%d", m_physDevProps.deviceName,
VK_VERSION_MAJOR(m_physDevProps.driverVersion), VK_VERSION_MINOR(m_physDevProps.driverVersion),
VK_VERSION_PATCH(m_physDevProps.driverVersion));
uint32_t queueCount = 0;
f->vkGetPhysicalDeviceQueueFamilyProperties(m_vkPhysDev, &queueCount, nullptr);
QList<VkQueueFamilyProperties> queueFamilyProps(queueCount);
f->vkGetPhysicalDeviceQueueFamilyProperties(m_vkPhysDev, &queueCount, queueFamilyProps.data());
int gfxQueueFamilyIdx = -1;
int presQueueFamilyIdx = -1;
// First look for a queue that supports both.
for (int i = 0; i < queueFamilyProps.count(); ++i) {
qDebug("queue family %d: flags=0x%x count=%d", i, queueFamilyProps[i].queueFlags, queueFamilyProps[i].queueCount);
if (gfxQueueFamilyIdx == -1
&& (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)
&& inst->supportsPresent(m_vkPhysDev, i, this))
gfxQueueFamilyIdx = i;
}
if (gfxQueueFamilyIdx != -1) {
presQueueFamilyIdx = gfxQueueFamilyIdx;
} else {
// Separate queues then.
qDebug("No queue with graphics+present; trying separate queues");
for (int i = 0; i < queueFamilyProps.count(); ++i) {
if (gfxQueueFamilyIdx == -1 && (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT))
gfxQueueFamilyIdx = i;
if (presQueueFamilyIdx == -1 && inst->supportsPresent(m_vkPhysDev, i, this))
presQueueFamilyIdx = i;
}
}
if (gfxQueueFamilyIdx == -1)
qFatal("No graphics queue family found");
if (presQueueFamilyIdx == -1)
qFatal("No present queue family found");
VkDeviceQueueCreateInfo queueInfo[2];
const float prio[] = { 0 };
memset(queueInfo, 0, sizeof(queueInfo));
queueInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo[0].queueFamilyIndex = gfxQueueFamilyIdx;
queueInfo[0].queueCount = 1;
queueInfo[0].pQueuePriorities = prio;
if (gfxQueueFamilyIdx != presQueueFamilyIdx) {
queueInfo[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueInfo[1].queueFamilyIndex = presQueueFamilyIdx;
queueInfo[1].queueCount = 1;
queueInfo[1].pQueuePriorities = prio;
}
QList<const char *> devLayers;
if (inst->layers().contains("VK_LAYER_KHRONOS_validation"))
devLayers.append("VK_LAYER_KHRONOS_validation");
QList<const char *> devExts;
devExts.append("VK_KHR_swapchain");
VkDeviceCreateInfo devInfo;
memset(&devInfo, 0, sizeof(devInfo));
devInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
devInfo.queueCreateInfoCount = gfxQueueFamilyIdx == presQueueFamilyIdx ? 1 : 2;
devInfo.pQueueCreateInfos = queueInfo;
devInfo.enabledLayerCount = devLayers.count();
devInfo.ppEnabledLayerNames = devLayers.constData();
devInfo.enabledExtensionCount = devExts.count();
devInfo.ppEnabledExtensionNames = devExts.constData();
err = f->vkCreateDevice(m_vkPhysDev, &devInfo, nullptr, &m_vkDev);
if (err != VK_SUCCESS)
qFatal("Failed to create device: %d", err);
m_devFuncs = inst->deviceFunctions(m_vkDev);
m_devFuncs->vkGetDeviceQueue(m_vkDev, gfxQueueFamilyIdx, 0, &m_vkGfxQueue);
if (gfxQueueFamilyIdx == presQueueFamilyIdx)
m_vkPresQueue = m_vkGfxQueue;
else
m_devFuncs->vkGetDeviceQueue(m_vkDev, presQueueFamilyIdx, 0, &m_vkPresQueue);
VkCommandPoolCreateInfo poolInfo;
memset(&poolInfo, 0, sizeof(poolInfo));
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.queueFamilyIndex = gfxQueueFamilyIdx;
err = m_devFuncs->vkCreateCommandPool(m_vkDev, &poolInfo, nullptr, &m_vkCmdPool);
if (err != VK_SUCCESS)
qFatal("Failed to create command pool: %d", err);
m_colorFormat = VK_FORMAT_B8G8R8A8_UNORM; // may get changed later when setting up the swapchain
}
void VWindow::releaseResources()
{
if (!m_vkDev)
return;
m_devFuncs->vkDeviceWaitIdle(m_vkDev);
if (m_vkCmdPool) {
m_devFuncs->vkDestroyCommandPool(m_vkDev, m_vkCmdPool, nullptr);
m_vkCmdPool = 0;
}
if (m_vkDev) {
m_devFuncs->vkDestroyDevice(m_vkDev, nullptr);
// Play nice and notify QVulkanInstance that the QVulkanDeviceFunctions
// for m_vkDev needs to be invalidated.
vulkanInstance()->resetDeviceFunctions(m_vkDev);
m_vkDev = 0;
}
m_vkSurface = 0;
}
void VWindow::recreateSwapChain()
{
m_swapChainImageSize = size();
if (m_swapChainImageSize.isEmpty())
return;
QVulkanInstance *inst = vulkanInstance();
QVulkanFunctions *f = inst->functions();
m_devFuncs->vkDeviceWaitIdle(m_vkDev);
if (!m_vkCreateSwapchainKHR) {
m_vkGetPhysicalDeviceSurfaceCapabilitiesKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR>(
inst->getInstanceProcAddr("vkGetPhysicalDeviceSurfaceCapabilitiesKHR"));
m_vkGetPhysicalDeviceSurfaceFormatsKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormatsKHR>(
inst->getInstanceProcAddr("vkGetPhysicalDeviceSurfaceFormatsKHR"));
// note: device-specific functions
m_vkCreateSwapchainKHR = reinterpret_cast<PFN_vkCreateSwapchainKHR>(f->vkGetDeviceProcAddr(m_vkDev, "vkCreateSwapchainKHR"));
m_vkDestroySwapchainKHR = reinterpret_cast<PFN_vkDestroySwapchainKHR>(f->vkGetDeviceProcAddr(m_vkDev, "vkDestroySwapchainKHR"));
m_vkGetSwapchainImagesKHR = reinterpret_cast<PFN_vkGetSwapchainImagesKHR>(f->vkGetDeviceProcAddr(m_vkDev, "vkGetSwapchainImagesKHR"));
m_vkAcquireNextImageKHR = reinterpret_cast<PFN_vkAcquireNextImageKHR>(f->vkGetDeviceProcAddr(m_vkDev, "vkAcquireNextImageKHR"));
m_vkQueuePresentKHR = reinterpret_cast<PFN_vkQueuePresentKHR>(f->vkGetDeviceProcAddr(m_vkDev, "vkQueuePresentKHR"));
}
VkColorSpaceKHR colorSpace = VkColorSpaceKHR(0);
uint32_t formatCount = 0;
m_vkGetPhysicalDeviceSurfaceFormatsKHR(m_vkPhysDev, m_vkSurface, &formatCount, nullptr);
if (formatCount) {
QList<VkSurfaceFormatKHR> formats(formatCount);
m_vkGetPhysicalDeviceSurfaceFormatsKHR(m_vkPhysDev, m_vkSurface, &formatCount, formats.data());
if (formats[0].format != VK_FORMAT_UNDEFINED) {
m_colorFormat = formats[0].format;
colorSpace = formats[0].colorSpace;
}
}
VkSurfaceCapabilitiesKHR surfaceCaps;
m_vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_vkPhysDev, m_vkSurface, &surfaceCaps);
uint32_t reqBufferCount = SWAPCHAIN_BUFFER_COUNT;
if (surfaceCaps.maxImageCount)
reqBufferCount = qBound(surfaceCaps.minImageCount, reqBufferCount, surfaceCaps.maxImageCount);
VkExtent2D bufferSize = surfaceCaps.currentExtent;
if (bufferSize.width == uint32_t(-1))
bufferSize.width = m_swapChainImageSize.width();
if (bufferSize.height == uint32_t(-1))
bufferSize.height = m_swapChainImageSize.height();
VkSurfaceTransformFlagBitsKHR preTransform =
(surfaceCaps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
? VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR
: surfaceCaps.currentTransform;
VkCompositeAlphaFlagBitsKHR compositeAlpha =
(surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR)
? VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR
: VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR;
VkSwapchainKHR oldSwapChain = m_swapChain;
VkSwapchainCreateInfoKHR swapChainInfo;
memset(&swapChainInfo, 0, sizeof(swapChainInfo));
swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapChainInfo.surface = m_vkSurface;
swapChainInfo.minImageCount = reqBufferCount;
swapChainInfo.imageFormat = m_colorFormat;
swapChainInfo.imageColorSpace = colorSpace;
swapChainInfo.imageExtent = bufferSize;
swapChainInfo.imageArrayLayers = 1;
swapChainInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapChainInfo.preTransform = preTransform;
swapChainInfo.compositeAlpha = compositeAlpha;
swapChainInfo.presentMode = presentMode;
swapChainInfo.clipped = true;
swapChainInfo.oldSwapchain = oldSwapChain;
qDebug("creating new swap chain of %d buffers, size %dx%d", reqBufferCount, bufferSize.width, bufferSize.height);
VkSwapchainKHR newSwapChain;
VkResult err = m_vkCreateSwapchainKHR(m_vkDev, &swapChainInfo, nullptr, &newSwapChain);
if (err != VK_SUCCESS)
qFatal("Failed to create swap chain: %d", err);
if (oldSwapChain)
releaseSwapChain();
m_swapChain = newSwapChain;
m_swapChainBufferCount = 0;
err = m_vkGetSwapchainImagesKHR(m_vkDev, m_swapChain, &m_swapChainBufferCount, nullptr);
if (err != VK_SUCCESS || m_swapChainBufferCount < 2)
qFatal("Failed to get swapchain images: %d (count=%d)", err, m_swapChainBufferCount);
qDebug("actual swap chain buffer count: %d", m_swapChainBufferCount);
Q_ASSERT(m_swapChainBufferCount <= SWAPCHAIN_BUFFER_COUNT);
VkImage swapChainImages[SWAPCHAIN_BUFFER_COUNT];
err = m_vkGetSwapchainImagesKHR(m_vkDev, m_swapChain, &m_swapChainBufferCount, swapChainImages);
if (err != VK_SUCCESS)
qFatal("Failed to get swapchain images: %d", err);
// Now that we know m_colorFormat, create the default renderpass, the framebuffers will need it.
createDefaultRenderPass();
VkFenceCreateInfo fenceInfo = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, VK_FENCE_CREATE_SIGNALED_BIT };
for (uint32_t i = 0; i < m_swapChainBufferCount; ++i) {
ImageResources &image(m_imageRes[i]);
image.image = swapChainImages[i];
VkImageViewCreateInfo imgViewInfo;
memset(&imgViewInfo, 0, sizeof(imgViewInfo));
imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
imgViewInfo.image = swapChainImages[i];
imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
imgViewInfo.format = m_colorFormat;
imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R;
imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G;
imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B;
imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A;
imgViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imgViewInfo.subresourceRange.levelCount = imgViewInfo.subresourceRange.layerCount = 1;
err = m_devFuncs->vkCreateImageView(m_vkDev, &imgViewInfo, nullptr, &image.imageView);
if (err != VK_SUCCESS)
qFatal("Failed to create swapchain image view %d: %d", i, err);
err = m_devFuncs->vkCreateFence(m_vkDev, &fenceInfo, nullptr, &image.cmdFence);
if (err != VK_SUCCESS)
qFatal("Failed to create command buffer fence: %d", err);
image.cmdFenceWaitable = true;
VkImageView views[1] = { image.imageView };
VkFramebufferCreateInfo fbInfo;
memset(&fbInfo, 0, sizeof(fbInfo));
fbInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbInfo.renderPass = m_defaultRenderPass;
fbInfo.attachmentCount = 1;
fbInfo.pAttachments = views;
fbInfo.width = m_swapChainImageSize.width();
fbInfo.height = m_swapChainImageSize.height();
fbInfo.layers = 1;
VkResult err = m_devFuncs->vkCreateFramebuffer(m_vkDev, &fbInfo, nullptr, &image.fb);
if (err != VK_SUCCESS)
qFatal("Failed to create framebuffer: %d", err);
}
m_currentImage = 0;
VkSemaphoreCreateInfo semInfo = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, nullptr, 0 };
for (uint32_t i = 0; i < FRAME_LAG; ++i) {
FrameResources &frame(m_frameRes[i]);
m_devFuncs->vkCreateFence(m_vkDev, &fenceInfo, nullptr, &frame.fence);
frame.fenceWaitable = true;
m_devFuncs->vkCreateSemaphore(m_vkDev, &semInfo, nullptr, &frame.imageSem);
m_devFuncs->vkCreateSemaphore(m_vkDev, &semInfo, nullptr, &frame.drawSem);
}
m_currentFrame = 0;
}
void VWindow::createDefaultRenderPass()
{
VkAttachmentDescription attDesc[1];
memset(attDesc, 0, sizeof(attDesc));
attDesc[0].format = m_colorFormat;
attDesc[0].samples = VK_SAMPLE_COUNT_1_BIT;
attDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
attDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
attDesc[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference colorRef = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkSubpassDescription subPassDesc;
memset(&subPassDesc, 0, sizeof(subPassDesc));
subPassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subPassDesc.colorAttachmentCount = 1;
subPassDesc.pColorAttachments = &colorRef;
VkRenderPassCreateInfo rpInfo;
memset(&rpInfo, 0, sizeof(rpInfo));
rpInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rpInfo.attachmentCount = 1;
rpInfo.pAttachments = attDesc;
rpInfo.subpassCount = 1;
rpInfo.pSubpasses = &subPassDesc;
VkResult err = m_devFuncs->vkCreateRenderPass(m_vkDev, &rpInfo, nullptr, &m_defaultRenderPass);
if (err != VK_SUCCESS)
qFatal("Failed to create renderpass: %d", err);
}
void VWindow::releaseSwapChain()
{
if (!m_vkDev)
return;
m_devFuncs->vkDeviceWaitIdle(m_vkDev);
if (m_defaultRenderPass) {
m_devFuncs->vkDestroyRenderPass(m_vkDev, m_defaultRenderPass, nullptr);
m_defaultRenderPass = 0;
}
for (uint32_t i = 0; i < FRAME_LAG; ++i) {
FrameResources &frame(m_frameRes[i]);
if (frame.fence) {
if (frame.fenceWaitable)
m_devFuncs->vkWaitForFences(m_vkDev, 1, &frame.fence, VK_TRUE, UINT64_MAX);
m_devFuncs->vkDestroyFence(m_vkDev, frame.fence, nullptr);
frame.fence = 0;
frame.fenceWaitable = false;
}
if (frame.imageSem) {
m_devFuncs->vkDestroySemaphore(m_vkDev, frame.imageSem, nullptr);
frame.imageSem = 0;
}
if (frame.drawSem) {
m_devFuncs->vkDestroySemaphore(m_vkDev, frame.drawSem, nullptr);
frame.drawSem = 0;
}
}
for (uint32_t i = 0; i < m_swapChainBufferCount; ++i) {
ImageResources &image(m_imageRes[i]);
if (image.cmdFence) {
if (image.cmdFenceWaitable)
m_devFuncs->vkWaitForFences(m_vkDev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX);
m_devFuncs->vkDestroyFence(m_vkDev, image.cmdFence, nullptr);
image.cmdFence = 0;
image.cmdFenceWaitable = false;
}
if (image.fb) {
m_devFuncs->vkDestroyFramebuffer(m_vkDev, image.fb, nullptr);
image.fb = 0;
}
if (image.imageView) {
m_devFuncs->vkDestroyImageView(m_vkDev, image.imageView, nullptr);
image.imageView = 0;
}
if (image.cmdBuf) {
m_devFuncs->vkFreeCommandBuffers(m_vkDev, m_vkCmdPool, 1, &image.cmdBuf);
image.cmdBuf = 0;
}
}
if (m_swapChain) {
m_vkDestroySwapchainKHR(m_vkDev, m_swapChain, nullptr);
m_swapChain = 0;
}
}
void VWindow::render()
{
if (!m_swapChain)
return;
if (size() != m_swapChainImageSize) {
recreateSwapChain();
if (!m_swapChain)
return;
}
FrameResources &frame(m_frameRes[m_currentFrame]);
// Wait if we are too far ahead, i.e. the thread gets throttled based on the presentation rate
// (note that we are using FIFO mode -> vsync)
if (frame.fenceWaitable) {
m_devFuncs->vkWaitForFences(m_vkDev, 1, &frame.fence, VK_TRUE, UINT64_MAX);
m_devFuncs->vkResetFences(m_vkDev, 1, &frame.fence);
}
// move on to next swapchain image
VkResult err = m_vkAcquireNextImageKHR(m_vkDev, m_swapChain, UINT64_MAX,
frame.imageSem, frame.fence, &m_currentImage);
if (err == VK_SUCCESS || err == VK_SUBOPTIMAL_KHR) {
frame.fenceWaitable = true;
} else if (err == VK_ERROR_OUT_OF_DATE_KHR) {
frame.fenceWaitable = false;
recreateSwapChain();
requestUpdate();
return;
} else {
qWarning("Failed to acquire next swapchain image: %d", err);
frame.fenceWaitable = false;
requestUpdate();
return;
}
// make sure the previous draw for the same image has finished
ImageResources &image(m_imageRes[m_currentImage]);
if (image.cmdFenceWaitable) {
m_devFuncs->vkWaitForFences(m_vkDev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX);
m_devFuncs->vkResetFences(m_vkDev, 1, &image.cmdFence);
}
// build new draw command buffer
buildDrawCalls();
// submit draw calls
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(submitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &image.cmdBuf;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &frame.imageSem;
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &frame.drawSem;
VkPipelineStageFlags psf = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
submitInfo.pWaitDstStageMask = &psf;
err = m_devFuncs->vkQueueSubmit(m_vkGfxQueue, 1, &submitInfo, image.cmdFence);
if (err == VK_SUCCESS) {
image.cmdFenceWaitable = true;
} else {
qWarning("Failed to submit to command queue: %d", err);
image.cmdFenceWaitable = false;
}
// queue present
VkPresentInfoKHR presInfo;
memset(&presInfo, 0, sizeof(presInfo));
presInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presInfo.swapchainCount = 1;
presInfo.pSwapchains = &m_swapChain;
presInfo.pImageIndices = &m_currentImage;
presInfo.waitSemaphoreCount = 1;
presInfo.pWaitSemaphores = &frame.drawSem;
// we do not currently handle the case when the present queue is separate
Q_ASSERT(m_vkGfxQueue == m_vkPresQueue);
err = m_vkQueuePresentKHR(m_vkGfxQueue, &presInfo);
if (err != VK_SUCCESS) {
if (err == VK_ERROR_OUT_OF_DATE_KHR) {
recreateSwapChain();
requestUpdate();
return;
} else if (err != VK_SUBOPTIMAL_KHR) {
qWarning("Failed to present: %d", err);
}
}
vulkanInstance()->presentQueued(this);
m_currentFrame = (m_currentFrame + 1) % FRAME_LAG;
requestUpdate();
}
void VWindow::buildDrawCalls()
{
ImageResources &image(m_imageRes[m_currentImage]);
if (image.cmdBuf) {
m_devFuncs->vkFreeCommandBuffers(m_vkDev, m_vkCmdPool, 1, &image.cmdBuf);
image.cmdBuf = 0;
}
VkCommandBufferAllocateInfo cmdBufInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, nullptr, m_vkCmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1 };
VkResult err = m_devFuncs->vkAllocateCommandBuffers(m_vkDev, &cmdBufInfo, &image.cmdBuf);
if (err != VK_SUCCESS)
qFatal("Failed to allocate frame command buffer: %d", err);
VkCommandBufferBeginInfo cmdBufBeginInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, 0, nullptr };
err = m_devFuncs->vkBeginCommandBuffer(image.cmdBuf, &cmdBufBeginInfo);
if (err != VK_SUCCESS)
qFatal("Failed to begin frame command buffer: %d", err);
static float g = 0;
g += 0.005f;
if (g > 1.0f)
g = 0.0f;
VkClearColorValue clearColor = { 0.0f, g, 0.0f, 1.0f };
VkClearValue clearValues[1];
clearValues[0].color = clearColor;
VkRenderPassBeginInfo rpBeginInfo;
memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpBeginInfo.renderPass = m_defaultRenderPass;
rpBeginInfo.framebuffer = image.fb;
rpBeginInfo.renderArea.extent.width = m_swapChainImageSize.width();
rpBeginInfo.renderArea.extent.height = m_swapChainImageSize.height();
rpBeginInfo.clearValueCount = 1;
rpBeginInfo.pClearValues = clearValues;
m_devFuncs->vkCmdBeginRenderPass(image.cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
m_devFuncs->vkCmdEndRenderPass(image.cmdBuf);
err = m_devFuncs->vkEndCommandBuffer(image.cmdBuf);
if (err != VK_SUCCESS)
qFatal("Failed to end frame command buffer: %d", err);
}
int main(int argc, char *argv[])
{
QGuiApplication app(argc, argv);
QLoggingCategory::setFilterRules(QStringLiteral("qt.vulkan=true"));
QVulkanInstance inst;
// Test the early queries for supported layers/exts.
qDebug() << inst.supportedLayers() << inst.supportedExtensions();
// Enable validation layer, if supported.
inst.setLayers(QByteArrayList() << "VK_LAYER_KHRONOS_validation");
bool ok = inst.create();
qDebug("QVulkanInstance::create() returned %d", ok);
if (!ok)
return 1;
VWindow w;
w.setVulkanInstance(&inst);
w.resize(1024, 768);
w.show();
return app.exec();
}