Clean up QVector2D/3D/4D

In random order:

* Remove code marked for removal in Qt 6.

* Inline as much as possible. This should give us a massive
speed boost in some simple operations where the function call
overhead as much as the cost of body of the function itself
(lengthSquared, dotProduct, etc.).

* Plaster constexpr and noexcept, as much as possible; follow
Lakos' rule.

* Unexport the classes; selectively export only the symbols
still defined out of line.

* Add [[nodiscard]] to any non-trivial mathematical operation
(e.g. calculate the length).

* To avoid circular dependencies, centralize their implementation
in one file. Leave the existing headers for compatibility with
existing #include statements.

* Change all the signatures of the classes' members to take
QVectorND, QPointF, etc. objects by value, not by const ref.
Usage in other classes (e.g. QMatrix4x4) has not been adjusted.

Change-Id: Iaf5a4b5289fcdf704e77656793390b8e772e94a5
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
This commit is contained in:
Giuseppe D'Angelo 2020-02-06 00:58:22 +01:00 committed by Lars Knoll
parent b4c1747612
commit 5a61c88e1f
11 changed files with 2763 additions and 2756 deletions

View File

@ -92,9 +92,10 @@ qt_internal_add_module(Gui
math3d/qgenericmatrix.cpp math3d/qgenericmatrix.h
math3d/qmatrix4x4.cpp math3d/qmatrix4x4.h
math3d/qquaternion.cpp math3d/qquaternion.h
math3d/qvector2d.cpp math3d/qvector2d.h
math3d/qvector3d.cpp math3d/qvector3d.h
math3d/qvector4d.cpp math3d/qvector4d.h
math3d/qvector2d.h
math3d/qvector3d.h
math3d/qvector4d.h
math3d/qvectornd.cpp math3d/qvectornd.h
painting/qbackingstore.cpp painting/qbackingstore.h
painting/qbezier.cpp painting/qbezier_p.h
painting/qblendfunctions.cpp painting/qblendfunctions_p.h

View File

@ -143,9 +143,10 @@ qt_internal_add_module(Gui
math3d/qgenericmatrix.cpp math3d/qgenericmatrix.h
math3d/qmatrix4x4.cpp math3d/qmatrix4x4.h
math3d/qquaternion.cpp math3d/qquaternion.h
math3d/qvector2d.cpp math3d/qvector2d.h
math3d/qvector3d.cpp math3d/qvector3d.h
math3d/qvector4d.cpp math3d/qvector4d.h
math3d/qvector2d.h
math3d/qvector3d.h
math3d/qvector4d.h
math3d/qvectornd.cpp math3d/qvectornd.h
painting/qbackingstore.cpp painting/qbackingstore.h
painting/qbezier.cpp painting/qbezier_p.h
painting/qblendfunctions.cpp painting/qblendfunctions_p.h

View File

@ -4,12 +4,11 @@ HEADERS += \
math3d/qquaternion.h \
math3d/qvector2d.h \
math3d/qvector3d.h \
math3d/qvector4d.h
math3d/qvector4d.h \
math3d/qvectornd.h \
SOURCES += \
math3d/qgenericmatrix.cpp \
math3d/qmatrix4x4.cpp \
math3d/qquaternion.cpp \
math3d/qvector2d.cpp \
math3d/qvector3d.cpp \
math3d/qvector4d.cpp
math3d/qvectornd.cpp \

View File

@ -1,558 +0,0 @@
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qvector2d.h"
#include "qvector3d.h"
#include "qvector4d.h"
#include <QtCore/qdatastream.h>
#include <QtCore/qdebug.h>
#include <QtCore/qvariant.h>
#include <QtCore/qmath.h>
QT_BEGIN_NAMESPACE
#ifndef QT_NO_VECTOR2D
static_assert(std::is_standard_layout<QVector2D>::value, "QVector2D is supposed to be standard layout");
static_assert(sizeof(QVector2D) == sizeof(float) * 2, "QVector2D is not supposed to have padding at the end");
/*!
\class QVector2D
\brief The QVector2D class represents a vector or vertex in 2D space.
\since 4.6
\ingroup painting
\ingroup painting-3D
\inmodule QtGui
The QVector2D class can also be used to represent vertices in 2D space.
We therefore do not need to provide a separate vertex class.
\sa QVector3D, QVector4D, QQuaternion
*/
/*!
\fn QVector2D::QVector2D()
Constructs a null vector, i.e. with coordinates (0, 0).
*/
/*!
\fn QVector2D::QVector2D(Qt::Initialization)
\since 5.5
\internal
Constructs a vector without initializing the contents.
*/
/*!
\fn QVector2D::QVector2D(float xpos, float ypos)
Constructs a vector with coordinates (\a xpos, \a ypos).
*/
/*!
\fn QVector2D::QVector2D(const QPoint& point)
Constructs a vector with x and y coordinates from a 2D \a point.
*/
/*!
\fn QVector2D::QVector2D(const QPointF& point)
Constructs a vector with x and y coordinates from a 2D \a point.
*/
#ifndef QT_NO_VECTOR3D
/*!
Constructs a vector with x and y coordinates from a 3D \a vector.
The z coordinate of \a vector is dropped.
\sa toVector3D()
*/
QVector2D::QVector2D(const QVector3D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Constructs a vector with x and y coordinates from a 3D \a vector.
The z and w coordinates of \a vector are dropped.
\sa toVector4D()
*/
QVector2D::QVector2D(const QVector4D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
}
#endif
/*!
\fn bool QVector2D::isNull() const
Returns \c true if the x and y coordinates are set to 0.0,
otherwise returns \c false.
*/
/*!
\fn float QVector2D::x() const
Returns the x coordinate of this point.
\sa setX(), y()
*/
/*!
\fn float QVector2D::y() const
Returns the y coordinate of this point.
\sa setY(), x()
*/
/*!
\fn void QVector2D::setX(float x)
Sets the x coordinate of this point to the given \a x coordinate.
\sa x(), setY()
*/
/*!
\fn void QVector2D::setY(float y)
Sets the y coordinate of this point to the given \a y coordinate.
\sa y(), setX()
*/
/*! \fn float &QVector2D::operator[](int i)
\since 5.2
Returns the component of the vector at index position \a i
as a modifiable reference.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 2).
*/
/*! \fn float QVector2D::operator[](int i) const
\since 5.2
Returns the component of the vector at index position \a i.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 2).
*/
/*!
Returns the length of the vector from the origin.
\sa lengthSquared(), normalized()
*/
float QVector2D::length() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]);
return float(std::sqrt(len));
}
/*!
Returns the squared length of the vector from the origin.
This is equivalent to the dot product of the vector with itself.
\sa length(), dotProduct()
*/
float QVector2D::lengthSquared() const
{
return v[0] * v[0] + v[1] * v[1];
}
/*!
Returns the normalized unit vector form of this vector.
If this vector is null, then a null vector is returned. If the length
of the vector is very close to 1, then the vector will be returned as-is.
Otherwise the normalized form of the vector of length 1 will be returned.
\sa length(), normalize()
*/
QVector2D QVector2D::normalized() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]);
if (qFuzzyIsNull(len - 1.0f)) {
return *this;
} else if (!qFuzzyIsNull(len)) {
double sqrtLen = std::sqrt(len);
return QVector2D(float(double(v[0]) / sqrtLen), float(double(v[1]) / sqrtLen));
} else {
return QVector2D();
}
}
/*!
Normalizes the currect vector in place. Nothing happens if this
vector is a null vector or the length of the vector is very close to 1.
\sa length(), normalized()
*/
void QVector2D::normalize()
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]);
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
return;
len = std::sqrt(len);
v[0] = float(double(v[0]) / len);
v[1] = float(double(v[1]) / len);
}
/*!
\since 5.1
Returns the distance from this vertex to a point defined by
the vertex \a point.
\sa distanceToLine()
*/
float QVector2D::distanceToPoint(const QVector2D& point) const
{
return (*this - point).length();
}
/*!
\since 5.1
Returns the distance that this vertex is from a line defined
by \a point and the unit vector \a direction.
If \a direction is a null vector, then it does not define a line.
In that case, the distance from \a point to this vertex is returned.
\sa distanceToPoint()
*/
float QVector2D::distanceToLine
(const QVector2D& point, const QVector2D& direction) const
{
if (direction.isNull())
return (*this - point).length();
QVector2D p = point + dotProduct(*this - point, direction) * direction;
return (*this - p).length();
}
/*!
\fn QVector2D &QVector2D::operator+=(const QVector2D &vector)
Adds the given \a vector to this vector and returns a reference to
this vector.
\sa operator-=()
*/
/*!
\fn QVector2D &QVector2D::operator-=(const QVector2D &vector)
Subtracts the given \a vector from this vector and returns a reference to
this vector.
\sa operator+=()
*/
/*!
\fn QVector2D &QVector2D::operator*=(float factor)
Multiplies this vector's coordinates by the given \a factor, and
returns a reference to this vector.
\sa operator/=()
*/
/*!
\fn QVector2D &QVector2D::operator*=(const QVector2D &vector)
Multiplies the components of this vector by the corresponding
components in \a vector.
*/
/*!
\fn QVector2D &QVector2D::operator/=(float divisor)
Divides this vector's coordinates by the given \a divisor, and
returns a reference to this vector.
\sa operator*=()
*/
/*!
\fn QVector2D &QVector2D::operator/=(const QVector2D &vector)
\since 5.5
Divides the components of this vector by the corresponding
components in \a vector.
\sa operator*=()
*/
/*!
Returns the dot product of \a v1 and \a v2.
*/
float QVector2D::dotProduct(const QVector2D& v1, const QVector2D& v2)
{
return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1];
}
/*!
\fn bool QVector2D::operator==(const QVector2D &v1, const QVector2D &v2)
Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn bool QVector2D::operator!=(const QVector2D &v1, const QVector2D &v2)
Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn const QVector2D operator+(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Returns a QVector2D object that is the sum of the given vectors, \a v1
and \a v2; each component is added separately.
\sa QVector2D::operator+=()
*/
/*!
\fn const QVector2D operator-(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Returns a QVector2D object that is formed by subtracting \a v2 from \a v1;
each component is subtracted separately.
\sa QVector2D::operator-=()
*/
/*!
\fn const QVector2D operator*(float factor, const QVector2D &vector)
\relates QVector2D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector2D::operator*=()
*/
/*!
\fn const QVector2D operator*(const QVector2D &vector, float factor)
\relates QVector2D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector2D::operator*=()
*/
/*!
\fn const QVector2D operator*(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Multiplies the components of \a v1 by the corresponding
components in \a v2.
*/
/*!
\fn const QVector2D operator-(const QVector2D &vector)
\relates QVector2D
\overload
Returns a QVector2D object that is formed by changing the sign of
the components of the given \a vector.
Equivalent to \c {QVector2D(0,0) - vector}.
*/
/*!
\fn const QVector2D operator/(const QVector2D &vector, float divisor)
\relates QVector2D
Returns the QVector2D object formed by dividing all three components of
the given \a vector by the given \a divisor.
\sa QVector2D::operator/=()
*/
/*!
\fn const QVector2D operator/(const QVector2D &vector, const QVector2D &divisor)
\relates QVector2D
\since 5.5
Returns the QVector2D object formed by dividing components of the given
\a vector by a respective components of the given \a divisor.
\sa QVector2D::operator/=()
*/
/*!
\fn bool qFuzzyCompare(const QVector2D& v1, const QVector2D& v2)
\relates QVector2D
Returns \c true if \a v1 and \a v2 are equal, allowing for a small
fuzziness factor for floating-point comparisons; false otherwise.
*/
#ifndef QT_NO_VECTOR3D
/*!
Returns the 3D form of this 2D vector, with the z coordinate set to zero.
\sa toVector4D(), toPoint()
*/
QVector3D QVector2D::toVector3D() const
{
return QVector3D(v[0], v[1], 0.0f);
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Returns the 4D form of this 2D vector, with the z and w coordinates set to zero.
\sa toVector3D(), toPoint()
*/
QVector4D QVector2D::toVector4D() const
{
return QVector4D(v[0], v[1], 0.0f, 0.0f);
}
#endif
/*!
\fn QPoint QVector2D::toPoint() const
Returns the QPoint form of this 2D vector.
\sa toPointF(), toVector3D()
*/
/*!
\fn QPointF QVector2D::toPointF() const
Returns the QPointF form of this 2D vector.
\sa toPoint(), toVector3D()
*/
/*!
Returns the 2D vector as a QVariant.
*/
QVector2D::operator QVariant() const
{
return QVariant::fromValue(*this);
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QVector2D &vector)
{
QDebugStateSaver saver(dbg);
dbg.nospace() << "QVector2D(" << vector.x() << ", " << vector.y() << ')';
return dbg;
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QVector2D &vector)
\relates QVector2D
Writes the given \a vector to the given \a stream and returns a
reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &stream, const QVector2D &vector)
{
stream << vector.x() << vector.y();
return stream;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QVector2D &vector)
\relates QVector2D
Reads a 2D vector from the given \a stream into the given \a vector
and returns a reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &stream, QVector2D &vector)
{
float x, y;
stream >> x;
stream >> y;
vector.setX(x);
vector.setY(y);
return stream;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_VECTOR2D
QT_END_NAMESPACE

View File

@ -1,6 +1,7 @@
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2020 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com, author Giuseppe D'Angelo <giuseppe.dangelo@kdab.com>
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
@ -37,250 +38,8 @@
**
****************************************************************************/
#ifndef QVECTOR2D_H
#define QVECTOR2D_H
#include <QtGui/qtguiglobal.h>
#include <QtCore/qpoint.h>
#include <QtCore/qmetatype.h>
QT_BEGIN_NAMESPACE
class QVector3D;
class QVector4D;
class QVariant;
#ifndef QT_NO_VECTOR2D
class Q_GUI_EXPORT QVector2D
{
public:
constexpr QVector2D();
explicit QVector2D(Qt::Initialization) {}
constexpr QVector2D(float xpos, float ypos);
constexpr explicit QVector2D(const QPoint& point);
constexpr explicit QVector2D(const QPointF& point);
#ifndef QT_NO_VECTOR3D
explicit QVector2D(const QVector3D& vector);
#endif
#ifndef QT_NO_VECTOR4D
explicit QVector2D(const QVector4D& vector);
#endif
bool isNull() const;
constexpr float x() const;
constexpr float y() const;
void setX(float x);
void setY(float y);
float &operator[](int i);
float operator[](int i) const;
float length() const;
float lengthSquared() const; //In Qt 6 convert to inline and constexpr
[[nodiscard]] QVector2D normalized() const;
void normalize();
float distanceToPoint(const QVector2D &point) const;
float distanceToLine(const QVector2D& point, const QVector2D& direction) const;
QVector2D &operator+=(const QVector2D &vector);
QVector2D &operator-=(const QVector2D &vector);
QVector2D &operator*=(float factor);
QVector2D &operator*=(const QVector2D &vector);
QVector2D &operator/=(float divisor);
inline QVector2D &operator/=(const QVector2D &vector);
static float dotProduct(const QVector2D& v1, const QVector2D& v2); //In Qt 6 convert to inline and constexpr
QT_WARNING_PUSH
QT_WARNING_DISABLE_FLOAT_COMPARE
constexpr friend inline bool operator==(const QVector2D &v1, const QVector2D &v2) noexcept
{
return v1.v[0] == v2.v[0] && v1.v[1] == v2.v[1];
}
constexpr friend inline bool operator!=(const QVector2D &v1, const QVector2D &v2) noexcept
{
return v1.v[0] != v2.v[0] || v1.v[1] != v2.v[1];
}
QT_WARNING_POP
constexpr friend inline const QVector2D operator+(const QVector2D &v1, const QVector2D &v2);
constexpr friend inline const QVector2D operator-(const QVector2D &v1, const QVector2D &v2);
constexpr friend inline const QVector2D operator*(float factor, const QVector2D &vector);
constexpr friend inline const QVector2D operator*(const QVector2D &vector, float factor);
constexpr friend inline const QVector2D operator*(const QVector2D &v1, const QVector2D &v2);
constexpr friend inline const QVector2D operator-(const QVector2D &vector);
constexpr friend inline const QVector2D operator/(const QVector2D &vector, float divisor);
constexpr friend inline const QVector2D operator/(const QVector2D &vector, const QVector2D &divisor);
constexpr friend inline bool qFuzzyCompare(const QVector2D& v1, const QVector2D& v2);
#ifndef QT_NO_VECTOR3D
QVector3D toVector3D() const;
#endif
#ifndef QT_NO_VECTOR4D
QVector4D toVector4D() const;
#endif
constexpr QPoint toPoint() const;
constexpr QPointF toPointF() const;
operator QVariant() const;
private:
float v[2];
friend class QVector3D;
friend class QVector4D;
};
Q_DECLARE_TYPEINFO(QVector2D, Q_PRIMITIVE_TYPE);
constexpr inline QVector2D::QVector2D() : v{0.0f, 0.0f} {}
constexpr inline QVector2D::QVector2D(float xpos, float ypos) : v{xpos, ypos} {}
constexpr inline QVector2D::QVector2D(const QPoint& point) : v{float(point.x()), float(point.y())} {}
constexpr inline QVector2D::QVector2D(const QPointF& point) : v{float(point.x()), float(point.y())} {}
inline bool QVector2D::isNull() const
{
return qIsNull(v[0]) && qIsNull(v[1]);
}
constexpr inline float QVector2D::x() const { return v[0]; }
constexpr inline float QVector2D::y() const { return v[1]; }
inline void QVector2D::setX(float aX) { v[0] = aX; }
inline void QVector2D::setY(float aY) { v[1] = aY; }
inline float &QVector2D::operator[](int i)
{
Q_ASSERT(uint(i) < 2u);
return v[i];
}
inline float QVector2D::operator[](int i) const
{
Q_ASSERT(uint(i) < 2u);
return v[i];
}
inline QVector2D &QVector2D::operator+=(const QVector2D &vector)
{
v[0] += vector.v[0];
v[1] += vector.v[1];
return *this;
}
inline QVector2D &QVector2D::operator-=(const QVector2D &vector)
{
v[0] -= vector.v[0];
v[1] -= vector.v[1];
return *this;
}
inline QVector2D &QVector2D::operator*=(float factor)
{
v[0] *= factor;
v[1] *= factor;
return *this;
}
inline QVector2D &QVector2D::operator*=(const QVector2D &vector)
{
v[0] *= vector.v[0];
v[1] *= vector.v[1];
return *this;
}
inline QVector2D &QVector2D::operator/=(float divisor)
{
v[0] /= divisor;
v[1] /= divisor;
return *this;
}
inline QVector2D &QVector2D::operator/=(const QVector2D &vector)
{
v[0] /= vector.v[0];
v[1] /= vector.v[1];
return *this;
}
constexpr inline const QVector2D operator+(const QVector2D &v1, const QVector2D &v2)
{
return QVector2D(v1.v[0] + v2.v[0], v1.v[1] + v2.v[1]);
}
constexpr inline const QVector2D operator-(const QVector2D &v1, const QVector2D &v2)
{
return QVector2D(v1.v[0] - v2.v[0], v1.v[1] - v2.v[1]);
}
constexpr inline const QVector2D operator*(float factor, const QVector2D &vector)
{
return QVector2D(vector.v[0] * factor, vector.v[1] * factor);
}
constexpr inline const QVector2D operator*(const QVector2D &vector, float factor)
{
return QVector2D(vector.v[0] * factor, vector.v[1] * factor);
}
constexpr inline const QVector2D operator*(const QVector2D &v1, const QVector2D &v2)
{
return QVector2D(v1.v[0] * v2.v[0], v1.v[1] * v2.v[1]);
}
constexpr inline const QVector2D operator-(const QVector2D &vector)
{
return QVector2D(-vector.v[0], -vector.v[1]);
}
constexpr inline const QVector2D operator/(const QVector2D &vector, float divisor)
{
return QVector2D(vector.v[0] / divisor, vector.v[1] / divisor);
}
constexpr inline const QVector2D operator/(const QVector2D &vector, const QVector2D &divisor)
{
return QVector2D(vector.v[0] / divisor.v[0], vector.v[1] / divisor.v[1]);
}
constexpr inline bool qFuzzyCompare(const QVector2D& v1, const QVector2D& v2)
{
return qFuzzyCompare(v1.v[0], v2.v[0]) && qFuzzyCompare(v1.v[1], v2.v[1]);
}
constexpr inline QPoint QVector2D::toPoint() const
{
return QPoint(qRound(v[0]), qRound(v[1]));
}
constexpr inline QPointF QVector2D::toPointF() const
{
return QPointF(qreal(v[0]), qreal(v[1]));
}
#ifndef QT_NO_DEBUG_STREAM
Q_GUI_EXPORT QDebug operator<<(QDebug dbg, const QVector2D &vector);
#endif
#ifndef QT_NO_DATASTREAM
Q_GUI_EXPORT QDataStream &operator<<(QDataStream &, const QVector2D &);
Q_GUI_EXPORT QDataStream &operator>>(QDataStream &, QVector2D &);
#endif
#endif
QT_END_NAMESPACE
#include <QtGui/qvectornd.h>
#if 0
#pragma qt_sync_stop_processing
#endif

View File

@ -1,759 +0,0 @@
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qvector3d.h"
#include "qvector2d.h"
#include "qvector4d.h"
#include "qmatrix4x4.h"
#include <QtCore/qdatastream.h>
#include <QtCore/qmath.h>
#include <QtCore/qvariant.h>
#include <QtCore/qdebug.h>
#include <QtCore/qrect.h>
QT_BEGIN_NAMESPACE
#ifndef QT_NO_VECTOR3D
static_assert(std::is_standard_layout<QVector3D>::value, "QVector3D is supposed to be standard layout");
static_assert(sizeof(QVector3D) == sizeof(float) * 3, "QVector3D is not supposed to have padding at the end");
/*!
\class QVector3D
\brief The QVector3D class represents a vector or vertex in 3D space.
\since 4.6
\ingroup painting-3D
\inmodule QtGui
Vectors are one of the main building blocks of 3D representation and
drawing. They consist of three coordinates, traditionally called
x, y, and z.
The QVector3D class can also be used to represent vertices in 3D space.
We therefore do not need to provide a separate vertex class.
\sa QVector2D, QVector4D, QQuaternion
*/
/*!
\fn QVector3D::QVector3D()
Constructs a null vector, i.e. with coordinates (0, 0, 0).
*/
/*!
\fn QVector3D::QVector3D(Qt::Initialization)
\since 5.5
\internal
Constructs a vector without initializing the contents.
*/
/*!
\fn QVector3D::QVector3D(float xpos, float ypos, float zpos)
Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos).
*/
/*!
\fn QVector3D::QVector3D(const QPoint& point)
Constructs a vector with x and y coordinates from a 2D \a point, and a
z coordinate of 0.
*/
/*!
\fn QVector3D::QVector3D(const QPointF& point)
Constructs a vector with x and y coordinates from a 2D \a point, and a
z coordinate of 0.
*/
#ifndef QT_NO_VECTOR2D
/*!
Constructs a 3D vector from the specified 2D \a vector. The z
coordinate is set to zero.
\sa toVector2D()
*/
QVector3D::QVector3D(const QVector2D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = 0.0f;
}
/*!
Constructs a 3D vector from the specified 2D \a vector. The z
coordinate is set to \a zpos.
\sa toVector2D()
*/
QVector3D::QVector3D(const QVector2D& vector, float zpos)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = zpos;
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Constructs a 3D vector from the specified 4D \a vector. The w
coordinate is dropped.
\sa toVector4D()
*/
QVector3D::QVector3D(const QVector4D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = vector.v[2];
}
#endif
/*!
\fn bool QVector3D::isNull() const
Returns \c true if the x, y, and z coordinates are set to 0.0,
otherwise returns \c false.
*/
/*!
\fn float QVector3D::x() const
Returns the x coordinate of this point.
\sa setX(), y(), z()
*/
/*!
\fn float QVector3D::y() const
Returns the y coordinate of this point.
\sa setY(), x(), z()
*/
/*!
\fn float QVector3D::z() const
Returns the z coordinate of this point.
\sa setZ(), x(), y()
*/
/*!
\fn void QVector3D::setX(float x)
Sets the x coordinate of this point to the given \a x coordinate.
\sa x(), setY(), setZ()
*/
/*!
\fn void QVector3D::setY(float y)
Sets the y coordinate of this point to the given \a y coordinate.
\sa y(), setX(), setZ()
*/
/*!
\fn void QVector3D::setZ(float z)
Sets the z coordinate of this point to the given \a z coordinate.
\sa z(), setX(), setY()
*/
/*! \fn float &QVector3D::operator[](int i)
\since 5.2
Returns the component of the vector at index position \a i
as a modifiable reference.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 3).
*/
/*! \fn float QVector3D::operator[](int i) const
\since 5.2
Returns the component of the vector at index position \a i.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 3).
*/
/*!
Returns the normalized unit vector form of this vector.
If this vector is null, then a null vector is returned. If the length
of the vector is very close to 1, then the vector will be returned as-is.
Otherwise the normalized form of the vector of length 1 will be returned.
\sa length(), normalize()
*/
QVector3D QVector3D::normalized() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]);
if (qFuzzyIsNull(len - 1.0f)) {
return *this;
} else if (!qFuzzyIsNull(len)) {
double sqrtLen = std::sqrt(len);
return QVector3D(float(double(v[0]) / sqrtLen),
float(double(v[1]) / sqrtLen),
float(double(v[2]) / sqrtLen));
} else {
return QVector3D();
}
}
/*!
Normalizes the currect vector in place. Nothing happens if this
vector is a null vector or the length of the vector is very close to 1.
\sa length(), normalized()
*/
void QVector3D::normalize()
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]);
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
return;
len = std::sqrt(len);
v[0] = float(double(v[0]) / len);
v[1] = float(double(v[1]) / len);
v[2] = float(double(v[2]) / len);
}
/*!
\fn QVector3D &QVector3D::operator+=(const QVector3D &vector)
Adds the given \a vector to this vector and returns a reference to
this vector.
\sa operator-=()
*/
/*!
\fn QVector3D &QVector3D::operator-=(const QVector3D &vector)
Subtracts the given \a vector from this vector and returns a reference to
this vector.
\sa operator+=()
*/
/*!
\fn QVector3D &QVector3D::operator*=(float factor)
Multiplies this vector's coordinates by the given \a factor, and
returns a reference to this vector.
\sa operator/=()
*/
/*!
\fn QVector3D &QVector3D::operator*=(const QVector3D& vector)
\overload
Multiplies the components of this vector by the corresponding
components in \a vector.
Note: this is not the same as the crossProduct() of this
vector and \a vector.
\sa crossProduct()
*/
/*!
\fn QVector3D &QVector3D::operator/=(float divisor)
Divides this vector's coordinates by the given \a divisor, and
returns a reference to this vector.
\sa operator*=()
*/
/*!
\fn QVector3D &QVector3D::operator/=(const QVector3D &vector)
\since 5.5
Divides the components of this vector by the corresponding
components in \a vector.
\sa operator*=()
*/
/*!
Returns the dot product of \a v1 and \a v2.
*/
float QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2)
{
return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2];
}
/*!
Returns the cross-product of vectors \a v1 and \a v2, which corresponds
to the normal vector of a plane defined by \a v1 and \a v2.
\sa normal()
*/
QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2)
{
return QVector3D(v1.v[1] * v2.v[2] - v1.v[2] * v2.v[1],
v1.v[2] * v2.v[0] - v1.v[0] * v2.v[2],
v1.v[0] * v2.v[1] - v1.v[1] * v2.v[0]);
}
/*!
Returns the normal vector of a plane defined by vectors \a v1 and \a v2,
normalized to be a unit vector.
Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you
do not need the result to be normalized to a unit vector.
\sa crossProduct(), distanceToPlane()
*/
QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2)
{
return crossProduct(v1, v2).normalized();
}
/*!
\overload
Returns the normal vector of a plane defined by vectors
\a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector.
Use crossProduct() to compute the cross-product of \a v2 - \a v1 and
\a v3 - \a v1 if you do not need the result to be normalized to a
unit vector.
\sa crossProduct(), distanceToPlane()
*/
QVector3D QVector3D::normal
(const QVector3D& v1, const QVector3D& v2, const QVector3D& v3)
{
return crossProduct((v2 - v1), (v3 - v1)).normalized();
}
/*!
\since 5.5
Returns the window coordinates of this vector initially in object/model
coordinates using the model view matrix \a modelView, the projection matrix
\a projection and the viewport dimensions \a viewport.
When transforming from clip to normalized space, a division by the w
component on the vector components takes place. To prevent dividing by 0 if
w equals to 0, it is set to 1.
\note the returned y coordinates are in OpenGL orientation. OpenGL expects
the bottom to be 0 whereas for Qt top is 0.
\sa unproject()
*/
QVector3D QVector3D::project(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const
{
QVector4D tmp(*this, 1.0f);
tmp = projection * modelView * tmp;
if (qFuzzyIsNull(tmp.w()))
tmp.setW(1.0f);
tmp /= tmp.w();
tmp = tmp * 0.5f + QVector4D(0.5f, 0.5f, 0.5f, 0.5f);
tmp.setX(tmp.x() * viewport.width() + viewport.x());
tmp.setY(tmp.y() * viewport.height() + viewport.y());
return tmp.toVector3D();
}
/*!
\since 5.5
Returns the object/model coordinates of this vector initially in window
coordinates using the model view matrix \a modelView, the projection matrix
\a projection and the viewport dimensions \a viewport.
When transforming from clip to normalized space, a division by the w
component of the vector components takes place. To prevent dividing by 0 if
w equals to 0, it is set to 1.
\note y coordinates in \a viewport should use OpenGL orientation. OpenGL
expects the bottom to be 0 whereas for Qt top is 0.
\sa project()
*/
QVector3D QVector3D::unproject(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const
{
QMatrix4x4 inverse = QMatrix4x4( projection * modelView ).inverted();
QVector4D tmp(*this, 1.0f);
tmp.setX((tmp.x() - float(viewport.x())) / float(viewport.width()));
tmp.setY((tmp.y() - float(viewport.y())) / float(viewport.height()));
tmp = tmp * 2.0f - QVector4D(1.0f, 1.0f, 1.0f, 1.0f);
QVector4D obj = inverse * tmp;
if (qFuzzyIsNull(obj.w()))
obj.setW(1.0f);
obj /= obj.w();
return obj.toVector3D();
}
/*!
\since 5.1
Returns the distance from this vertex to a point defined by
the vertex \a point.
\sa distanceToPlane(), distanceToLine()
*/
float QVector3D::distanceToPoint(const QVector3D& point) const
{
return (*this - point).length();
}
/*!
Returns the distance from this vertex to a plane defined by
the vertex \a plane and a \a normal unit vector. The \a normal
parameter is assumed to have been normalized to a unit vector.
The return value will be negative if the vertex is below the plane,
or zero if it is on the plane.
\sa normal(), distanceToLine()
*/
float QVector3D::distanceToPlane
(const QVector3D& plane, const QVector3D& normal) const
{
return dotProduct(*this - plane, normal);
}
/*!
\overload
Returns the distance from this vertex to a plane defined by
the vertices \a plane1, \a plane2 and \a plane3.
The return value will be negative if the vertex is below the plane,
or zero if it is on the plane.
The two vectors that define the plane are \a plane2 - \a plane1
and \a plane3 - \a plane1.
\sa normal(), distanceToLine()
*/
float QVector3D::distanceToPlane
(const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const
{
QVector3D n = normal(plane2 - plane1, plane3 - plane1);
return dotProduct(*this - plane1, n);
}
/*!
Returns the distance that this vertex is from a line defined
by \a point and the unit vector \a direction.
If \a direction is a null vector, then it does not define a line.
In that case, the distance from \a point to this vertex is returned.
\sa distanceToPlane()
*/
float QVector3D::distanceToLine
(const QVector3D& point, const QVector3D& direction) const
{
if (direction.isNull())
return (*this - point).length();
QVector3D p = point + dotProduct(*this - point, direction) * direction;
return (*this - p).length();
}
/*!
\fn bool QVector3D::operator==(const QVector3D &v1, const QVector3D &v2)
Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn bool QVector3D::operator!=(const QVector3D &v1, const QVector3D &v2)
Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2)
\relates QVector3D
Returns a QVector3D object that is the sum of the given vectors, \a v1
and \a v2; each component is added separately.
\sa QVector3D::operator+=()
*/
/*!
\fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2)
\relates QVector3D
Returns a QVector3D object that is formed by subtracting \a v2 from \a v1;
each component is subtracted separately.
\sa QVector3D::operator-=()
*/
/*!
\fn const QVector3D operator*(float factor, const QVector3D &vector)
\relates QVector3D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector3D::operator*=()
*/
/*!
\fn const QVector3D operator*(const QVector3D &vector, float factor)
\relates QVector3D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector3D::operator*=()
*/
/*!
\fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2)
\relates QVector3D
Multiplies the components of \a v1 by the corresponding components in \a v2.
Note: this is not the same as the crossProduct() of \a v1 and \a v2.
\sa QVector3D::crossProduct()
*/
/*!
\fn const QVector3D operator-(const QVector3D &vector)
\relates QVector3D
\overload
Returns a QVector3D object that is formed by changing the sign of
all three components of the given \a vector.
Equivalent to \c {QVector3D(0,0,0) - vector}.
*/
/*!
\fn const QVector3D operator/(const QVector3D &vector, float divisor)
\relates QVector3D
Returns the QVector3D object formed by dividing all three components of
the given \a vector by the given \a divisor.
\sa QVector3D::operator/=()
*/
/*!
\fn const QVector3D operator/(const QVector3D &vector, const QVector3D &divisor)
\relates QVector3D
\since 5.5
Returns the QVector3D object formed by dividing components of the given
\a vector by a respective components of the given \a divisor.
\sa QVector3D::operator/=()
*/
/*!
\fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2)
\relates QVector3D
Returns \c true if \a v1 and \a v2 are equal, allowing for a small
fuzziness factor for floating-point comparisons; false otherwise.
*/
#ifndef QT_NO_VECTOR2D
/*!
Returns the 2D vector form of this 3D vector, dropping the z coordinate.
\sa toVector4D(), toPoint()
*/
QVector2D QVector3D::toVector2D() const
{
return QVector2D(v[0], v[1]);
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Returns the 4D form of this 3D vector, with the w coordinate set to zero.
\sa toVector2D(), toPoint()
*/
QVector4D QVector3D::toVector4D() const
{
return QVector4D(v[0], v[1], v[2], 0.0f);
}
#endif
/*!
\fn QPoint QVector3D::toPoint() const
Returns the QPoint form of this 3D vector. The z coordinate
is dropped.
\sa toPointF(), toVector2D()
*/
/*!
\fn QPointF QVector3D::toPointF() const
Returns the QPointF form of this 3D vector. The z coordinate
is dropped.
\sa toPoint(), toVector2D()
*/
/*!
Returns the 3D vector as a QVariant.
*/
QVector3D::operator QVariant() const
{
return QVariant::fromValue(*this);
}
/*!
Returns the length of the vector from the origin.
\sa lengthSquared(), normalized()
*/
float QVector3D::length() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]);
return float(std::sqrt(len));
}
/*!
Returns the squared length of the vector from the origin.
This is equivalent to the dot product of the vector with itself.
\sa length(), dotProduct()
*/
float QVector3D::lengthSquared() const
{
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QVector3D &vector)
{
QDebugStateSaver saver(dbg);
dbg.nospace() << "QVector3D("
<< vector.x() << ", " << vector.y() << ", " << vector.z() << ')';
return dbg;
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
\relates QVector3D
Writes the given \a vector to the given \a stream and returns a
reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &stream, const QVector3D &vector)
{
stream << vector.x() << vector.y() << vector.z();
return stream;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
\relates QVector3D
Reads a 3D vector from the given \a stream into the given \a vector
and returns a reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &stream, QVector3D &vector)
{
float x, y, z;
stream >> x;
stream >> y;
stream >> z;
vector.setX(x);
vector.setY(y);
vector.setZ(z);
return stream;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_VECTOR3D
QT_END_NAMESPACE

View File

@ -1,6 +1,7 @@
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2020 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com, author Giuseppe D'Angelo <giuseppe.dangelo@kdab.com>
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
@ -37,277 +38,8 @@
**
****************************************************************************/
#ifndef QVECTOR3D_H
#define QVECTOR3D_H
#include <QtGui/qtguiglobal.h>
#include <QtCore/qpoint.h>
#include <QtCore/qmetatype.h>
QT_BEGIN_NAMESPACE
class QMatrix4x4;
class QVector2D;
class QVector4D;
class QRect;
#ifndef QT_NO_VECTOR3D
class Q_GUI_EXPORT QVector3D
{
public:
constexpr QVector3D();
explicit QVector3D(Qt::Initialization) {}
constexpr QVector3D(float xpos, float ypos, float zpos) : v{xpos, ypos, zpos} {}
constexpr explicit QVector3D(const QPoint& point);
constexpr explicit QVector3D(const QPointF& point);
#ifndef QT_NO_VECTOR2D
QVector3D(const QVector2D& vector);
QVector3D(const QVector2D& vector, float zpos);
#endif
#ifndef QT_NO_VECTOR4D
explicit QVector3D(const QVector4D& vector);
#endif
bool isNull() const;
constexpr float x() const;
constexpr float y() const;
constexpr float z() const;
void setX(float x);
void setY(float y);
void setZ(float z);
float &operator[](int i);
float operator[](int i) const;
float length() const;
float lengthSquared() const;
QVector3D normalized() const;
void normalize();
QVector3D &operator+=(const QVector3D &vector);
QVector3D &operator-=(const QVector3D &vector);
QVector3D &operator*=(float factor);
QVector3D &operator*=(const QVector3D& vector);
QVector3D &operator/=(float divisor);
inline QVector3D &operator/=(const QVector3D &vector);
static float dotProduct(const QVector3D& v1, const QVector3D& v2); //In Qt 6 convert to inline and constexpr
static QVector3D crossProduct(const QVector3D& v1, const QVector3D& v2); //in Qt 6 convert to inline and constexpr
static QVector3D normal(const QVector3D& v1, const QVector3D& v2);
static QVector3D normal
(const QVector3D& v1, const QVector3D& v2, const QVector3D& v3);
QVector3D project(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const;
QVector3D unproject(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const;
float distanceToPoint(const QVector3D& point) const;
float distanceToPlane(const QVector3D& plane, const QVector3D& normal) const;
float distanceToPlane(const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const;
float distanceToLine(const QVector3D& point, const QVector3D& direction) const;
QT_WARNING_PUSH
QT_WARNING_DISABLE_FLOAT_COMPARE
constexpr friend inline bool operator==(const QVector3D &v1, const QVector3D &v2) noexcept
{
return v1.v[0] == v2.v[0] && v1.v[1] == v2.v[1] && v1.v[2] == v2.v[2];
}
constexpr friend inline bool operator!=(const QVector3D &v1, const QVector3D &v2) noexcept
{
return v1.v[0] != v2.v[0] || v1.v[1] != v2.v[1] || v1.v[2] != v2.v[2];
}
QT_WARNING_POP
constexpr friend inline const QVector3D operator+(const QVector3D &v1, const QVector3D &v2);
constexpr friend inline const QVector3D operator-(const QVector3D &v1, const QVector3D &v2);
constexpr friend inline const QVector3D operator*(float factor, const QVector3D &vector);
constexpr friend inline const QVector3D operator*(const QVector3D &vector, float factor);
constexpr friend const QVector3D operator*(const QVector3D &v1, const QVector3D& v2);
constexpr friend inline const QVector3D operator-(const QVector3D &vector);
constexpr friend inline const QVector3D operator/(const QVector3D &vector, float divisor);
constexpr friend inline const QVector3D operator/(const QVector3D &vector, const QVector3D &divisor);
constexpr friend inline bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2);
#ifndef QT_NO_VECTOR2D
QVector2D toVector2D() const;
#endif
#ifndef QT_NO_VECTOR4D
QVector4D toVector4D() const;
#endif
constexpr QPoint toPoint() const;
constexpr QPointF toPointF() const;
operator QVariant() const;
private:
float v[3];
friend class QVector2D;
friend class QVector4D;
#ifndef QT_NO_MATRIX4X4
friend QVector3D operator*(const QVector3D& vector, const QMatrix4x4& matrix);
friend QVector3D operator*(const QMatrix4x4& matrix, const QVector3D& vector);
#endif
};
Q_DECLARE_TYPEINFO(QVector3D, Q_PRIMITIVE_TYPE);
constexpr inline QVector3D::QVector3D() : v{0.0f, 0.0f, 0.0f} {}
constexpr inline QVector3D::QVector3D(const QPoint& point) : v{float(point.x()), float(point.y()), float(0.0f)} {}
constexpr inline QVector3D::QVector3D(const QPointF& point) : v{float(point.x()), float(point.y()), 0.0f} {}
inline bool QVector3D::isNull() const
{
return qIsNull(v[0]) && qIsNull(v[1]) && qIsNull(v[2]);
}
constexpr inline float QVector3D::x() const { return v[0]; }
constexpr inline float QVector3D::y() const { return v[1]; }
constexpr inline float QVector3D::z() const { return v[2]; }
inline void QVector3D::setX(float aX) { v[0] = aX; }
inline void QVector3D::setY(float aY) { v[1] = aY; }
inline void QVector3D::setZ(float aZ) { v[2] = aZ; }
inline float &QVector3D::operator[](int i)
{
Q_ASSERT(uint(i) < 3u);
return v[i];
}
inline float QVector3D::operator[](int i) const
{
Q_ASSERT(uint(i) < 3u);
return v[i];
}
inline QVector3D &QVector3D::operator+=(const QVector3D &vector)
{
v[0] += vector.v[0];
v[1] += vector.v[1];
v[2] += vector.v[2];
return *this;
}
inline QVector3D &QVector3D::operator-=(const QVector3D &vector)
{
v[0] -= vector.v[0];
v[1] -= vector.v[1];
v[2] -= vector.v[2];
return *this;
}
inline QVector3D &QVector3D::operator*=(float factor)
{
v[0] *= factor;
v[1] *= factor;
v[2] *= factor;
return *this;
}
inline QVector3D &QVector3D::operator*=(const QVector3D& vector)
{
v[0] *= vector.v[0];
v[1] *= vector.v[1];
v[2] *= vector.v[2];
return *this;
}
inline QVector3D &QVector3D::operator/=(float divisor)
{
v[0] /= divisor;
v[1] /= divisor;
v[2] /= divisor;
return *this;
}
inline QVector3D &QVector3D::operator/=(const QVector3D &vector)
{
v[0] /= vector.v[0];
v[1] /= vector.v[1];
v[2] /= vector.v[2];
return *this;
}
constexpr inline const QVector3D operator+(const QVector3D &v1, const QVector3D &v2)
{
return QVector3D(v1.v[0] + v2.v[0], v1.v[1] + v2.v[1], v1.v[2] + v2.v[2]);
}
constexpr inline const QVector3D operator-(const QVector3D &v1, const QVector3D &v2)
{
return QVector3D(v1.v[0] - v2.v[0], v1.v[1] - v2.v[1], v1.v[2] - v2.v[2]);
}
constexpr inline const QVector3D operator*(float factor, const QVector3D &vector)
{
return QVector3D(vector.v[0] * factor, vector.v[1] * factor, vector.v[2] * factor);
}
constexpr inline const QVector3D operator*(const QVector3D &vector, float factor)
{
return QVector3D(vector.v[0] * factor, vector.v[1] * factor, vector.v[2] * factor);
}
constexpr inline const QVector3D operator*(const QVector3D &v1, const QVector3D& v2)
{
return QVector3D(v1.v[0] * v2.v[0], v1.v[1] * v2.v[1], v1.v[2] * v2.v[2]);
}
constexpr inline const QVector3D operator-(const QVector3D &vector)
{
return QVector3D(-vector.v[0], -vector.v[1], -vector.v[2]);
}
constexpr inline const QVector3D operator/(const QVector3D &vector, float divisor)
{
return QVector3D(vector.v[0] / divisor, vector.v[1] / divisor, vector.v[2] / divisor);
}
constexpr inline const QVector3D operator/(const QVector3D &vector, const QVector3D &divisor)
{
return QVector3D(vector.v[0] / divisor.v[0], vector.v[1] / divisor.v[1], vector.v[2] / divisor.v[2]);
}
constexpr inline bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2)
{
return qFuzzyCompare(v1.v[0], v2.v[0]) &&
qFuzzyCompare(v1.v[1], v2.v[1]) &&
qFuzzyCompare(v1.v[2], v2.v[2]);
}
constexpr inline QPoint QVector3D::toPoint() const
{
return QPoint(qRound(v[0]), qRound(v[1]));
}
constexpr inline QPointF QVector3D::toPointF() const
{
return QPointF(qreal(v[0]), qreal(v[1]));
}
#ifndef QT_NO_DEBUG_STREAM
Q_GUI_EXPORT QDebug operator<<(QDebug dbg, const QVector3D &vector);
#endif
#ifndef QT_NO_DATASTREAM
Q_GUI_EXPORT QDataStream &operator<<(QDataStream &, const QVector3D &);
Q_GUI_EXPORT QDataStream &operator>>(QDataStream &, QVector3D &);
#endif
#endif
QT_END_NAMESPACE
#include <QtGui/qvectornd.h>
#if 0
#pragma qt_sync_stop_processing
#endif

View File

@ -1,639 +0,0 @@
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qvector4d.h"
#include "qvector3d.h"
#include "qvector2d.h"
#include <QtCore/qdatastream.h>
#include <QtCore/qdebug.h>
#include <QtCore/qvariant.h>
#include <QtCore/qmath.h>
QT_BEGIN_NAMESPACE
#ifndef QT_NO_VECTOR4D
static_assert(std::is_standard_layout<QVector4D>::value, "QVector4D is supposed to be standard layout");
static_assert(sizeof(QVector4D) == sizeof(float) * 4, "QVector4D is not supposed to have padding at the end");
/*!
\class QVector4D
\brief The QVector4D class represents a vector or vertex in 4D space.
\since 4.6
\ingroup painting-3D
\inmodule QtGui
The QVector4D class can also be used to represent vertices in 4D space.
We therefore do not need to provide a separate vertex class.
\sa QQuaternion, QVector2D, QVector3D
*/
/*!
\fn QVector4D::QVector4D()
Constructs a null vector, i.e. with coordinates (0, 0, 0, 0).
*/
/*!
\fn QVector4D::QVector4D(Qt::Initialization)
\since 5.5
\internal
Constructs a vector without initializing the contents.
*/
/*!
\fn QVector4D::QVector4D(float xpos, float ypos, float zpos, float wpos)
Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos, \a wpos).
*/
/*!
\fn QVector4D::QVector4D(const QPoint& point)
Constructs a vector with x and y coordinates from a 2D \a point, and
z and w coordinates of 0.
*/
/*!
\fn QVector4D::QVector4D(const QPointF& point)
Constructs a vector with x and y coordinates from a 2D \a point, and
z and w coordinates of 0.
*/
#ifndef QT_NO_VECTOR2D
/*!
Constructs a 4D vector from the specified 2D \a vector. The z
and w coordinates are set to zero.
\sa toVector2D()
*/
QVector4D::QVector4D(const QVector2D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = 0.0f;
v[3] = 0.0f;
}
/*!
Constructs a 4D vector from the specified 2D \a vector. The z
and w coordinates are set to \a zpos and \a wpos respectively.
\sa toVector2D()
*/
QVector4D::QVector4D(const QVector2D& vector, float zpos, float wpos)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = zpos;
v[3] = wpos;
}
#endif
#ifndef QT_NO_VECTOR3D
/*!
Constructs a 4D vector from the specified 3D \a vector. The w
coordinate is set to zero.
\sa toVector3D()
*/
QVector4D::QVector4D(const QVector3D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = vector.v[2];
v[3] = 0.0f;
}
/*!
Constructs a 4D vector from the specified 3D \a vector. The w
coordinate is set to \a wpos.
\sa toVector3D()
*/
QVector4D::QVector4D(const QVector3D& vector, float wpos)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = vector.v[2];
v[3] = wpos;
}
#endif
/*!
\fn bool QVector4D::isNull() const
Returns \c true if the x, y, z, and w coordinates are set to 0.0,
otherwise returns \c false.
*/
/*!
\fn float QVector4D::x() const
Returns the x coordinate of this point.
\sa setX(), y(), z(), w()
*/
/*!
\fn float QVector4D::y() const
Returns the y coordinate of this point.
\sa setY(), x(), z(), w()
*/
/*!
\fn float QVector4D::z() const
Returns the z coordinate of this point.
\sa setZ(), x(), y(), w()
*/
/*!
\fn float QVector4D::w() const
Returns the w coordinate of this point.
\sa setW(), x(), y(), z()
*/
/*!
\fn void QVector4D::setX(float x)
Sets the x coordinate of this point to the given \a x coordinate.
\sa x(), setY(), setZ(), setW()
*/
/*!
\fn void QVector4D::setY(float y)
Sets the y coordinate of this point to the given \a y coordinate.
\sa y(), setX(), setZ(), setW()
*/
/*!
\fn void QVector4D::setZ(float z)
Sets the z coordinate of this point to the given \a z coordinate.
\sa z(), setX(), setY(), setW()
*/
/*!
\fn void QVector4D::setW(float w)
Sets the w coordinate of this point to the given \a w coordinate.
\sa w(), setX(), setY(), setZ()
*/
/*! \fn float &QVector4D::operator[](int i)
\since 5.2
Returns the component of the vector at index position \a i
as a modifiable reference.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 4).
*/
/*! \fn float QVector4D::operator[](int i) const
\since 5.2
Returns the component of the vector at index position \a i.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 4).
*/
/*!
Returns the length of the vector from the origin.
\sa lengthSquared(), normalized()
*/
float QVector4D::length() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]) +
double(v[3]) * double(v[3]);
return float(std::sqrt(len));
}
/*!
Returns the squared length of the vector from the origin.
This is equivalent to the dot product of the vector with itself.
\sa length(), dotProduct()
*/
float QVector4D::lengthSquared() const
{
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
}
/*!
Returns the normalized unit vector form of this vector.
If this vector is null, then a null vector is returned. If the length
of the vector is very close to 1, then the vector will be returned as-is.
Otherwise the normalized form of the vector of length 1 will be returned.
\sa length(), normalize()
*/
QVector4D QVector4D::normalized() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]) +
double(v[3]) * double(v[3]);
if (qFuzzyIsNull(len - 1.0f)) {
return *this;
} else if (!qFuzzyIsNull(len)) {
double sqrtLen = std::sqrt(len);
return QVector4D(float(double(v[0]) / sqrtLen),
float(double(v[1]) / sqrtLen),
float(double(v[2]) / sqrtLen),
float(double(v[3]) / sqrtLen));
} else {
return QVector4D();
}
}
/*!
Normalizes the currect vector in place. Nothing happens if this
vector is a null vector or the length of the vector is very close to 1.
\sa length(), normalized()
*/
void QVector4D::normalize()
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]) +
double(v[3]) * double(v[3]);
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
return;
len = std::sqrt(len);
v[0] = float(double(v[0]) / len);
v[1] = float(double(v[1]) / len);
v[2] = float(double(v[2]) / len);
v[3] = float(double(v[3]) / len);
}
/*!
\fn QVector4D &QVector4D::operator+=(const QVector4D &vector)
Adds the given \a vector to this vector and returns a reference to
this vector.
\sa operator-=()
*/
/*!
\fn QVector4D &QVector4D::operator-=(const QVector4D &vector)
Subtracts the given \a vector from this vector and returns a reference to
this vector.
\sa operator+=()
*/
/*!
\fn QVector4D &QVector4D::operator*=(float factor)
Multiplies this vector's coordinates by the given \a factor, and
returns a reference to this vector.
\sa operator/=()
*/
/*!
\fn QVector4D &QVector4D::operator*=(const QVector4D &vector)
Multiplies the components of this vector by the corresponding
components in \a vector.
*/
/*!
\fn QVector4D &QVector4D::operator/=(float divisor)
Divides this vector's coordinates by the given \a divisor, and
returns a reference to this vector.
\sa operator*=()
*/
/*!
\fn QVector4D &QVector4D::operator/=(const QVector4D &vector)
\since 5.5
Divides the components of this vector by the corresponding
components in \a vector.
\sa operator*=()
*/
/*!
Returns the dot product of \a v1 and \a v2.
*/
float QVector4D::dotProduct(const QVector4D& v1, const QVector4D& v2)
{
return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2] + v1.v[3] * v2.v[3];
}
/*!
\fn bool QVector4D::operator==(const QVector4D &v1, const QVector4D &v2)
Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn bool QVector4D::operator!=(const QVector4D &v1, const QVector4D &v2)
Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn const QVector4D operator+(const QVector4D &v1, const QVector4D &v2)
\relates QVector4D
Returns a QVector4D object that is the sum of the given vectors, \a v1
and \a v2; each component is added separately.
\sa QVector4D::operator+=()
*/
/*!
\fn const QVector4D operator-(const QVector4D &v1, const QVector4D &v2)
\relates QVector4D
Returns a QVector4D object that is formed by subtracting \a v2 from \a v1;
each component is subtracted separately.
\sa QVector4D::operator-=()
*/
/*!
\fn const QVector4D operator*(float factor, const QVector4D &vector)
\relates QVector4D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector4D::operator*=()
*/
/*!
\fn const QVector4D operator*(const QVector4D &vector, float factor)
\relates QVector4D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector4D::operator*=()
*/
/*!
\fn const QVector4D operator*(const QVector4D &v1, const QVector4D& v2)
\relates QVector4D
Returns the vector consisting of the multiplication of the
components from \a v1 and \a v2.
\sa QVector4D::operator*=()
*/
/*!
\fn const QVector4D operator-(const QVector4D &vector)
\relates QVector4D
\overload
Returns a QVector4D object that is formed by changing the sign of
all three components of the given \a vector.
Equivalent to \c {QVector4D(0,0,0,0) - vector}.
*/
/*!
\fn const QVector4D operator/(const QVector4D &vector, float divisor)
\relates QVector4D
Returns the QVector4D object formed by dividing all four components of
the given \a vector by the given \a divisor.
\sa QVector4D::operator/=()
*/
/*!
\fn const QVector4D operator/(const QVector4D &vector, const QVector4D &divisor)
\relates QVector4D
\since 5.5
Returns the QVector4D object formed by dividing components of the given
\a vector by a respective components of the given \a divisor.
\sa QVector4D::operator/=()
*/
/*!
\fn bool qFuzzyCompare(const QVector4D& v1, const QVector4D& v2)
\relates QVector4D
Returns \c true if \a v1 and \a v2 are equal, allowing for a small
fuzziness factor for floating-point comparisons; false otherwise.
*/
#ifndef QT_NO_VECTOR2D
/*!
Returns the 2D vector form of this 4D vector, dropping the z and w coordinates.
\sa toVector2DAffine(), toVector3D(), toPoint()
*/
QVector2D QVector4D::toVector2D() const
{
return QVector2D(v[0], v[1]);
}
/*!
Returns the 2D vector form of this 4D vector, dividing the x and y
coordinates by the w coordinate and dropping the z coordinate.
Returns a null vector if w is zero.
\sa toVector2D(), toVector3DAffine(), toPoint()
*/
QVector2D QVector4D::toVector2DAffine() const
{
if (qIsNull(v[3]))
return QVector2D();
return QVector2D(v[0] / v[3], v[1] / v[3]);
}
#endif
#ifndef QT_NO_VECTOR3D
/*!
Returns the 3D vector form of this 4D vector, dropping the w coordinate.
\sa toVector3DAffine(), toVector2D(), toPoint()
*/
QVector3D QVector4D::toVector3D() const
{
return QVector3D(v[0], v[1], v[2]);
}
/*!
Returns the 3D vector form of this 4D vector, dividing the x, y, and
z coordinates by the w coordinate. Returns a null vector if w is zero.
\sa toVector3D(), toVector2DAffine(), toPoint()
*/
QVector3D QVector4D::toVector3DAffine() const
{
if (qIsNull(v[3]))
return QVector3D();
return QVector3D(v[0] / v[3], v[1] / v[3], v[2] / v[3]);
}
#endif
/*!
\fn QPoint QVector4D::toPoint() const
Returns the QPoint form of this 4D vector. The z and w coordinates
are dropped.
\sa toPointF(), toVector2D()
*/
/*!
\fn QPointF QVector4D::toPointF() const
Returns the QPointF form of this 4D vector. The z and w coordinates
are dropped.
\sa toPoint(), toVector2D()
*/
/*!
Returns the 4D vector as a QVariant.
*/
QVector4D::operator QVariant() const
{
return QVariant::fromValue(*this);
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QVector4D &vector)
{
QDebugStateSaver saver(dbg);
dbg.nospace() << "QVector4D("
<< vector.x() << ", " << vector.y() << ", "
<< vector.z() << ", " << vector.w() << ')';
return dbg;
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QVector4D &vector)
\relates QVector4D
Writes the given \a vector to the given \a stream and returns a
reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &stream, const QVector4D &vector)
{
stream << vector.x() << vector.y()
<< vector.z() << vector.w();
return stream;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QVector4D &vector)
\relates QVector4D
Reads a 4D vector from the given \a stream into the given \a vector
and returns a reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &stream, QVector4D &vector)
{
float x, y, z, w;
stream >> x;
stream >> y;
stream >> z;
stream >> w;
vector.setX(x);
vector.setY(y);
vector.setZ(z);
vector.setW(w);
return stream;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_VECTOR4D
QT_END_NAMESPACE

View File

@ -1,6 +1,7 @@
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2020 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com, author Giuseppe D'Angelo <giuseppe.dangelo@kdab.com>
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
@ -37,278 +38,8 @@
**
****************************************************************************/
#ifndef QVECTOR4D_H
#define QVECTOR4D_H
#include <QtGui/qtguiglobal.h>
#include <QtCore/qpoint.h>
#include <QtCore/qmetatype.h>
QT_BEGIN_NAMESPACE
class QMatrix4x4;
class QVector2D;
class QVector3D;
#ifndef QT_NO_VECTOR4D
class Q_GUI_EXPORT QVector4D
{
public:
constexpr QVector4D();
explicit QVector4D(Qt::Initialization) {}
constexpr QVector4D(float xpos, float ypos, float zpos, float wpos);
constexpr explicit QVector4D(const QPoint& point);
constexpr explicit QVector4D(const QPointF& point);
#ifndef QT_NO_VECTOR2D
QVector4D(const QVector2D& vector);
QVector4D(const QVector2D& vector, float zpos, float wpos);
#endif
#ifndef QT_NO_VECTOR3D
QVector4D(const QVector3D& vector);
QVector4D(const QVector3D& vector, float wpos);
#endif
bool isNull() const;
constexpr float x() const;
constexpr float y() const;
constexpr float z() const;
constexpr float w() const;
void setX(float x);
void setY(float y);
void setZ(float z);
void setW(float w);
float &operator[](int i);
float operator[](int i) const;
float length() const;
float lengthSquared() const; //In Qt 6 convert to inline and constexpr
[[nodiscard]] QVector4D normalized() const;
void normalize();
QVector4D &operator+=(const QVector4D &vector);
QVector4D &operator-=(const QVector4D &vector);
QVector4D &operator*=(float factor);
QVector4D &operator*=(const QVector4D &vector);
QVector4D &operator/=(float divisor);
inline QVector4D &operator/=(const QVector4D &vector);
static float dotProduct(const QVector4D& v1, const QVector4D& v2); //In Qt 6 convert to inline and constexpr
QT_WARNING_PUSH
QT_WARNING_DISABLE_FLOAT_COMPARE
constexpr friend inline bool operator==(const QVector4D &v1, const QVector4D &v2) noexcept
{
return v1.v[0] == v2.v[0] && v1.v[1] == v2.v[1] && v1.v[2] == v2.v[2] && v1.v[3] == v2.v[3];
}
constexpr friend inline bool operator!=(const QVector4D &v1, const QVector4D &v2) noexcept
{
return v1.v[0] != v2.v[0] || v1.v[1] != v2.v[1] || v1.v[2] != v2.v[2] || v1.v[3] != v2.v[3];
}
QT_WARNING_POP
constexpr friend inline const QVector4D operator+(const QVector4D &v1, const QVector4D &v2);
constexpr friend inline const QVector4D operator-(const QVector4D &v1, const QVector4D &v2);
constexpr friend inline const QVector4D operator*(float factor, const QVector4D &vector);
constexpr friend inline const QVector4D operator*(const QVector4D &vector, float factor);
constexpr friend inline const QVector4D operator*(const QVector4D &v1, const QVector4D& v2);
constexpr friend inline const QVector4D operator-(const QVector4D &vector);
constexpr friend inline const QVector4D operator/(const QVector4D &vector, float divisor);
constexpr friend inline const QVector4D operator/(const QVector4D &vector, const QVector4D &divisor);
constexpr friend inline bool qFuzzyCompare(const QVector4D& v1, const QVector4D& v2);
#ifndef QT_NO_VECTOR2D
QVector2D toVector2D() const;
QVector2D toVector2DAffine() const;
#endif
#ifndef QT_NO_VECTOR3D
QVector3D toVector3D() const;
QVector3D toVector3DAffine() const;
#endif
constexpr QPoint toPoint() const;
constexpr QPointF toPointF() const;
operator QVariant() const;
private:
float v[4];
friend class QVector2D;
friend class QVector3D;
#ifndef QT_NO_MATRIX4X4
friend QVector4D operator*(const QVector4D& vector, const QMatrix4x4& matrix);
friend QVector4D operator*(const QMatrix4x4& matrix, const QVector4D& vector);
#endif
};
Q_DECLARE_TYPEINFO(QVector4D, Q_PRIMITIVE_TYPE);
constexpr inline QVector4D::QVector4D() : v{0.0f, 0.0f, 0.0f, 0.0f} {}
constexpr inline QVector4D::QVector4D(float xpos, float ypos, float zpos, float wpos) : v{xpos, ypos, zpos, wpos} {}
constexpr inline QVector4D::QVector4D(const QPoint& point) : v{float(point.x()), float(point.y()), 0.0f, 0.0f} {}
constexpr inline QVector4D::QVector4D(const QPointF& point) : v{float(point.x()), float(point.y()), 0.0f, 0.0f} {}
inline bool QVector4D::isNull() const
{
return qIsNull(v[0]) && qIsNull(v[1]) && qIsNull(v[2]) && qIsNull(v[3]);
}
constexpr inline float QVector4D::x() const { return v[0]; }
constexpr inline float QVector4D::y() const { return v[1]; }
constexpr inline float QVector4D::z() const { return v[2]; }
constexpr inline float QVector4D::w() const { return v[3]; }
inline void QVector4D::setX(float aX) { v[0] = aX; }
inline void QVector4D::setY(float aY) { v[1] = aY; }
inline void QVector4D::setZ(float aZ) { v[2] = aZ; }
inline void QVector4D::setW(float aW) { v[3] = aW; }
inline float &QVector4D::operator[](int i)
{
Q_ASSERT(uint(i) < 4u);
return v[i];
}
inline float QVector4D::operator[](int i) const
{
Q_ASSERT(uint(i) < 4u);
return v[i];
}
inline QVector4D &QVector4D::operator+=(const QVector4D &vector)
{
v[0] += vector.v[0];
v[1] += vector.v[1];
v[2] += vector.v[2];
v[3] += vector.v[3];
return *this;
}
inline QVector4D &QVector4D::operator-=(const QVector4D &vector)
{
v[0] -= vector.v[0];
v[1] -= vector.v[1];
v[2] -= vector.v[2];
v[3] -= vector.v[3];
return *this;
}
inline QVector4D &QVector4D::operator*=(float factor)
{
v[0] *= factor;
v[1] *= factor;
v[2] *= factor;
v[3] *= factor;
return *this;
}
inline QVector4D &QVector4D::operator*=(const QVector4D &vector)
{
v[0] *= vector.v[0];
v[1] *= vector.v[1];
v[2] *= vector.v[2];
v[3] *= vector.v[3];
return *this;
}
inline QVector4D &QVector4D::operator/=(float divisor)
{
v[0] /= divisor;
v[1] /= divisor;
v[2] /= divisor;
v[3] /= divisor;
return *this;
}
inline QVector4D &QVector4D::operator/=(const QVector4D &vector)
{
v[0] /= vector.v[0];
v[1] /= vector.v[1];
v[2] /= vector.v[2];
v[3] /= vector.v[3];
return *this;
}
constexpr inline const QVector4D operator+(const QVector4D &v1, const QVector4D &v2)
{
return QVector4D(v1.v[0] + v2.v[0], v1.v[1] + v2.v[1], v1.v[2] + v2.v[2], v1.v[3] + v2.v[3]);
}
constexpr inline const QVector4D operator-(const QVector4D &v1, const QVector4D &v2)
{
return QVector4D(v1.v[0] - v2.v[0], v1.v[1] - v2.v[1], v1.v[2] - v2.v[2], v1.v[3] - v2.v[3]);
}
constexpr inline const QVector4D operator*(float factor, const QVector4D &vector)
{
return QVector4D(vector.v[0] * factor, vector.v[1] * factor, vector.v[2] * factor, vector.v[3] * factor);
}
constexpr inline const QVector4D operator*(const QVector4D &vector, float factor)
{
return QVector4D(vector.v[0] * factor, vector.v[1] * factor, vector.v[2] * factor, vector.v[3] * factor);
}
constexpr inline const QVector4D operator*(const QVector4D &v1, const QVector4D& v2)
{
return QVector4D(v1.v[0] * v2.v[0], v1.v[1] * v2.v[1], v1.v[2] * v2.v[2], v1.v[3] * v2.v[3]);
}
constexpr inline const QVector4D operator-(const QVector4D &vector)
{
return QVector4D(-vector.v[0], -vector.v[1], -vector.v[2], -vector.v[3]);
}
constexpr inline const QVector4D operator/(const QVector4D &vector, float divisor)
{
return QVector4D(vector.v[0] / divisor, vector.v[1] / divisor, vector.v[2] / divisor, vector.v[3] / divisor);
}
constexpr inline const QVector4D operator/(const QVector4D &vector, const QVector4D &divisor)
{
return QVector4D(vector.v[0] / divisor.v[0], vector.v[1] / divisor.v[1], vector.v[2] / divisor.v[2], vector.v[3] / divisor.v[3]);
}
constexpr inline bool qFuzzyCompare(const QVector4D& v1, const QVector4D& v2)
{
return qFuzzyCompare(v1.v[0], v2.v[0]) &&
qFuzzyCompare(v1.v[1], v2.v[1]) &&
qFuzzyCompare(v1.v[2], v2.v[2]) &&
qFuzzyCompare(v1.v[3], v2.v[3]);
}
constexpr inline QPoint QVector4D::toPoint() const
{
return QPoint(qRound(v[0]), qRound(v[1]));
}
constexpr inline QPointF QVector4D::toPointF() const
{
return QPointF(qreal(v[0]), qreal(v[1]));
}
#ifndef QT_NO_DEBUG_STREAM
Q_GUI_EXPORT QDebug operator<<(QDebug dbg, const QVector4D &vector);
#endif
#ifndef QT_NO_DATASTREAM
Q_GUI_EXPORT QDataStream &operator<<(QDataStream &, const QVector4D &);
Q_GUI_EXPORT QDataStream &operator>>(QDataStream &, QVector4D &);
#endif
#endif
QT_END_NAMESPACE
#include <QtGui/qvectornd.h>
#if 0
#pragma qt_sync_stop_processing
#endif

1635
src/gui/math3d/qvectornd.cpp Normal file

File diff suppressed because it is too large Load Diff

1105
src/gui/math3d/qvectornd.h Normal file

File diff suppressed because it is too large Load Diff