Doc: Improve QTransform documentation
* Explain QTransform's model of vector/matrix operations. * Improve snippets used to illuminate QTransform's behavior. Fixes: QTBUG-83869 Pick-to: 6.2 6.1 5.15 Change-Id: I84c3b1a221c139ee992f82c3ee4aebadeef8ee63 Reviewed-by: Edward Welbourne <edward.welbourne@qt.io> Reviewed-by: Topi Reiniö <topi.reinio@qt.io> Reviewed-by: Andy Nichols <andy.nichols@qt.io>
This commit is contained in:
parent
af5f91fdf9
commit
ae2ef9dbf0
@ -54,7 +54,7 @@ namespace src_gui_painting_qtransform {
|
||||
//! [0]
|
||||
x' = m11*x + m21*y + dx
|
||||
y' = m22*y + m12*x + dy
|
||||
if (is not affine) {
|
||||
if (!isAffine()) {
|
||||
w' = m13*x + m23*y + m33
|
||||
x' /= w'
|
||||
y' /= w'
|
||||
@ -65,7 +65,7 @@ if (is not affine) {
|
||||
//! [1]
|
||||
x' = m11*x + m21*y + dx
|
||||
y' = m22*y + m12*x + dy
|
||||
if (is not affine) {
|
||||
if (!isAffine()) {
|
||||
w' = m13*x + m23*y + m33
|
||||
x' /= w'
|
||||
y' /= w'
|
||||
@ -76,7 +76,7 @@ if (is not affine) {
|
||||
//! [2]
|
||||
x' = m11*x + m21*y + dx
|
||||
y' = m22*y + m12*x + dy
|
||||
if (is not affine) {
|
||||
if (!isAffine()) {
|
||||
w' = m13*x + m23*y + m33
|
||||
x' /= w'
|
||||
y' /= w'
|
||||
@ -87,7 +87,7 @@ if (is not affine) {
|
||||
//! [3]
|
||||
x' = m11*x + m21*y + dx
|
||||
y' = m22*y + m12*x + dy
|
||||
if (is not affine) {
|
||||
if (!isAffine()) {
|
||||
w' = m13*x + m23*y + m33
|
||||
x' /= w'
|
||||
y' /= w'
|
||||
|
@ -48,6 +48,7 @@
|
||||
**
|
||||
****************************************************************************/
|
||||
#include <QApplication>
|
||||
#include <QMath>
|
||||
#include <QPainter>
|
||||
#include <QVBoxLayout>
|
||||
#include <QWidget>
|
||||
@ -105,18 +106,15 @@ class BasicOperations : public QWidget
|
||||
//! [2]
|
||||
void BasicOperations::paintEvent(QPaintEvent *)
|
||||
{
|
||||
double pi = 3.14;
|
||||
|
||||
double a = pi/180 * 45.0;
|
||||
const double a = qDegreesToRadians(45.0);
|
||||
double sina = sin(a);
|
||||
double cosa = cos(a);
|
||||
|
||||
QTransform translationTransform(1, 0, 0, 1, 50.0, 50.0);
|
||||
QTransform rotationTransform(cosa, sina, -sina, cosa, 0, 0);
|
||||
QTransform scalingTransform(0.5, 0, 0, 1.0, 0, 0);
|
||||
QTransform scale(0.5, 0, 0, 1.0, 0, 0);
|
||||
QTransform rotate(cosa, sina, -sina, cosa, 0, 0);
|
||||
QTransform translate(1, 0, 0, 1, 50.0, 50.0);
|
||||
|
||||
QTransform transform;
|
||||
transform = scalingTransform * rotationTransform * translationTransform;
|
||||
QTransform transform = scale * rotate * translate;
|
||||
|
||||
QPainter painter(this);
|
||||
painter.setPen(QPen(Qt::blue, 1, Qt::DashLine));
|
||||
|
@ -213,6 +213,7 @@ static void nanWarning(const char *func)
|
||||
transformation is achieved by setting both the projection factors and
|
||||
the scaling factors.
|
||||
|
||||
\section2 Combining Transforms
|
||||
Here's the combined transformations example using basic matrix
|
||||
operations:
|
||||
|
||||
@ -223,6 +224,26 @@ static void nanWarning(const char *func)
|
||||
\snippet transform/main.cpp 2
|
||||
\endtable
|
||||
|
||||
The combined transform first scales each operand, then rotates it, and
|
||||
finally translates it, just as in the order in which the product of its
|
||||
factors is written. This means the point to which the transforms are
|
||||
applied is implicitly multiplied on the left with the transform
|
||||
to its right.
|
||||
|
||||
\section2 Relation to Matrix Notation
|
||||
The matrix notation in QTransform is the transpose of a commonly-taught
|
||||
convention which represents transforms and points as matrices and vectors.
|
||||
That convention multiplies its matrix on the left and column vector to the
|
||||
right. In other words, when several transforms are applied to a point, the
|
||||
right-most matrix acts directly on the vector first. Then the next matrix
|
||||
to the left acts on the result of the first operation - and so on. As a
|
||||
result, that convention multiplies the matrices that make up a composite
|
||||
transform in the reverse of the order in QTransform, as you can see in
|
||||
\l {Combining Transforms}. Transposing the matrices, and combining them to
|
||||
the right of a row vector that represents the point, lets the matrices of
|
||||
transforms appear, in their product, in the order in which we think of the
|
||||
transforms being applied to the point.
|
||||
|
||||
\sa QPainter, {Coordinate System}, {painting/affine}{Affine
|
||||
Transformations Example}, {Transformations Example}
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user