'QT_HOST_PATH' indicates that we use crosscompilation toolchain
to build project. In this case 'Qt6Config.cmake' loads
'Qt6HostInfoConfig.cmake' from host QT_HOST_PATH, that defines
correct paths to host tools.
Replace hardcoded paths for host tools by paths recorded
in Qt6HostInfoConfig.cmake.
Correct conditions for QT_HOST_PATH, evaluate it explicitly as
string, but not as boolean expression.
Fixes: QTBUG-86557
Pick-to: 6.0
Change-Id: Ib52bbd32478051d019a932dcb1f735e2d4aacfbf
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
When a CMake release introduces a new policy that affects most Qt
modules, it may be appropriate to make each module aware of that newer
CMake version and use the NEW policy without raising the minimum CMake
version requirement. To reduce the churn associated with making that
change across all Qt modules individually, this change allows it to be
updated in a central place (qtbase), but in a way that allows a Qt
module to override it in its own .cmake.conf file if required (e.g. to
address the issues identified by policy warnings at a later time). The
policies are modified at the start of the call to
qt_build_repo_begin().
For commands defined by the qtbase module, qtbase needs to be in
control of the policy settings at the point where those commands are
defined. The above mechanism should not affect the policy settings for
these commands, so the various *Config.cmake.in files must not specify
policy ranges in a way that a Qt module's .cmake.conf file could
influence.
Starting with CMake 3.12, policies can be specified as a version range
with the cmake_minimum_required() and cmake_policy() commands. All
policies introduced in CMake versions up to the upper limit of that
range will be set to NEW. The actual version of CMake being used only
has to be at least the lower limit of the specified version range.
This change uses cmake_minimum_required() rather than cmake_policy()
due to the latter not halting further processing upon failure.
See the following:
https://gitlab.kitware.com/cmake/cmake/-/issues/21557
Task-number: QTBUG-88700
Pick-to: 6.0
Change-Id: I0a1f2611dd629f847a18186394f500d7f52753bc
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
This reverts commit 9968a211f9.
The PKG_CONFIG_* environment variables should be added by the user
environment, preferably by the toolchain file.
Apparently, the change was added for Android before we turned off
pkg-config for Android. It is not needed anymore.
Change-Id: Ieeed09ae53a606c85d4937f463286b5b0f76bde9
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
At the moment our examples require a minimum of 3.14 due to changes
in upstream CMake's Autogen functionatlity to support Qt 6. Anything
lower would simply not work with Qt 6.
It's not clear yet if we actually want to require 3.14, or something
higher. At the very least there were many significant changes to
support iOS in CMake 3.15.
But for now just bump the version checked by Qt6Config.cmake to be
consistent with what's in our examples.
Task-number: QTBUG-88086
Change-Id: I119c2ad05a18c357fe7c659b30685af87475fc84
Reviewed-by: Kai Koehne <kai.koehne@qt.io>
By default, when using the Qt6 CMake package to look for components,
the find_package() calls for the components use NO_DEFAULT_PATH to
ensure that CMake doesn't accidentally find system (distro) packages.
Instead we limit the paths to one level up from where the Qt6 package
is.
Unfortunately that doesn't quite work for finding Qt packages that
might have been installed into a different prefix than where the main
Qt prefix is.
This happens when Qt addons are built by Conan, and installed into
a separate prefix.
To allow calls like find_package(Qt6 COMPONENTS ConanAddon) to work
in a scenario as described above, introduce a new variable called
QT_ADDITIONAL_PACKAGES_PREFIX_PATH which can be used to specify
additional paths where Qt CMake packages should be found.
This is similar to previously introduced QT_EXAMPLES_CMAKE_PREFIX_PATH
variable which was meant for a similar case, but only for examples.
Additionally, allow disabling the NO_DEFAULT_PATH option by setting
the QT_DISABLE_NO_DEFAULT_PATH_IN_QT_PACKAGES cache variable to TRUE.
This would allow regular usage of CMAKE_PREFIX_PATH to work, at the
risk that system Qt CMake packages might be found.
Augments 5cd4001bf2
and ffe0889413.
Fixes: QTBUG-86882
Change-Id: Ia8e060cbba6d2a10c3d63d81892f2c71e4236a9a
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
...and fix the build errors the original change caused.
This reverts commit 127fb8bb55.
Change-Id: I4006b32734a51c5d101dd73c957f81d2a0f84ba1
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
This reverts commit 58c1c6ee5c.
This lead to configuration errors on some machines, blocking
development.
Change-Id: I744f6cc95fbaa273519ab8fc8fb492b87f5729b8
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
The find_dependency() macro calls return() on failure, meaning any code
after it will be ignored, thus checking any XXX_FOUND variables after
find_dependency() is pointless.
Fix the places where we use find_dependency() and set the "failed" state
before the call and the "success" state afterwards.
Change-Id: Ia5239c704f02a9bec972210374ffed7808b14055
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
mkspecs/features/qt.prf adds a dependency on the system threading
library if the Qt Core thread feature is enabled. Because qt.prf is
loaded by any public or internal Qt project, it's essentially a public
dependency for any Qt consumer.
To mimic that in CMake, we check if the thread feature is enabled, and
and set the Threads::Threads library as a dependency of Qt6::Platform,
which is a public target used by all Qt modules and plugins and Qt
consumers.
We also need to create a Qt6Dependencies.cmake file so we
find_package(Threads) every time find_package(Qt6) is called.
For the .prl files to be usable, we have to filter out some
CMake implementation specific directory separator tokens
'CMAKE_DIRECTORY_ID_SEP' aka '::@', which are added because we call
target_link_libraries() with a target created in a different scope
(I think).
As a result of this change, we shouldn't have to hardcode
Threads::Threads in other projects, because it's now a global public
dependency.
Task-number: QTBUG-85801
Task-number: QTBUG-85877
Change-Id: Ib5d662c43b28e63f7da49d3bd77d0ad751220b31
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Cristian Adam <cristian.adam@qt.io>
We can't rely on the MACOS define as that's set by our private
QtPlatformSupport.cmake that's not shipped.
Change-Id: I86c578a282a0833408a06d923954510a3579bdaa
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
When cross-compiling with CMake, before this patch pkgconfig calls would
find libraries which are part of the host system and not the target
system.
The current approach used is based of the discussion present in
https://gitlab.kitware.com/cmake/cmake/-/merge_requests/4478, and should
be considered a temporary solution until the issue is properly addressed
in upstream CMake.
Change-Id: I535d4d48c2a5d34689082b80501b3b6ae30d7845
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
The default Info.plist shipped with CMake lacks an NSPrincipalClass
entry, which is crucial for making macOS apps run in full resolution
on retina screens.
We make sure the file is only picked up on macOS, not iOS and friends,
since those platforms require another principal class. If needed we can
extract the value out as a CMake variable and use the same file for all
Apple platforms. Doing so would assume all keys are single-platform
only, so if that's not the case we need platform-specific files.
We should probably extract the package type out as a variable too,
so that the file can be used for both apps, plugins, and frameworks,
but doing so requires setting up that variable somewhere based on
the target type, which CMake doesn't allow in an easy way.
The file itself is based on the file CMake ships, combined with
keys inherited from Qt's existing plist templates for qmake, and
adjusted to match what Xcode generates by default these days.
Change-Id: I3f5109e5fff63cdbd109a99d4008948d4bd2102b
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
We can't use qt_internal_export_modern_cmake_config_targets_file for
executables like tools, because it's not possible to use
INTERFACE_LINK_LIBRARIES with executables like you can with libraries.
We also can't create aliases to non-global imported targets.
Instead create new imported executable targets, fish out the imported
location, and assign it to the versionless targets.
Task-number: QTBUG-74137
Task-number: QTBUG-80477
Task-number: QTBUG-75984
Change-Id: I6a3c9c67ef4699c72a6c9a627c63158dfd6557f8
Reviewed-by: Leander Beernaert <leander.beernaert@qt.io>
Reviewed-by: Qt CMake Build Bot
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
During a static build we need to use the find modules
in 3rdparty/extra-cmake-modules/find-modules when generating a
ModuleDependencies file, so that the generated find_dependency()
calls succeed. This means that the files have to be shipped with
Qt6 package, making them pseudo public API.
There is also a need to use these files when building QtWayland.
Instead of setting / unsetting CMAKE_MODULE_PATH only in module
and plugin Dependencies cmake files, just set them once when finding
Qt6.
This will allow QtWayland and QtX11Extras to easily find the required
third party packages, without having to hardcode the paths in multiple
repos.
Change-Id: I750d0421a269e5632afa1bb62498c2501d73cdb1
Reviewed-by: Qt CMake Build Bot
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
To build examples as part of a non-installed Qt prefix build,
not-yet-installed Config files need to be found by find_package()
calls inside example projects.
Facilitate that by propagating the CMAKE_PREFIX_PATH and
QT_EXAMPLES_CMAKE_PREFIX_PATH paths in all relevant find_package()
calls where NO_DEFAULT_PATH is used.
Also adjust the inclusion of the QtFeature.cmake file to be relative
to the qt6 directory, rather than the current list directory.
This is needed to successfully find the file when parsing a Config
file from a non-installed build directory.
Change-Id: I36031279628f1f7741d8f4d7571484a6545227f7
Reviewed-by: Qt CMake Build Bot
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
This changes many different CMake places to mention Qt6 instead of
Qt5.
Note that some old qt5 cmake config files in corelib are probably not
needed anymore, but I still renamed and kept them for now.
Change-Id: Ie69e81540386a5af153f76c0242e18d48211bec4
Create CMake config files which can be used from the very same CMake
project. These CMake config files simply do not create any targets,
controlled via the QT_NO_CREATE_TARGETS.
This patch also allows to build qtbase.git:examples as a standalone
project, against an already-built Qt.
Ran this:
ag -s "QT " examples -l -0 | xargs -0 -n 1 .../util/cmake/pro2cmake.py --is-example
Task-number: QTBUG-74713
Change-Id: I44cce5a4048618b30f890c5b789592c227a8b47d
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
This var needs the cmake namespace as prefix.
Follow-up commit of c5e2838b64
Change-Id: I595306301313b1ff911134776480d28b3194bcf8
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
Reviewed-by: Qt CMake Build Bot
Currently to build qtsvg we have some copy-pasted code to set up
the paths for QtSetup and QtPostProcess to be found.
To make it cleaner, introduce two new macros called
qt_build_repo_begin and qt_build_repo_end(). The first one
should be called in a child repo like qtsvg, right after
a find_package(Qt5) call, and the second one at the end of the
repo top-level CMakeLists.txt file.
In order for the macros to work, extract some of the variables
which were set in Qt5Config into Qt5CoreConfig instead. This
makes sure that it works also for find_package(Qt5Core) calls.
Task-number: QTBUG-75580
Change-Id: I85267c6bd86f9291ec2e170fddab1006ab684b5c
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
Generate CMake config files which export Qt targets with a Qt:: prefix
(i.e. without a major version suffix in the namespace)
Change-Id: Ia07f98be6d0e24c196e3880b7469f1f0c6232c06
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
CMake will now generate config and target files for each module that
provides tools. As a result, namespaced global targets such as
Qt5::moc or Qt5::rcc can be made available.
Third party projects that require just these tools, and not the Qt
modules themselves, should specify CMAKE_PREFIX_PATH pointing to the
installed Qt location, and call find_package(Qt5CoreTools),
find_package(Qt5GuiTools), etc.
It is also possible to call
find_package(Qt5Tools REQUIRED Core Widgets) where the last option
is a list of modules whose tools should be imported.
Note that all the tools are in the Qt5::
namespace and not in the Qt5CoreTools:: or Qt5WidgetsTools::
namespace.
This commit also changes the behavior regarding when to build tools
while building Qt itself.
When cross compiling Qt (checked via CMAKE_CROSSCOMPILING) or when
-DQT_FORCE_FIND_TOOLS=TRUE is passed, tools added by add_qt_tool will
always be searched for and not built.
In this case the user has to specify the CMake variable QT_HOST_PATH
pointing to an installed host Qt location.
When not cross compiling, tools added by add_qt_tool are built from
source.
When building leaf modules (like qtsvg) that require some tool that was
built in qtbase (like moc), the module project should contain a
find_package(Qt5ToolsCore) call and specify an appropriate
CMAKE_PREFIX_PATH so that the tool package is found.
Note that because HOST_QT_TOOLS_DIRECTORY was replaced by QT_HOST_PATH,
the ensure syncqt code was changed to make it work properly with
both qtbase and qtsvg.
Here's a list of tools and their module associations:
qmake, moc, rcc, tracegen, qfloat16-tables, qlalr -> CoreTools
qvkgen -> GuiTools
uic -> WidgetTools
dbus related tools -> DBusTools
Task-number: QTBUG-74134
Change-Id: Ie67d1e2f8de46102b48eca008f0b50caf4fbe3ed
Reviewed-by: Tobias Hunger <tobias.hunger@qt.io>
For now create targets a la "Qt5::Core" to stay compatible with the
current Qt5 naming scheme. The name is controllable via a CMake option.
Change-Id: If43c058221949b1900c2093f39ccc9d0f38028f1
Reviewed-by: Simon Hausmann <simon.hausmann@qt.io>
Introduce a new cached variable INSTALL_CMAKE_NAMESPACE for defining the
prefix used for CMake config files (c.f. "${PREFIX}Core/${PREFIX}CoreConfig.cmake")
Also make sure to `find_dependency(...)` the required packages inside
the individual CMake config files. I.e. in Qt5WidgetsConfig.cmake,
search for Qt5Core, etc. pp..
Change-Id: Idc027925fe9d5323091c4853803ad5ce44b1afc6
Reviewed-by: Jean-Michaël Celerier <jean-michael.celerier@kdab.com>
Reviewed-by: Tobias Hunger <tobias.hunger@qt.io>