Commit Graph

108 Commits

Author SHA1 Message Date
Laszlo Agocs
277de5ca4b rhi: gl: metal: Enable depth-stencil correctly with multiview
After fixing the data type for D24S8, we can now implement attaching
depth and stencil (with the same texture).

For Metal we need to set a stencil flag correctly.

This allows using D24S8 in the manual test, which is likely the format
that is going to be commonly used when setting up multiview with
Qt Quick.

Fixes: QTBUG-114904
Change-Id: Ife425c6cb3e09bfe40092c841b78f7a93bb6a4cd
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-28 15:18:28 +02:00
Laszlo Agocs
4b233526f2 rhi: gl: Enable depth texture for multiview
Cannot just do like with other APIs and expose a view of multiple
array layers. The only option is to use the multiview-specific API
and specify layers 0..view_count-1 in the depth texture.

This allows having depth in a multiview render pass with OpenGL.
Note that this does not cover stencil. D24S8 does not work, so
we may need to explore having a dedicated, separate stencil
texture.

Task-number: QTBUG-114896
Change-Id: I06ede1d77fef199148d595a55d144c96dc3cbc9d
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-28 15:18:22 +02:00
Laszlo Agocs
3b7f99d04c rhi: Use a depth/stencil texture in the multiview manual test
...and expand the docs a bit.

Task-number: QTBUG-114896
Change-Id: I969c3aa2fa72a242e275e4b6dd996df20d1cd2ab
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-28 15:18:18 +02:00
Laszlo Agocs
821c404ef2 rhi: multiview: Exercise instancing in the test
Just to make sure instanced drawing does not regress. Relevant
particularly with Metal.

Fixes: QTBUG-114885
Change-Id: Ib39066d32985bf25ca02d5aa54d9cf654772be9a
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-27 17:39:23 +02:00
Laszlo Agocs
74bd7a7019 rhi: metal: Add support for multiview rendering
Some shortcomings and unexpected problems are not unlikely.
The basic feature, with 2 views going to a texture array's
0 and 1 elements, seems to be working with macOS, also with
MSAA. Instanced drawing has not been verified. (relevant
because layered rendering works via instancing in Metal
and the QRhi backend has to adjust the instance count
in every draw call)

Fixes: QTBUG-114774
Change-Id: I3655e0d2c658b88c4cd6b52a32f94134324e4ac9
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-27 00:48:30 +02:00
Laszlo Agocs
2574b4bb40 Add an option to exercise MSAA in the multiview test
Task-number: QTBUG-114790
Change-Id: Id9378abb13e56062bf1db6c7360595b7a2f1afc6
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-26 21:28:24 +02:00
Laszlo Agocs
582e9015cf rhi: multiview test: Fix leftover resourceUpdate call
This should not be there because 'u' is passed to beginPass().

Change-Id: I95ba8ed400baa06948b4d4c6bbf7ca2d07a5480f
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-06-26 18:45:25 +02:00
Laszlo Agocs
b7d9b7fa69 rhi: d3d12: Implement multiview support
This relies on qsb being able to invoke dxc instead of fxc when the
request HLSL (shader model) version is 6.1.  (6.1 is required for
SV_ViewID) This currently works only when conditioning offline with
qsb (or via CMake), because qsb can easily invoke dxc instead of
fxc. When shipping HLSL inside the .qsb package (so when -c is not
specified or running the external tool fails), this won't work since
the D3D12 backend still uses D3DCompile(), not IDxcCompiler. Support
for that will be investigated separately.

We also need to bump to ID3D12Device2 and ID3D12GraphicsCommandList1.
With Windows 10 version 1703 being quite old now, this should not be a
problem at run time.

There are however issues at build time, namely that MinGW and
MinGW/LLVM and similar seems to have ancient Windows SDK headers
according to the CI test runs. None of the MSVC configurations have
this in the CI, they have reasonable versions of d3d12.h and similar.

Therefore, one important aspect of this change is that the D3D12
backend of QRhi will only be available from now on when the SDK
headers are new enough (meaning ID3D12Device2 is declared, which is a
several years old type now). Otherwise, QRhi::create() will simply
fail when asking for D3D12 with a helpful warning message about the Qt
build being crippled.

Implementation-wise, there are surprises in store as well:

The way the PSO is created needs to be revamped to follow the
extensible approach that uses a pipeline state stream
description. Both the graphics and compute pipeline creation is
changed to use CreatePipelineState() and the associated
machinery. This is only really essential for graphics pipelines since
we know have to include data for view instancing (multiview). For
compute the result is the same as before.

Additionally, the view count must now be baked into the
QRhiGraphicsPipeline. This means that applications must call
setMultiViewCount() with the same value (typically 2) *both* on the
render target's color attachment and on the pipeline. Backends that do
not care about the pipeline's view count (GL, Vulkan) will of course
ignore it, but if it's not set correctly D3D12 will fail. The manual
test is updated accordingly.

Fixes: QTBUG-114772
Change-Id: I93db7313377e711c2faeb956815899b12132d23b
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-22 15:20:26 +02:00
Laszlo Agocs
f9d90c6fba rhi: Introduce multiview starting with OpenGL (ES)
Fixes: QTBUG-114770
Change-Id: Ibb1ced7f19d15a5116c60e95fd3e6b86ace63155
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-06-22 15:20:26 +02:00
Laszlo Agocs
1dd8b5ceec rhi: Make it a QPA-style private but semi-public API
qrhi.h, qshader.h, qshaderdescription.h (and qshaderbaker.h from
shadertools; done separately) become "RHI APIs", following the concept
of QPA APIs.

Mirror completely what is done for QPA headers, but using the "rhi"
prefix for the headers. This involves updating syncqt to handle the
new category of headers. (a note on the regex: matching everything
starting with "qrhi" is not acceptable due to incorrectly matching
existing and future headers, hence specifying the four header names
explicitly)

There is going to be one difference to QPA: the documentation for
everything RHI is going to be public and part of the regular docs, not
hidden with \internal.

In addition to the header renaming and adding the comments and
documentation notes and warnings, there is one significant change
here: there is no longer a need to do API-specific includes, such as
qrhid3d11[_p].h, qrhivulkan[_p].h, etc. These are simply merged into a
single header that is then included from qrhi.h. This means that users
within Qt, and any future applications can just do #include
<rhi/qrhi.h> (or rhi/qshader.h if the QRhi stuff is not relevant), no
other headers are needed.

There are no changes to functionality in this patch. Only the
documentation is expanded, quite a lot, to eliminate all qdoc warnings
and make the generated API docs complete. An example, with a quite
extensive doc page is added as well.

Task-number: QTBUG-113331
Change-Id: I91c749826348f14320cb335b1c83e9d1ea2b1d8b
Reviewed-by: Volker Hilsheimer <volker.hilsheimer@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
2023-05-21 15:42:58 +02:00
Laszlo Agocs
c8c92933eb rhi: update manual test shaders
...so we have core profile compatible GLSL code
in them. Just so one can run e.g. triquadcube with
-g -c (OpenGL with a core profile context).

Pick-to: 6.5
Change-Id: I585d3b4f0c7cd71ce7fae1fff4bf9a84cb7410da
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-04-20 11:34:41 +02:00
Laszlo Agocs
e539e9a7af rhi: Replace the temporary GPU time query API with a saner one
Modeled after Metal's cb.GPUStart/EndTime. Implemented with timestamp
queries for other APIs.

Implemented for Metal, D3D11, Vulkan for now. No more callback, just
a getter on the command buffer which returns the latest known value,
referring to some previous frame. This makes it a lot more usable
than the original solution that is not really used anywhere at
the moment.

Now works for offscreen "frames" as well, this was not implemented
before.

Opt in with a new QRhi::create() flag because we cannot tell in
advance if the getter will be called or not, and this way we can
skip recording the timestamps by default. The cost is probably
minimal, though. Qt Quick will set this automatically when running
with QSG_RHI_PROFILE=1.

Change-Id: I903779984a4e0bbf1d03806d04bf61571ce23d72
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-04-18 15:35:28 +02:00
Laszlo Agocs
1645ce9a4a rhi: Fix offscreen manual test's Vulkan init
Pick-to: 6.5
Change-Id: Iaf7da78fd0c1c1265b05bfd4c7ced5d94ae963fe
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-04-18 13:23:48 +02:00
Amir Masoud Abdol
8c4d81484c Replace PUBLIC_LIBRARIES with LIBRARIES in qt_internal_add_manual_test
Noticed the warnings when building the manual tests.

Pick-to: 6.5
Change-Id: I7f927f42f11d234ec3c980f36d8e12c0c49be712
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
2023-04-13 20:16:08 +02:00
Laszlo Agocs
9e0ebc36d6 rhi: Remove unused init flag
Change-Id: I289452f39fd161da0e0d7bf329e0922df6bbde8a
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
2023-04-12 11:23:37 +00:00
Laszlo Agocs
fbb26c2b88 rhi manual tests: allow having some gui controls
Having a simple Dear ImGui bridge is not just useful for the manual
tests, which do not have any other means to displays GUIs, but is
in itself an important exercise for the QRhi machinery.

Have a new manual test that exercises the built-in ImGui demo window.
Then use it in the displacement test for real, to replace the myriads
of key presses with on-screen sliders and checkboxes (with less code).

Change-Id: I296bafae2a5cce6fc7a447d97e68e5bcec15f451
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-03-23 16:39:19 +01:00
Ben Fletcher
d50f2fc1cc rhi: displacement / tessellation manual test Metal memory alignment
This test was created with a work around for a Metal tessellation
pipeline memory alignment issue.  The workaround was to specify shader
stage in / out variable uv as vec3 rather than vec2.  A recent patch to
correct Metal tessellation pipeline memory alignment has now allowed
this test to use vec2 for variable uv as originally intended.

Change-Id: I6772c0e824e1e4b7e749dafa218f3fd8eba0e541
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-03-10 12:21:56 -08:00
Laszlo Agocs
6626578036 rhi manual test: Bump Vulkan instance API version request
Do what Qt Quick would do.

Change-Id: I82743a39808601752f4ecbdb74b87f3a757a9310
Reviewed-by: Kristoffer Skau <kristoffer.skau@qt.io>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-03-09 18:27:00 +01:00
Edward Welbourne
e204de690b Add missing shbang line to shell script
If it's executable, it should specify how it's to be executed.

Change-Id: If5671712da3e1fbc42b15d22c1253129910091bc
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-02-24 13:37:06 +01:00
Laszlo Agocs
c6b7737436 rhi: d3d11: Drop the built-in TDR test
This does not really belong here as a built-in feature, esp.
considering that such testing is relevant for other backends
as well.

Change-Id: Ifbe3b8c6a430aacb9fcbdabf0e3761b14c48decc
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2023-02-20 18:06:32 +01:00
Friedemann Kleint
97bfacf1e2 tests: Remove remains of qmake conversion from CMakeLists.txt files
Pick-to: 6.5
Change-Id: I8d106554bb86ac1ec9bb7a4083de4c376bcbab1d
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
2023-02-17 21:56:49 +01:00
Laszlo Agocs
870a3011ed rhi: Add a displacement / tessellation manual test
There is something odd when running on Metal: note how the uv
is vec3 instead of vec2, in order to make the vertex-tesc-tese
data to look like this:

struct main0_out
{
    float3 out_uv;
    float3 out_normal;
    float4 gl_Position;
};

if out_uv was float2 we'd get some strange rendering results,
perhaps due to something related to alignment. But have no means
to investigate this further.

Change-Id: I79d4edb2ddde3971c599c4326d98e99a49aa7122
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2023-02-14 17:48:09 +01:00
Laszlo Agocs
84fb0de413 rhi: Add D3D12 support
- The optional nice-to-haves DebugMarkers, Timestamps, PipelineCache
  are not yet implemented (features reported as false, to be
  implemented later, although buffer/texture resource name setting
  already works as-is, regardless of DebugMarkers).

- Mipmap generation for 3D textures is missing. Won't matter much
  given that 3D textures are not used in Qt for anything atm. For
  generating mipmaps for 2D (or 2D array) textures, the MiniEngine
  compute shader and approach is used. 3D support for the mipmap
  generator may be added later. 1D textures / arrays are supported
  except for mipmap generation, and so the
  OneDimensionalTextureMipmaps feature is reported as false.

- Qt Quick and Qt Quick 3D are expected to be fully functional.
  (unforeseen issues are not impossible, of course)

- Uses minimum feature level 11.0 when requesting the device. It is
  expected to be functional on resource binding tier 1 hardware even,
  although this has not been verified in practice.

- 2 frames in flight with the usual resource buffering
  (QRhiBuffer::Dynamic is host visible (UPLOAD) and always mapped and
  slotted, other buffers and textures are device local (DEFAULT).
  Requests 3 swapchain buffers. Swapchains are mostly like with D3D11
  (e.g. FLIP_DISCARD and SCALING_NONE).

- The root signature generation is somewhat limited by the SPIR-V
  binding model and that we need to map every binding point using the
  nativeResourceBindingMap from the QShader. Thus the root signature
  is laid out so each stage has its own set of resources, with shader
  register clashes being prevented by setting the visibility to a
  given stage.

  Sampler handling is somewhat suboptimal but we are tied by the
  binding model and existing API design. It is in a fairly special
  situation due to the 2048 limit on a shader visible sampler heap, as
  opposed to 1000000 for SRVs and UAVS, so the approach we use for
  textures (just stage the CPU SRVs on the (per-frame slot) shader
  visible heap as they are encountered, effectively treating the heap
  as a ring buffer) would quickly lead to having to switch heaps many
  times with scenes with many draw calls and sampledTexture/sampler
  bindings in the srb.

  Whereas static samplers, which would be beautiful, are impossible to
  utilize safely since we do not have that concept (i.e. samplers
  specified upfront, tied to the graphics/compute pipeline) in the
  QRhi API, and an srb used at pipeline creation may change its
  associated resources, such as the QRhiSampler reference, by the time
  the shader resources are set for the draw call (or another,
  compatible srb may get used altogether), so specifying the samplers
  at root signature creation time is impossible.

  Rather, the current approach is to treat each sampler as a separate
  root parameter (per stage) having a descriptor table with a single
  entry. The shader visible sampler heap has exactly one instance of
  each unique sampler encountered during the lifetime of the QRhi.

- Shader-wise no different from D3D11, works with HLSL/DXBC 5.0
  (i.e. existing .qsb files with DXBC in them work as-is). But unlike
  D3D11, this one will try to pick 6.7, 6.6, ..., down to 5.0 from the
  QShader, in that order.

- Uses D3D12MA for suballocating. As a result it can report vmem
  allocation statistics like the Vulkan backend, and it does more
  since the DXGI memory usage (incl. implicit resources) is also
  reported.  This is optional technically, so we also have the option
  of going straight with the heavyweight CreateCommittedResource()
  instead.  That is what we do if the adapter chosen reports it's
  software-based or when QT_D3D_NO_SUBALLOC=1 is set.

- PreferSoftwareRenderer (picking the WARP device) and the env.var.
  QT_D3D_ADAPTER_INDEX work as with the D3D11 backend.

- It is not unexpected that with large scenes that generate lots of
  draw calls with multiple textures/samplers per call the performance
  may be slightly below D3D11 (probably mostly due to descriptor
  management). Similarly, the reported memory usage will be higher,
  which is partly natural due to creating heaps, descriptor pools,
  staging areas, etc. upfront. Will need to be evaluated later how
  these can be tuned.

Change-Id: I5a42580bb65f391ebceaf81adc6ae673cceacb74
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
2023-02-07 13:33:01 +01:00
Laszlo Agocs
9dc3ed288a Fix up rhiwidget manual test after the QWidgetPrivate change
Change-Id: Id3e8d8ce7e175be9b5e9e83e23910546d69a90fa
Reviewed-by: Kristoffer Skau <kristoffer.skau@qt.io>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2022-12-01 02:23:51 +01:00
Laszlo Agocs
427152c9b9 rhi: tex1d manual test: Also build GLSL 120 shaders
This way we can run the test on macOS with the version 2.1
OpenGL context.

Amends 85a1663eb1

Change-Id: I8ec122fefaab54b35613e226e3937f4b51a7ea5a
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2022-11-16 18:19:24 +01:00
Ben Fletcher
85a1663eb1 RHI: Add support for 1D textures
Support for 1D textures on Vulkan, OpenGL, Metal, and D3D.

Change-Id: Ie74ec103da9cfcbf83fa78588cf8cfc1bd6e104f
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2022-11-15 11:36:18 -08:00
Kristoffer Skau
c9ad5ad3b7 Add support for stereoscopic content in QRhi::OpenGLES2
Setting the flag QSurfaceFormat::StereoBuffers does not actually do
anything, because we do not utilize the extra buffers provided. We need
to expose setting the correct buffers using glDrawBuffers between draw
calls.

Change-Id: I6a5110405e621030ac3a2886fa83df0cfe928723
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2022-11-07 09:08:44 +01:00
Laszlo Agocs
2c639aea76 rhi: Add a manual test for simple stencil-based outline
Interesting on its own just because it exercises stencil testing,
unlike any of the other existing manual tests.

In addition it serves as a base example for how outlines could be
done, it is one possible approach at least. (render with stencil
write, then render again slightly scaled up with a solid color with
testing against the stencil buffer content)

Change-Id: I0c845a9004136f229cab037f6f0aab2f772bdd76
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
2022-10-25 15:19:41 +02:00
Laszlo Agocs
c681c7c23f rhi: metal: Add support for tessellation
Change-Id: Ie8d226a6a959aa5e78284ea72505fd26aec1e671
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2022-09-01 19:44:19 +02:00
Sona Kurazyan
b077c419ea Move QMacAutoReleasePool from qglobal.h to qcore_mac_p.h
And include qcore_mac_p.h where needed.

Task-number: QTBUG-99313
Change-Id: Idb1b005f1b5938e8cf329ae06ffaf0d249874db2
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
2022-09-01 13:26:30 +02:00
Lucie Gérard
32df595275 Change the license of all CMakeLists.txt and *.cmake files to BSD
Task-number: QTBUG-105718
Change-Id: I5d3ef70a31235868b9be6cb479b7621bf2a8ba39
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
2022-08-23 23:58:42 +02:00
Laszlo Agocs
5eacc974c7 rhi: d3d11: Enable tessellation and geometry with some caveats
The caveat being having to manually create HLSL versions of the hull,
domain, and geometry shaders in parallel with the Vulkan GLSL ones,
while keeping the interfaces intact (stage inputs and outputs, cbuffer
layouts, binding points/registers). This is not always trivial but
typically doable in not very complicated case after inspecting the
SPIRV-Cross-generated vertex/fragment code in the .qsb files. Once
written, the HLSL files can be injected into a .qsb file with qsb -r.
or the corresponding CMake syntax. Conceptually this is no different
from how samplerExternalOES support is implemented for Multimedia.
(there the problem is that the shaders cannot be compiled to SPIR-V
to begin with, here it is that we cannot translate from SPIR-V, but
in the end the workaround for both problems is effectively the same)

The manual tests demonstrate this, both the tessellation and geometry
apps work now with D3D out of the box.

On the bright side, the implementation here in the the D3D backend of
QRhi does not need to know about how the shaders got there in the
QShader. So none of the implementation is dependent on this manual
process. If some day qsb would start translating to these kind of
shaders as well, it would all still work as-is.

Change-Id: I32d9ab94e00174e4bd5b59ac814dfedef9f93ad1
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2022-08-15 10:51:17 +02:00
Lucie Gérard
fb1b20eab3 Add license headers to cmake files
CMakeLists.txt and .cmake files of significant size
(more than 2 lines according to our check in tst_license.pl)
now have the copyright and license header.

Existing copyright statements remain intact

Task-number: QTBUG-88621
Change-Id: I3b98cdc55ead806ec81ce09af9271f9b95af97fa
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
2022-08-03 17:14:55 +02:00
Laszlo Agocs
5b334729d3 rhi: gl: Avoid magic adjustments to the context/window format
...by removing the entire adjustedFormat() helper.

Qt Quick has never used this, which indicates it is not that
useful. Same goes for Qt Multimedia or Qt 3D. Ensuring depth and
stencil is requested is already solved by using
QSurfaceFormat::setDefaultFormat() or by adjusting the formats
everywhere as appropriate.

The helper function's usages are in the manual tests that use it as a
shortcut, and in the GL backend itself. Remove it and leave it up the
client to set the depth or stencil buffer size, typically in the
global default surface format. (which in fact many of the mentioned
manual tests already did, so some of calls to
window->setFormat(adjustedFormat()) were completely unnecessary)

By not having the built-in magic that tries to always force depth and
stencil, we avoid problems that arise then the helper cannot be easily
invoked (thinking of widgets and backingstores), and so one ends up
with unexpected stencil (or depth) in the context (where the GL
backend auto-adjusts), but not in the window (which is not under
QRhi's control).

It was in practice possible to trigger EGL_BAD_MATCH failures with the
new rhi-based widget composition on EGL-based systems. For example, if
an application with a QOpenGLWidget did not set both depth and stencil
(but only one, or none), it ended up failing due to the context -
surface EGLConfig mismatches. On other platforms this matters less due
to less strict config/pixelformat management.

Pick-to: 6.4
Change-Id: I28ae2de163de63ee91bee3ceae08b58e106e1380
Fixes: QTBUG-104951
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2022-08-01 12:40:45 +02:00
Alexandru Croitor
d528e96e73 CMake: Rename tests to be unique for top-level builds
Pick-to: 6.4
Task-number: QTBUG-105238
Change-Id: I6c0276d14b4d90046b0fcfd281e198f59318e804
Reviewed-by: Mårten Nordheim <marten.nordheim@qt.io>
2022-07-28 21:33:26 +02:00
Alexandru Croitor
4d22405e48 CMake: Don't use PUBLIC_LIBRARIES for tests and test helpers
Change-Id: I9b7404e1d3a78fe0726ec0f5ce1461f6c209e90d
Reviewed-by: Alexey Edelev <alexey.edelev@qt.io>
2022-07-28 14:46:53 +02:00
Laszlo Agocs
7de0f3e9cc rhi: Clean up some inconsistencies
Some of the offsets are already quint32 in the API (vertex input
attributes, dynamic offsets, offsets in draw calls), matching the
reality of the underlying 3D APIs, but many buffer-related functions
use int as of now, simply because that used to be the default choice,
and the same goes for sizes (such as buffer or range sizes). This is
not quite consistent and should be cleaned up if for nothing else then
just to make the classes consistent, but also because no 3D API use a
signed type for offsets, sizes, and strides. (except OpenGL for some)

When it comes to strides (for vertex inputs and raw image texture
uploads), those are already all quint32s. This is straightforward
because most of the 3D APIs use 32-bit uints for these regardless of
the architecture.

Sizes and offsets are often architecture-dependent (Vulkan, Metal),
but there is at least one API where they are always 32-bit even on
64-bit Windows (UINT == unsigned int, D3D11). In addition, we do not
really care about buffer or texture data larger than 4 GB, at least
not without realistic use cases and real world testing, which are
quite unlikely to materialize for now (esp. since we still have the
width/height of 2D textures limited to 16 or 32K in many cases even on
desktops, whereas 2GB+ buffers are not guaranteed in practice even
when an API seemingly allows it).

In any case, the important change here is the signed->unsigned
switch. A number of casts can now be removed here and there in the
backends, because the offsets and sizes are now unsigned as well,
matching the underlying API reality. The size can be potentially
increased later on with minimal effort, if that becomes necessary for
some reason.

Change-Id: I404dbc365ac397eaeeb3bd2da9ce7eb98916da5f
Reviewed-by: Inho Lee <inho.lee@qt.io>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2022-07-12 17:16:37 +02:00
Laszlo Agocs
c9d1d4c33c rhi: Fix a manual test
...that uses the old name after a recent change in the
name of a function.

Change-Id: Ife36fbb0c5d28b350cb1cfc48625528a205af8f9
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
2022-07-07 16:07:18 +02:00
Laszlo Agocs
f814cc6a79 rhi: metal: Switch back to presentDrawable
This convenience should be, according to the Apple docs, equivalent to
calling present from a scheduled handler. (which on its own makes it
unclear why we switched in the first place)

In practice it seems the two approaches are not identical. It looks
like that once a frame is submitted earlier than the next display link
callback, the throttling behavior we implement in beginFrame()
(waiting on the semaphore for the completion of the appropriate
command list etc.) starts exhibiting unexpected behavior, not
correctly throttling the thread to the refresh rate. Changing back to
presentDrawable does not exhibit this at all.

The suspicion is that presentDrawable is probably doing more than what
the docs suggest, and so is not fully equivalent to calling present
manually from a scheduled handler.

Therefore, switch to presentDrawable now, which restores the expected
cross-platform behavior, but make a note of the oddity, and also
prepare the hellominimalcrossgfxtriangle manual test to provide an
easy, self-contained application to allow experimenting in the future,
if needed.

This allows Qt Quick render thread animations to advance at the
expected speed (because the render thread is correctly throttled to
the refresh rate), even if the render thread decides to generate a new
frame right away, without waiting for the next display link update.

Without this patch, attempting to get updates not via requestUpdate(),
but by other means (timer etc.) leads to incorrect throttling, and so
the triangle in the test app is rotating faster than expected - but
only with Metal. Running with OpenGL on macOS or with any API on any
other platform the behavior will be correct. Even if scheduling
updates without display link is not efficient, and should be
discouraged, not doing so cannot break the core contract of vsync
throttling, i.e. the thread cannot run faster just because it renders
a frame not in response to an UpdateRequest.

Amends 98b60450f7 (effectively reverts
but keeps the code and the notes because we might want to clear this
up some day)

Pick-to: 6.4 6.3 6.2
Fixes: QTBUG-103415
Change-Id: Id3bd43e94785384142337564ce4b2644bf257100
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
2022-06-28 10:47:41 +02:00
Lucie Gérard
05fc3aef53 Use SPDX license identifiers
Replace the current license disclaimer in files by
a SPDX-License-Identifier.
Files that have to be modified by hand are modified.
License files are organized under LICENSES directory.

Task-number: QTBUG-67283
Change-Id: Id880c92784c40f3bbde861c0d93f58151c18b9f1
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
2022-05-16 16:37:38 +02:00
Laszlo Agocs
68a4c5da9a Compose render-to-texture widgets through QRhi
QPlatformTextureList holds a QRhiTexture instead of GLuint. A
QPlatformBackingStore now optionally can own a QRhi and a
QRhiSwapChain for the associated window.  Non-GL rendering must use
this QRhi everywhere, whereas GL (QOpenGLWidget) can choose to still
rely on resource sharing between contexts. A widget tells that it
wants QRhi and the desired configuration in a new virtual function in
QWidgetPrivate returning a QPlatformBackingStoreRhiConfig. This is
evaluated (among a top-level's all children) upon create() before
creating the repaint manager and the QWidgetWindow.

In QOpenGLWidget what do request is obvious: it will request an
OpenGL-based QRhi. QQuickWidget (or a potential future QRhiWidget)
will be more interesting: it needs to honor the standard Qt Quick
env.vars. and QQuickWindow APIs (or, in whatever way the user
configured the QRhiWidget), and so will set up the config struct
accordingly.

In addition, the rhiconfig and surface type is (re)evaluated when
(re)parenting a widget to a new tlw. If needed, this will now trigger
a destroy - create on the tlw. This should be be safe to do in
setParent. When multiple child widgets report an enabled rhiconfig,
the first one (the first child encountered) wins. So e.g. attempting
to have a QOpenGLWidget and a Vulkan-based QQuickWidget in the same
top-level window will fail one of the widgets (it likely won't
render).

RasterGLSurface is no longer used by widgets. Rather, the appropriate
surface type is chosen.

The rhi support in the backingstore is usable without widgets as well.
To make rhiFlush() functional, one needs to call setRhiConfig() after
creating the QBackingStore. (like QWidget does to top-level windows)

Most of the QT_NO_OPENGL ifdefs are eliminated all over the place.
Everything with QRhi is unconditional code at compile time, except the
actual initialization.

Having to plumb the widget tlw's shareContext (or, now, the QRhi)
through QWindowPrivate is no longer needed.  The old approach does not
scale: to implement composeAndFlush (now rhiFlush) we need more than
just a QRhi object, and this way we no longer pollute everything
starting from the widget level (QWidget's topextra -> QWidgetWindow ->
QWindowPrivate) just to send data around.

The BackingStoreOpenGLSupport interface and the QtGui - QtOpenGL split
is all gone. Instead, there is a QBackingStoreDefaultCompositor in
QtGui which is what the default implementations of composeAndFlush and
toTexture call. (overriding composeAndFlush and co. f.ex. in eglfs
should continue working mostly as-is, apart from adapting to the
texture list changes and getting the native OpenGL texture id out of
the QRhiTexture)

As QQuickWidget is way too complicated to just port as-is, an rhi
manual test (rhiwidget) is introduced as a first step, in ordewr to
exercise a simple, custom render-to-texture widget that does something
using a (not necessarily OpenGL-backed) QRhi and acts as fully
functional QWidget (modeled after QOpenGLWidget). This can also form
the foundation of a potential future QRhiWidget.

It is also possible to force the QRhi-based flushing always,
regardless of the presence of render-to-texture widgets. To exercise
this, set the env.var. QT_WIDGETS_RHI=1. This picks a
platform-specific default, and can be overridden with
QT_WIDGETS_RHI_BACKEND. (in sync with Qt Quick) This can eventually be
extended to query the platform plugin as well to check if the platform
plugin prefers to always do flushes with a 3D API.

QOpenGLWidget should work like before from the user's perspective, while
internally it has to do some things differently to play nice and prevent
regressions with the new rendering architecture. To exercise this
better, the qopenglwidget example gets a new tab-based view (that could
perhaps replace the example's main window later on?). The openglwidget
manual test is made compatible with Qt 6, and gets a counterpart in form
of the dockedopenglwidget manual test, which is a modified version of
the cube example that features dock widgets. This is relevant in
particular because render-to-texture widgets within a QDockWidget has
its own specific quirks, with logic taking this into account, hence
testing is essential.

For existing applications there are two important consequences with
this patch in place:

- Once the rhi-based composition is enabled, it stays active for the
lifetime of the top-level window.

- Dynamically creating and parenting the first render-to-texture
widget to an already created tlw will destroy and recreate the tlw
(and the underlying window). The visible effects of this depend on the
platform.  (e.g. the window may disappear and reappear on some,
whereas with other windowing systems it is not noticeable at all -
this is not really different from similar situtions with reparenting
or when moving windows between screens, so should be acceptable in
practice)

- On iOS raster windows are flushed with Metal (and rhi) from now on
(previously this was through OpenGL by making flush() call
composeAndFlush().

Change-Id: Id05bd0f7a26fa845f8b7ad8eedda3b0e78ab7a4e
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
2022-03-11 21:25:00 +01:00
Ben Fletcher
9ef702a37b rhi: Add the basic infrastructure for geometry shader support
.. but this will only be supported on Vulkan, OpenGL 3.2+, and Open GL
ES 3.2+ for the time being.

The situation is:

- Vulkan is working.  qsb accepts .geom files already, and QShader has
  existing geometry shader support.

- OpenGL 3.2 and OpenGL ES 3.2 are working.

- D3D11 is not working.  D3D11 supports geometry shaders, but SPIRV-
  Cross does not support translating geometry shaders to HLSL.

- Metal is not working.  Metal does not directly support geometry
  shaders.

Change-Id: Ieb7c44c58b8be5f2e2197bf5133cf6847e6c132d
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2022-01-31 08:53:37 -08:00
Ben Fletcher
1c3ae79ad3 rhi: Add support for polygon fill mode
Support for Polygon Mode (Triangle Fill Mode in Metal, Fill Mode in D3D)
in the RHI graphics pipeline.

Options are Fill and Line

Status:
    OpenGL - ok
    Vulkan - ok
    Metal - ok
    D3D11 - ok
    OpenGL ES - does not support glPolygonMode.

Change-Id: I20b7ef416624700c3dc8d1cbe6474f4ca3889db8
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2022-01-31 08:52:05 -08:00
Laszlo Agocs
a325016aa9 rhi: Add the basic infrastructure for tessellation support
...but this will only be supported with Vulkan and OpenGL 4.0+ and
OpenGL ES 3.2+ for the time being.

Taking the Vulkan model as our standard, the situation is the
following:

- Vulkan is ok, qsb secretly accepts .tesc and .tese files as input
  already (plus QShader already has the necessary plumbing when it
  comes to enums and such) To switch the tessellation domain origin to
  bottom left we require Vulkan 1.1 (don't bother with
  VK_KHR_maintenance2 on top of 1.0 at this point since 1.1 or 1.2
  implementations should be common by now). The change is essential to
  allow the same evaluation shader to work with both OpenGL and
  Vulkan: this way we can use the same shader source, declaring the
  tessellation winding order as CCW, with both APIs.

- OpenGL 4.0 and OpenGL ES 3.2 (or ES 3.1 with the Android extension
  pack, but we won't bother with checking that for now) can be made
  working without much complications, though we need to be careful
  when it comes to gathering and setting uniforms so that we do not
  leave the new tessellation stages out. We will stick to the Vulkan
  model in the sense that the inner and outer tessellation levels must
  be specified from the control shader, and cannot be specified from
  the host side, even though OpenGL would allow this. (basically the
  same story as with point size in vertex shaders)

- D3D11 would be no problem API-wise, and we could likely implement
  the support for hull and domain shader stages in the backend, but
  SPIRV-Cross does not support translating tessellation shaders to
  HLSL.  Attempting to feed in a .tesc or .tese file to qsb with
  --hlsl specified will always fail. One issue here is how hull
  shaders are structured, with the patchconstantfunc attribute
  specifying a separate function computing the patch constant
  data. With GLSL there is a single entry point in the tessellation
  control shader, which then performs both the calculations on the
  control points as well as the constant data (such as, the inner and
  outer tessellation factors).  One option here is to inject
  handwritten HLSL shaders in the .qsb files using qsb's replace (-r)
  mode, but this is not exactly a viable universal solution.

- Metal uses a different tessellation pipeline involving compute
  shaders. This needs more investigation but probably not something we
  can prioritize in practice. SPIRV-Cross does support this,
  generating a compute shader for control and a (post-)vertex shader
  for evaluation, presumably in order to enable MoltenVK to function
  when it comes to tessellation, but it is not clear yet how usable
  this is for us.

Change-Id: Ic953c63850bda5bc912c7ac354425041b43157ef
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2022-01-13 13:44:29 +01:00
Laszlo Agocs
bfc713530a rhi: Add queries for vertex input/output limits
Mainly because we do have legacy code in the Qt 5 graphical effects that
tries to dynamically determine the max number of varyings. Make it
easier to port such code.

Change-Id: I846cab2c2fe7b4cd473b5ced0146ca36f1c8169b
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
2022-01-12 20:37:20 +01:00
Laszlo Agocs
23f8d6c57f rhi: Drop the profiler for now
The system we inherited from the original Qt 5.14 introduction of QRhi
is a text stream based solution where resource creation and frame
timings are sent in a comma-separated format to a QIODevice.

This, while useful to get insights about the number of resources at a
given time, is not actively helpful. The frameworks built on top (Qt
Quick, Qt Quick 3D) are expected to provide solutions for logging
timings in a different way (e.g. via the QML Profiler). Similarly,
tracking active resources and generating statistics from that is
better handled on a higher level.

The unique bits, such as the Vulkan memory allocator statistics and
the GPU frame timestamps, are converted into APIs in QRhi. This way a
user of QRhi can query it at any time and do whatever it sees fit with
the data.

When it comes to the GPU timestamps, that has a somewhat limited value
due to the heavy asynchronousness, hence the callback based
API. Nonetheless, this is still useful since it is the only means of
reporting some frame timing data (an approx. elapsed milliseconds for
a frame) from the GPU side.

Change-Id: I67cd58b81aaa7e343c11731f9aa5b4804c2a1823
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
2022-01-04 13:00:40 +01:00
Laszlo Agocs
a8be40bd64 rhi: Expose the maximum uniform buffer range limit
Pick-to: 6.2
Task-number: QTBUG-97715
Change-Id: I7f0a52c410b9b77f735fb3b7fd33141674bb0cda
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2021-11-10 13:31:05 +01:00
Laszlo Agocs
e7a1fbfc47 rhi: Add texture array support
Arrays of textures have always been supported, but we will encounter
cases when we need to work with texture array objects as well.

Note that currently it is not possible to expose only a slice of the
array to the shader, because there is no dedicated API in the SRB,
and thus the same SRV/UAV (or equivalent) is used always, capturing
all elements in the array. Therefore in the shader the last component
of P in texture() is in range 0..array_size-1.

Change-Id: I5a032ed016aeefbbcd743d5bfb9fbc49ba00a1fa
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2021-10-29 15:57:13 +02:00
Edward Welbourne
298e41b830 Remove fatuously true or false QT_VERSION checks
QT_VERSION is now at least QT_VERSION_CHECK(6, 3, 0), so remove all
checks against Qt 6.0.0 or earlier. They are superfluous. Tidied up in
some places in the process, particularly #include order.

Change-Id: I2636b2fd13be5b976f5b043ef2f8cddc038a72a4
Reviewed-by: Thiago Macieira <thiago.macieira@intel.com>
2021-09-23 16:57:03 +02:00
Laszlo Agocs
51c22a1f51 rhi: Add support for 3D textures
Supported on OpenGL (and ES) 3.0+ and everywhere else.

Can also be a render target, targeting a single slice at a time.

Can be mipmapped, cannot be multisample.

Reading back a given slice from a 3D texture is left as a future
exercise, for now it is documented to be not supported.

Upload is going to be limited to one slice in one upload entry,
just like we specify one face or one miplevel for cubemap and
mipmapped textures.

This also involves some welcome hardening of how texture subresources
are described internally: as we no longer can count on a layer index
between 0..5 (as is the case with cubemaps), simply arrays with
MAX_LAYER==6 are no longer sufficient. Switch to sufficiently dynamic
data structures where applicable.

On Vulkan rendering to a slice needs Vulkan 1.1 (and 1.1 enabled on the
VkInstance).

Task-number: QTBUG-89703
Change-Id: Ide6c20124ec9201d94ffc339dd479cd1ece777b0
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
2021-05-31 17:16:57 +02:00