Add the boilerplate standalone test prelude to each test, so that they
can be opened with an IDE without the qt-cmake-standalone-test script,
but directly with qt-cmake or cmake.
Boilerplate was added using the following scripts:
https://git.qt.io/alcroito/cmake_refactor
Manual adjustments were made where the code was inserted in the wrong
location.
Task-number: QTBUG-93020
Change-Id: I2ef59684cf297a0222a136ce7b5630037294d000
Reviewed-by: Amir Masoud Abdol <amir.abdol@qt.io>
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
Mainly for completeness, but it has practical uses: someone retrieving
a QRhi instance from somewhere should be able to tell the
QVulkanInstance, and so the VkInstance, used by that QRhi without
resorting to investigating other objects (e.g. retrieving the instance
from the QWindow). This provides symmetry to other 3D APIs and QRhi
backends where just a single QRhi instance is sufficient to get the
MTLDevice, ID3D11Device/Context, etc. i.e. all that is needed to
work with the 3D API directly.
Change-Id: I5a8b9871a543ea648c76b868bf6ff7be5f2098f2
Reviewed-by: Jonas Karlsson <jonas.karlsson@qt.io>
Reviewed-by: Hatem ElKharashy <hatem.elkharashy@qt.io>
qrhi.h, qshader.h, qshaderdescription.h (and qshaderbaker.h from
shadertools; done separately) become "RHI APIs", following the concept
of QPA APIs.
Mirror completely what is done for QPA headers, but using the "rhi"
prefix for the headers. This involves updating syncqt to handle the
new category of headers. (a note on the regex: matching everything
starting with "qrhi" is not acceptable due to incorrectly matching
existing and future headers, hence specifying the four header names
explicitly)
There is going to be one difference to QPA: the documentation for
everything RHI is going to be public and part of the regular docs, not
hidden with \internal.
In addition to the header renaming and adding the comments and
documentation notes and warnings, there is one significant change
here: there is no longer a need to do API-specific includes, such as
qrhid3d11[_p].h, qrhivulkan[_p].h, etc. These are simply merged into a
single header that is then included from qrhi.h. This means that users
within Qt, and any future applications can just do #include
<rhi/qrhi.h> (or rhi/qshader.h if the QRhi stuff is not relevant), no
other headers are needed.
There are no changes to functionality in this patch. Only the
documentation is expanded, quite a lot, to eliminate all qdoc warnings
and make the generated API docs complete. An example, with a quite
extensive doc page is added as well.
Task-number: QTBUG-113331
Change-Id: I91c749826348f14320cb335b1c83e9d1ea2b1d8b
Reviewed-by: Volker Hilsheimer <volker.hilsheimer@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Exercise the validity of update batches, i.e. that one can
safely commit it in later frames as well, as long as all
related buffers and textures stay valid.
Change-Id: Ia943e4b37141fe17253eeae32010e0f8d92c1583
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
...even when the QRhi is already gone. This should not happen in
well-written applications and libraries, but we handle this
gracefully in the regular dtor and destroy() for resources that
register themselves to their creator QRhi, so by registering
everything we can offer this to all QRhiResource subclasses.
We still want to differentiate between native resource owning
QRhiResources and others (that do not create native graphics
objects), so do this via a flag passed to registerResource().
This way the behavior with QT_RHI_LEAK_CHECK=1 does not change.
Pick-to: 6.5
Fixes: QTBUG-112914
Change-Id: I9bafc81ef7a4ae76f356fc5f6248628d1f8791e0
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
This is expected to be temporary and to be investigated afterwards.
Task-number: QTBUG-108844
Pick-to: 6.5
Change-Id: I0a571dad2b99ceaa0fd48e5cdd81057e49e55ddf
Reviewed-by: Ville Voutilainen <ville.voutilainen@qt.io>
Add support for shader input output interface blocks in Metal
tessellation pipelines. This feature is builtin to other rhi supported
tessellation backends (OpenGL/Vulkan).
Metal tessellation is implemented as compute pipelines for vert and
tesc, and a render pipeline for tese and frag. The shader conversion
from GLSL is handled by SPIRV-Cross, which has a particular way of doing
things. Rhi must setup the vertex inputs for the tese - frag render
pipeline to read from buffers written by the tesc compute pipeline,
following SPIRV-Cross conventions. This includes ensuring correct
memory alignment per MSL Specification.
In order to enable input output interface blocks, reflection of struct
members of QShaderDescription::InOutVariable is required. Reflection of
QShaderDescription::BuiltinVariable array dimensions is also required to
support variable size tese builtin input gl_ClipDistance.
An acompanying patch to QtShaderTools is required.
Change-Id: Id94e86caef211485afc187bb79fe3d0619d02cf0
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Not relevant for the CI as that does not run with any real Vulkan
implementation. (and Lavapipe works if that's used)
As the investigation in the Jira issue shows, there is no proper
conclusion yet on why rendering to a slice of a 3D texture breaks
the content of other slices that have image data written to them
before that render pass targeting the slice. It would seem that
transitioning to COLOR_ATTACHMENT_OPTIMAL has some unexpected
consequences for slices that are not targeted by the render pass
with Mesa on Intel.
(NB rendering to a given 3D texture slice works via
VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT; and how often this is needed
in practice is unclear, typical volume rendering cases will anyway
likely just upload data to the slices of a 3D texture, not rendering
to them)
The problem is still clearly visible in the tex3d manual test (when run
on affected Linux machines), this we keep unchanged for the time being
so that the issue can be examined further. However, the autotest is
changed to prevent the issue from occurring (render to slice first,
then upload to other slices) since it causes confusion when the test
is run locally on various developer machines.
Pick-to: 6.5
Task-number: QTBUG-111772
Change-Id: I4dc4c2413f8c518f377a33065992ad786a5ff44f
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Separate 1D mipmap generation support from rendering into an 1D texture.
Those are two independent features, so have a separate feature flag for
both instead of using just one.
This will then be symmetric with the 3D texture features, where now we
have a new flag to report support for generating mipmap for 3D textures.
(whereas 3D texture as a render target is already covered by
RenderTo3DTextureSlice)
Change-Id: Ie5e1f056a7d1c341d90cd7fc522877a3f2da3290
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Runtime support is indicated via QRhi::Feature::HalfAttributes.
OpenGL support is available in OpenGL 3.0+, OpenGL ES 3.0+, and in
implementations that support the extension GL_ARB_half_float_vertex.
Other RHI backends (Vulkan, Metal, D3D11, and D3D12) all support this
feature.
Note that D3D does not support the half3 type. D3D backends pass half3
as half4.
tst_qrhi auto unit test included.
Change-Id: Ide05d7f62f6102ad5cae1b3681fdda98d52bca31
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
When SPIRV-Cross encounters a GLSL storage buffer runtime sized array,
it generates MSL code which expects a "buffer size buffer" containing a
list of storage buffer sizes to be bound. This patch adds RHI backend
support for Metal "buffer size buffers" on compute and graphics
(including tessellation) pipelines. Includes unit tests.
An accompanying patch to qtshadertools is required.
Change-Id: I9392bfb21803e1a868d7de420fedc097a8452429
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
- The optional nice-to-haves DebugMarkers, Timestamps, PipelineCache
are not yet implemented (features reported as false, to be
implemented later, although buffer/texture resource name setting
already works as-is, regardless of DebugMarkers).
- Mipmap generation for 3D textures is missing. Won't matter much
given that 3D textures are not used in Qt for anything atm. For
generating mipmaps for 2D (or 2D array) textures, the MiniEngine
compute shader and approach is used. 3D support for the mipmap
generator may be added later. 1D textures / arrays are supported
except for mipmap generation, and so the
OneDimensionalTextureMipmaps feature is reported as false.
- Qt Quick and Qt Quick 3D are expected to be fully functional.
(unforeseen issues are not impossible, of course)
- Uses minimum feature level 11.0 when requesting the device. It is
expected to be functional on resource binding tier 1 hardware even,
although this has not been verified in practice.
- 2 frames in flight with the usual resource buffering
(QRhiBuffer::Dynamic is host visible (UPLOAD) and always mapped and
slotted, other buffers and textures are device local (DEFAULT).
Requests 3 swapchain buffers. Swapchains are mostly like with D3D11
(e.g. FLIP_DISCARD and SCALING_NONE).
- The root signature generation is somewhat limited by the SPIR-V
binding model and that we need to map every binding point using the
nativeResourceBindingMap from the QShader. Thus the root signature
is laid out so each stage has its own set of resources, with shader
register clashes being prevented by setting the visibility to a
given stage.
Sampler handling is somewhat suboptimal but we are tied by the
binding model and existing API design. It is in a fairly special
situation due to the 2048 limit on a shader visible sampler heap, as
opposed to 1000000 for SRVs and UAVS, so the approach we use for
textures (just stage the CPU SRVs on the (per-frame slot) shader
visible heap as they are encountered, effectively treating the heap
as a ring buffer) would quickly lead to having to switch heaps many
times with scenes with many draw calls and sampledTexture/sampler
bindings in the srb.
Whereas static samplers, which would be beautiful, are impossible to
utilize safely since we do not have that concept (i.e. samplers
specified upfront, tied to the graphics/compute pipeline) in the
QRhi API, and an srb used at pipeline creation may change its
associated resources, such as the QRhiSampler reference, by the time
the shader resources are set for the draw call (or another,
compatible srb may get used altogether), so specifying the samplers
at root signature creation time is impossible.
Rather, the current approach is to treat each sampler as a separate
root parameter (per stage) having a descriptor table with a single
entry. The shader visible sampler heap has exactly one instance of
each unique sampler encountered during the lifetime of the QRhi.
- Shader-wise no different from D3D11, works with HLSL/DXBC 5.0
(i.e. existing .qsb files with DXBC in them work as-is). But unlike
D3D11, this one will try to pick 6.7, 6.6, ..., down to 5.0 from the
QShader, in that order.
- Uses D3D12MA for suballocating. As a result it can report vmem
allocation statistics like the Vulkan backend, and it does more
since the DXGI memory usage (incl. implicit resources) is also
reported. This is optional technically, so we also have the option
of going straight with the heavyweight CreateCommittedResource()
instead. That is what we do if the adapter chosen reports it's
software-based or when QT_D3D_NO_SUBALLOC=1 is set.
- PreferSoftwareRenderer (picking the WARP device) and the env.var.
QT_D3D_ADAPTER_INDEX work as with the D3D11 backend.
- It is not unexpected that with large scenes that generate lots of
draw calls with multiple textures/samplers per call the performance
may be slightly below D3D11 (probably mostly due to descriptor
management). Similarly, the reported memory usage will be higher,
which is partly natural due to creating heaps, descriptor pools,
staging areas, etc. upfront. Will need to be evaluated later how
these can be tuned.
Change-Id: I5a42580bb65f391ebceaf81adc6ae673cceacb74
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Support serializing shaders with specific qsb version. The default
behavior remains the same, using the latest version.
Task-number: QTBUG-101062
Pick-to: 6.5
Change-Id: I090a88c1ccb3be4ac5eee1da4058afaa8bf3111c
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Relevant mainly if we want to consistently expose these as the
theoretically correct uint32_t/quint32 from Qt Quick's
QSGRendererInterface. (not that int is not sufficient for
indexing the typical 3-4 families and 2-16 queues per family)
Some checks are not actually needed since the family index
must always be valid after create().
Pick-to: 6.5
Task-number: QTBUG-108895
Change-Id: I474ccea51a81e7a096281604ff79b7db4cdd2484
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Fixes issues with readback of storage buffers modified on GPU for D3D
and Metal. Adds unit test for storage buffer readback.
D3D
* Fixes issue where QRhiBufferReadbackResult::completed callback could
be called twice on buffer readback completion.
Metal
* Fixes issue where buffer readback occurred prior to command buffer
being committed.
Change-Id: If55ac005f4438d66d2f65ea2e1ee0d5686c884ff
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Add storage buffer memory qualifier and run time array stride information
to QShaderDescription::StorageBlock.
Memory qualifiers allow more informed selection of RHI resource buffer
binding (bufferLoad / bufferStore / bufferLoadStore) function.
Run time array stride (for last block member unsized array) allows
packing of buffer data for transfer to / from GPU. Without this
information, applications must infer or guess which packing rules
(std430 / std140) are in use.
Change-Id: I676d7e848afefd40d01cdd463c569b07022b683e
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Support for 1D textures on Vulkan, OpenGL, Metal, and D3D.
Change-Id: Ie74ec103da9cfcbf83fa78588cf8cfc1bd6e104f
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
This is a semantic patch using ClangTidyTransformator as in
qtbase/df9d882d41b741fef7c5beeddb0abe9d904443d8, but extended to
handle typedefs and accesses through pointers, too:
const std::string o = "object";
auto hasTypeIgnoringPointer = [](auto type) { return anyOf(hasType(type), hasType(pointsTo(type))); };
auto derivedFromAnyOfClasses = [&](ArrayRef<StringRef> classes) {
auto exprOfDeclaredType = [&](auto decl) {
return expr(hasTypeIgnoringPointer(hasUnqualifiedDesugaredType(recordType(hasDeclaration(decl))))).bind(o);
};
return exprOfDeclaredType(cxxRecordDecl(isSameOrDerivedFrom(hasAnyName(classes))));
};
auto renameMethod = [&] (ArrayRef<StringRef> classes,
StringRef from, StringRef to) {
return makeRule(cxxMemberCallExpr(on(derivedFromAnyOfClasses(classes)),
callee(cxxMethodDecl(hasName(from), parameterCountIs(0)))),
changeTo(cat(access(o, cat(to)), "()")),
cat("use '", to, "' instead of '", from, "'"));
};
renameMethod(<classes>, "count", "size");
renameMethod(<classes>, "length", "size");
except that the on() matcher has been replaced by one that doesn't
ignoreParens().
a.k.a qt-port-to-std-compatible-api V5 with config Scope: 'Container'.
Added two NOLINTNEXTLINEs in tst_qbitarray and tst_qcontiguouscache,
to avoid porting calls that explicitly test count().
Change-Id: Icfb8808c2ff4a30187e9935a51cad26987451c22
Reviewed-by: Ivan Solovev <ivan.solovev@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Running tst_qrhi -platform eglfs will pass on RPi4 / Mesa 22.
This does not test Vulkan of course since the platform plugin cannot
create a Vulkan instance.
Running tst_qrhi -platform vkkhrdisplay will enable Vulkan but will
still try OpenGL since the autotest does not query the platform
integration about OpenGL support. Make this nicer by skipping most of
the GL test if the platform integration we have cannot handle OpenGL
stuff anyway.
For some tests the data-driven approach has to be removed since doing
QFETCH without any rows will crash. These two OpenGL-specific tests
now check OpenGL support directly and QSKIP if needed.
While we are at it, fix up the Vulkan instance API version as well.
Pick-to: 6.4
Change-Id: I2891c04540bc2dfd0ccf475629bd23542bff15f5
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
CMakeLists.txt and .cmake files of significant size
(more than 2 lines according to our check in tst_license.pl)
now have the copyright and license header.
Existing copyright statements remain intact
Task-number: QTBUG-88621
Change-Id: I3b98cdc55ead806ec81ce09af9271f9b95af97fa
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
...by removing the entire adjustedFormat() helper.
Qt Quick has never used this, which indicates it is not that
useful. Same goes for Qt Multimedia or Qt 3D. Ensuring depth and
stencil is requested is already solved by using
QSurfaceFormat::setDefaultFormat() or by adjusting the formats
everywhere as appropriate.
The helper function's usages are in the manual tests that use it as a
shortcut, and in the GL backend itself. Remove it and leave it up the
client to set the depth or stencil buffer size, typically in the
global default surface format. (which in fact many of the mentioned
manual tests already did, so some of calls to
window->setFormat(adjustedFormat()) were completely unnecessary)
By not having the built-in magic that tries to always force depth and
stencil, we avoid problems that arise then the helper cannot be easily
invoked (thinking of widgets and backingstores), and so one ends up
with unexpected stencil (or depth) in the context (where the GL
backend auto-adjusts), but not in the window (which is not under
QRhi's control).
It was in practice possible to trigger EGL_BAD_MATCH failures with the
new rhi-based widget composition on EGL-based systems. For example, if
an application with a QOpenGLWidget did not set both depth and stencil
(but only one, or none), it ended up failing due to the context -
surface EGLConfig mismatches. On other platforms this matters less due
to less strict config/pixelformat management.
Pick-to: 6.4
Change-Id: I28ae2de163de63ee91bee3ceae08b58e106e1380
Fixes: QTBUG-104951
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Some of the offsets are already quint32 in the API (vertex input
attributes, dynamic offsets, offsets in draw calls), matching the
reality of the underlying 3D APIs, but many buffer-related functions
use int as of now, simply because that used to be the default choice,
and the same goes for sizes (such as buffer or range sizes). This is
not quite consistent and should be cleaned up if for nothing else then
just to make the classes consistent, but also because no 3D API use a
signed type for offsets, sizes, and strides. (except OpenGL for some)
When it comes to strides (for vertex inputs and raw image texture
uploads), those are already all quint32s. This is straightforward
because most of the 3D APIs use 32-bit uints for these regardless of
the architecture.
Sizes and offsets are often architecture-dependent (Vulkan, Metal),
but there is at least one API where they are always 32-bit even on
64-bit Windows (UINT == unsigned int, D3D11). In addition, we do not
really care about buffer or texture data larger than 4 GB, at least
not without realistic use cases and real world testing, which are
quite unlikely to materialize for now (esp. since we still have the
width/height of 2D textures limited to 16 or 32K in many cases even on
desktops, whereas 2GB+ buffers are not guaranteed in practice even
when an API seemingly allows it).
In any case, the important change here is the signed->unsigned
switch. A number of casts can now be removed here and there in the
backends, because the offsets and sizes are now unsigned as well,
matching the underlying API reality. The size can be potentially
increased later on with minimal effort, if that becomes necessary for
some reason.
Change-Id: I404dbc365ac397eaeeb3bd2da9ce7eb98916da5f
Reviewed-by: Inho Lee <inho.lee@qt.io>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
Make our QRhiMemAllocStats struct a bit more generic, drop the memory
allocation part in the naming, and use the same getter and struct for
reporting some important timings. (we are free to rename for now, there
are no users in other modules yet)
The time spent in graphics (or compute) pipeline creation has a special
relevance in particular with the modern APIs (as it is the single
biggest potentially time consuming blocking operation), but also highly
interesting with others like D3D11 simply because that's where we do the
expensive source-to-intermediate compilation is HLSL source is provided.
In order to see the effects of the various caching mechanisms (of which
there can be confusingly many, on multiple levels), the ability to see
how much time we spent on pipeline creation e.g. until we render the
first view of an application can be pretty essential.
Task-number: QTBUG-103802
Change-Id: I85dd056a39db7e6b25fb1f9d02e4c94298d22b41
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
The goal is to make it possible to implement QSGRhiSupport::backendName()
in Qt Quick with just a single line:
return QString::fromUtf8(QRhi::backendName(m_rhiBackend));
instead of duplicating the strings and the logic.
Similarly, QBackingStoreRhiSupport can now drop its apiName() helper
entirely.
Change-Id: Ia8cbb1f1243539ed4d7a98e71dcc2ed56b017e40
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Replace the current license disclaimer in files by
a SPDX-License-Identifier.
Files that have to be modified by hand are modified.
License files are organized under LICENSES directory.
Task-number: QTBUG-67283
Change-Id: Id880c92784c40f3bbde861c0d93f58151c18b9f1
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
swapchain->currentFrameRenderTarget()->renderPassDescriptor() is not
functional at the moment, it returns null. This is because no backend
ensures that the internal renderpass descriptor object is exposed via
that getter in a QRhiSwapChainRenderTarget. Whereas in a
QRhiTextureRenderTarget this would work by design because there the
setter must be called by the user.
Fix this up, providing better API symmetry, and also reducing the need
to pass along QRhiRenderPassDescriptor objects seprately alongside a
QRhiRenderTarget in some places, e.g. in Qt Quick.
Change-Id: I42c4e9aaee3202c1d23bd093d840af80c5f8cd0f
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
It's one thing that this is not part of OpenGL ES, but it is optional
even with Vulkan, with some mobile GPUs not offering the feature at all.
Change-Id: I4e2c6642eccb0793e69074b4b6eeb2b7cef3516e
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
We want to enable gaining access to the underlying resource(s) by
inspecting a QRhiRenderTarget. This is not currently possible for
swapchains since there is nothing that references the actual
QRhiSwapChain. To clean this up, make an explicit, new
QRhiSwapChainRenderTarget subclass. Thus the logic already used in a
couple of places to examine the resources attached to a
QRhiTextureRenderTarget can now work with swapchain render targets too,
by branching based on the resourceType().
This eliminates the somewhat odd setup where a "RenderTarget" resource
is QRhiRenderTarget corresponding (but not exposing!) a swapchain,
whereas a "TextureRenderTarget" is a QRhiTextureRenderTarget which
is a subclass of QRhiRenderTarget. Now we correctly have an (abstract)
base and two subclasses, one for each type of render targets.
Besides, it allows us to clean up the oddly named
Q...ReferenceRenderTarget classes in the backends, which initially tried
to indicate that this "render target" merely references (or, in
practice, is) a swapchain. We can now have a nice and symmetrical
Q...SwapChainRenderTarget and Q...TextureRenderTarget naming scheme.
Change-Id: Ib07e9be99a316eec67b94de0860e08f5f4638959
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
Only (straightforwardly) implementable with modern APIs, and
only really exists to handle special platform cases, such as
when a video framework gives us a D3D texture array with
D3D11_BIND_DECODER | D3D11_BIND_SHADER_RESOURCE
which is only possible to use as a shader resource if the SRV
selects a single array layer.
Has no effect on the normal usage of texture arrays, where all
array layers are exposed, and it is the shader that selects the
layer when sampling or loading via the sampler2DArray. That
continues to be the standard way to work with texture arrays.
Change-Id: I0a656b605da21f50239b38abb83067e0208c1dbe
Reviewed-by: Piotr Srebrny <piotr.srebrny@qt.io>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Multiple tests use qt_internal_add_resource that copies the
functionality that is already implemented inside the
qt_internal_add_test function. Simplify these test by replacing
the qt_internal_add_resource call with the new BUILTIN_TESTDATA
option.
Change-Id: I18475b817d6f87264f0de53817d6c26c5ccab4e2
Reviewed-by: Alexandru Croitor <alexandru.croitor@qt.io>
Raster pipeline is not supported on webOS OSE: trying to use it causes
an exit(1).
Fixes: QTBUG-100654
Pick-to: 6.3
Change-Id: I00325fc1330a2d0d4abfdee054343ecfac767309
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>
There is a TODO for this in Qt Quick from the 6.0 times. To decide
upfront if Metal can be expected to function, or if a fallback to
OpenGL needs to be triggered (especially important with macOS virtual
machines, where, unlike any real macOS system, Metal may not be
present at all), the scenegraph calls create() and then drops the
result. The idea to make this less wasteful was back then to add a
dedicated probing function which can, possibly, perform the checks in
a more lightweight manner than full initialization. Implement this
now, focusing on Metal.
Brought to attention by QTBUG-100441: printing warnings about not
having an MTLDevice is confusing in a Metal-less macOS VM, because it
is not an actual error, only part of the probing at scenegraph
initialization. We can now avoid printing confusing warnings there.
Change-Id: Ie52c36af9224bedc3f5e4c23edb486d961c9f216
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
This is an issue for QQuickWindow in practice, although it is not hit
by our current tests.
Pick-to: 6.3
Change-Id: Ia73704c1af6a82b2689ce7b844d3b0eb9a17ec18
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Mainly because we do have legacy code in the Qt 5 graphical effects that
tries to dynamically determine the max number of varyings. Make it
easier to port such code.
Change-Id: I846cab2c2fe7b4cd473b5ced0146ca36f1c8169b
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Christian Strømme <christian.stromme@qt.io>
Add some sort of autotest for both RGBA16F and the new RGB10A2. The
latter is introduced particularly because ideally we should have a
texture format that corresponds to the D3D/Vulkan swapchain color
buffer format with HDR10.
Change-Id: I1e1bbb7c7e32cb3db89275900811c0bcaeac39d6
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
As these are QList and QHash. All existing usages are based on this
anyway, no value in being able to indicate "not available" - an empty
container fulfills the same role.
Change-Id: I8059025fa7a4acb6fc674cd98b16fcafa19ed85d
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
For Direct 3D, Metal, and Vulkan this is natively supported. (and
makes no difference in particular for D3D and Metal because they do
not have the legacy combined image sampler concept anyways)
With OpenGL it will work too, but this relies on SPIR-Cross magic and
is still using a combined sampler (e.g. a sampler2D) in the GLSL
shader. The GL backend walks back and forth in the mapping tables from
the shader baker in order to make this work, which is presumably
slightly more expensive than combined image samplers.
Do note that combined image samplers (i.e. sampler2D in the shader and
QRhiShaderResourceBinding::sampledTexture() in code) continue to be
the primary, recommended way for any user of the rhi for the time
being.
Change-Id: I194721bc657b1ffbcc1bb79e6eadebe569a25087
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Laszlo Agocs <laszlo.agocs@qt.io>