Even though there is no D3D-specific logic in the windows platform
plugin, meaning a QWindow with either OpenGLSurface or VulkanSurface
(or anything really) is DXGI/D3D-compatible, it now looks like it is
beneficial, and more future proof, if there is a dedicated surface
type.
As the linked report shows, there are OpenGL-specific workarounds
accumulated in the platform plugin, while not being clear if these
are relevant to non-OpenGL content, or if they are relevant at all
still. (and some of these can be difficult/impossible to retest and
verify in practice)
When D3D-based windows use the same surface type, all these are
active for those windows as well, while Vulkan-based windows have
their own type and so some of these old workarounds are not active
for those. To reduce confusion, having a dedicated surface type for
D3D as well allows the logic to skip the old OpenGL workarounds,
giving us (and users) a more clear overall behavior when it comes
to OpenGL vs. Vulkan vs. D3D.
The change is compatible with any existing code in other modules
because any code that uses OpenGLSurface for D3D will continue to
work, using the new type can be introduced incrementally.
Task-number: QTBUG-89715
Change-Id: Ieba86a580bf5a3636730952184dc3a3ab7669b26
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
Modify special case locations to use the new API as well.
Clean up some stale .prev files that are not needed anymore.
Clean up some project files that are not used anymore.
Task-number: QTBUG-86815
Change-Id: I9947da921f98686023c6bb053dfcc101851276b5
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
This attribute is now on by default.
Change-Id: I7c9d2e3445d204d3450758673048d514bc9c850c
Reviewed-by: Morten Johan Sørvig <morten.sorvig@qt.io>
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
The QPair changes trigger warnings about size_t vs. quint32.
We made offsets and sizes 32-bit in the QRhi API to emphasize that
some of the graphics APIs are using 32-bit sizes still. It's a bit
unfortunate that pairs now generate warnings when the size does not
match. Just cast as needed.
Change-Id: I88504eed8be6f4bdb2205b3671e2c2a9db9fcb1e
Reviewed-by: Eirik Aavitsland <eirik.aavitsland@qt.io>
For historical reasons we use build and release instead of create and
destroy. This becomes confusing now that more modules in Qt start taking
QRhi into use. Migrate to the more familiar naming, so those who have
used QWindow or QOpenGLContext before will find it natural.
Change-Id: I05eb2243ce274c59b03a5f8bcbb2792a4f37120f
Reviewed-by: Eirik Aavitsland <eirik.aavitsland@qt.io>
While we are at it, remove the Border and MirrorOnce wrap modes that have
not been supported on OpenGL, because they are unsupported with Metal+iOS
as well.
Task-number: QTBUG-78580
Change-Id: I0db94b9d3a6125b3bb5d7b1db5d02a42cd94d2c2
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
Revert surfacePixelSize() to be a getter only. With Metal this will
mean returning the "live" layer size (and so not the
layer.drawableSize), which is in line with what we expect with other
backends.
Instead, we leave it to the swapchain's buildOrResize() to "commit"
the size by setting drawableSize on the layer. With typical
application or Qt Quick logic this ensures that layer.drawableSize is
set once and stays static until we get to process the next resize - on
the rendering thread.
This of course would still mean that there was a race when a client
queries surfacePixelSize() to set the depth-stencil buffer size that
is associated with a swapchain. (because that must happen before
calling buildOrResize() according to the current semantics)
That can however be solved in a quite elegant way, it turns out,
because we already have a flag that indicates if a QRhiRenderBuffer is
used in combination with (and only in combination with) a
swapchain. If we simply say that setting the UsedWithSwapChainOnly
flag provides automatic sizing as well (so no setPixelSize() call is
needed), clients can simply get rid of the problematic
surfacePixelSize() query and everything works.
Task-number: QTBUG-78641
Change-Id: Ib1bfc9ef8531bcce033d1f1e5d4d5b4984d6d69f
Reviewed-by: Tor Arne Vestbø <tor.arne.vestbo@qt.io>
The Quick render loops do SkipPresent occasionally, and it all seemed
to work with the threaded one because we lack an autorelease pool on
the SG render thread. (to be corrected separately) The basic one ended
up crashing sometimes, however. Holding on to the drawable is incorrect.
Fixes: QTBUG-76953
Change-Id: I0d0ec6d09aa209d2c848d7a9dbd9b15916fe23ab
Reviewed-by: Andy Nichols <andy.nichols@qt.io>
D3D11 and GL (4.3+, ES 3.1+) will come separately at a
later time.
Change-Id: If30f2f3d062fa27e57e9912674669225b82a7b93
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
Comes with backends for Vulkan, Metal, Direct3D 11.1, and OpenGL (ES).
All APIs are private for now.
Shader conditioning (i.e. generating a QRhiShader in memory or on disk
from some shader source code) is done via the tools and APIs provided
by qt-labs/qtshadertools.
The OpenGL support follows the cross-platform tradition of requiring
ES 2.0 only, while optionally using some (ES) 3.x features. It can
operate in core profile contexts as well.
Task-number: QTBUG-70287
Change-Id: I246f2e36d562e404012c05db2aa72487108aa7cc
Reviewed-by: Lars Knoll <lars.knoll@qt.io>