/**************************************************************************** ** ** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/legal ** ** This file is part of the QtGui module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and Digia. For licensing terms and ** conditions see http://qt.digia.com/licensing. For further information ** use the contact form at http://qt.digia.com/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 2.1 requirements ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Digia gives you certain additional ** rights. These rights are described in the Digia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3.0 as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL included in the ** packaging of this file. Please review the following information to ** ensure the GNU General Public License version 3.0 requirements will be ** met: http://www.gnu.org/copyleft/gpl.html. ** ** ** $QT_END_LICENSE$ ** ****************************************************************************/ /* When the active program changes, we need to update it's uniforms. We could track state for each program and only update stale uniforms - Could lead to lots of overhead if there's a lot of programs We could update all the uniforms when the program changes - Could end up updating lots of uniforms which don't need updating Updating uniforms should be cheap, so the overhead of updating up-to-date uniforms should be minimal. It's also less complex. Things which _may_ cause a different program to be used: - Change in brush/pen style - Change in painter opacity - Change in composition mode Whenever we set a mode on the shader manager - it needs to tell us if it had to switch to a different program. The shader manager should only switch when we tell it to. E.g. if we set a new brush style and then switch to transparent painter, we only want it to compile and use the correct program when we really need it. */ // #define QT_OPENGL_CACHE_AS_VBOS #include "qopenglgradientcache_p.h" #include "qopengltexturecache_p.h" #include "qopenglpaintengine_p.h" #include //for memcpy #include #include #include #include #include #include #include #include #include #include #include #include #include "qopenglengineshadermanager_p.h" #include "qopengl2pexvertexarray_p.h" #include "qopengltextureglyphcache_p.h" #include QT_BEGIN_NAMESPACE Q_GUI_EXPORT QImage qt_imageForBrush(int brushStyle, bool invert); ////////////////////////////////// Private Methods ////////////////////////////////////////// QOpenGL2PaintEngineExPrivate::~QOpenGL2PaintEngineExPrivate() { delete shaderManager; while (pathCaches.size()) { QVectorPath::CacheEntry *e = *(pathCaches.constBegin()); e->cleanup(e->engine, e->data); e->data = 0; e->engine = 0; } if (elementIndicesVBOId != 0) { funcs.glDeleteBuffers(1, &elementIndicesVBOId); elementIndicesVBOId = 0; } } void QOpenGL2PaintEngineExPrivate::updateTextureFilter(GLenum target, GLenum wrapMode, bool smoothPixmapTransform, GLuint id) { // funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT); //### Is it always this texture unit? if (id != GLuint(-1) && id == lastTextureUsed) return; lastTextureUsed = id; if (smoothPixmapTransform) { glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } glTexParameteri(target, GL_TEXTURE_WRAP_S, wrapMode); glTexParameteri(target, GL_TEXTURE_WRAP_T, wrapMode); } inline QColor qt_premultiplyColor(QColor c, GLfloat opacity) { qreal alpha = c.alphaF() * opacity; c.setAlphaF(alpha); c.setRedF(c.redF() * alpha); c.setGreenF(c.greenF() * alpha); c.setBlueF(c.blueF() * alpha); return c; } void QOpenGL2PaintEngineExPrivate::setBrush(const QBrush& brush) { if (qbrush_fast_equals(currentBrush, brush)) return; const Qt::BrushStyle newStyle = qbrush_style(brush); Q_ASSERT(newStyle != Qt::NoBrush); currentBrush = brush; if (!currentBrushPixmap.isNull()) currentBrushPixmap = QPixmap(); brushUniformsDirty = true; // All brushes have at least one uniform if (newStyle > Qt::SolidPattern) brushTextureDirty = true; if (currentBrush.style() == Qt::TexturePattern && qHasPixmapTexture(brush) && brush.texture().isQBitmap()) { shaderManager->setSrcPixelType(QOpenGLEngineShaderManager::TextureSrcWithPattern); } else { shaderManager->setSrcPixelType(newStyle); } shaderManager->optimiseForBrushTransform(currentBrush.transform().type()); } void QOpenGL2PaintEngineExPrivate::useSimpleShader() { shaderManager->useSimpleProgram(); if (matrixDirty) updateMatrix(); } void QOpenGL2PaintEngineExPrivate::updateBrushTexture() { Q_Q(QOpenGL2PaintEngineEx); // qDebug("QOpenGL2PaintEngineExPrivate::updateBrushTexture()"); Qt::BrushStyle style = currentBrush.style(); if ( (style >= Qt::Dense1Pattern) && (style <= Qt::DiagCrossPattern) ) { // Get the image data for the pattern QImage texImage = qt_imageForBrush(style, false); funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT); QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, texImage); updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform); } else if (style >= Qt::LinearGradientPattern && style <= Qt::ConicalGradientPattern) { // Gradiant brush: All the gradiants use the same texture const QGradient* g = currentBrush.gradient(); // We apply global opacity in the fragment shaders, so we always pass 1.0 // for opacity to the cache. GLuint texId = QOpenGL2GradientCache::cacheForContext(ctx)->getBuffer(*g, 1.0); funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT); glBindTexture(GL_TEXTURE_2D, texId); if (g->spread() == QGradient::RepeatSpread || g->type() == QGradient::ConicalGradient) updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform); else if (g->spread() == QGradient::ReflectSpread) updateTextureFilter(GL_TEXTURE_2D, GL_MIRRORED_REPEAT, q->state()->renderHints & QPainter::SmoothPixmapTransform); else updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE, q->state()->renderHints & QPainter::SmoothPixmapTransform); } else if (style == Qt::TexturePattern) { currentBrushPixmap = currentBrush.texture(); int max_texture_size = ctx->d_func()->maxTextureSize(); if (currentBrushPixmap.width() > max_texture_size || currentBrushPixmap.height() > max_texture_size) currentBrushPixmap = currentBrushPixmap.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio); GLuint wrapMode = GL_REPEAT; if (QOpenGLFunctions::isES()) { // OpenGL ES does not support GL_REPEAT wrap modes for NPOT textures. So instead, // we emulate GL_REPEAT by only taking the fractional part of the texture coords // in the qopenglslTextureBrushSrcFragmentShader program. wrapMode = GL_CLAMP_TO_EDGE; } funcs.glActiveTexture(GL_TEXTURE0 + QT_BRUSH_TEXTURE_UNIT); QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, currentBrushPixmap); updateTextureFilter(GL_TEXTURE_2D, wrapMode, q->state()->renderHints & QPainter::SmoothPixmapTransform); textureInvertedY = false; } brushTextureDirty = false; } void QOpenGL2PaintEngineExPrivate::updateBrushUniforms() { // qDebug("QOpenGL2PaintEngineExPrivate::updateBrushUniforms()"); Qt::BrushStyle style = currentBrush.style(); if (style == Qt::NoBrush) return; QTransform brushQTransform = currentBrush.transform(); if (style == Qt::SolidPattern) { QColor col = qt_premultiplyColor(currentBrush.color(), (GLfloat)q->state()->opacity); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::FragmentColor), col); } else { // All other brushes have a transform and thus need the translation point: QPointF translationPoint; if (style <= Qt::DiagCrossPattern) { QColor col = qt_premultiplyColor(currentBrush.color(), (GLfloat)q->state()->opacity); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col); QVector2D halfViewportSize(width*0.5, height*0.5); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize); } else if (style == Qt::LinearGradientPattern) { const QLinearGradient *g = static_cast(currentBrush.gradient()); QPointF realStart = g->start(); QPointF realFinal = g->finalStop(); translationPoint = realStart; QPointF l = realFinal - realStart; QVector3D linearData( l.x(), l.y(), 1.0f / (l.x() * l.x() + l.y() * l.y()) ); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::LinearData), linearData); QVector2D halfViewportSize(width*0.5, height*0.5); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize); } else if (style == Qt::ConicalGradientPattern) { const QConicalGradient *g = static_cast(currentBrush.gradient()); translationPoint = g->center(); GLfloat angle = -(g->angle() * 2 * Q_PI) / 360.0; shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Angle), angle); QVector2D halfViewportSize(width*0.5, height*0.5); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize); } else if (style == Qt::RadialGradientPattern) { const QRadialGradient *g = static_cast(currentBrush.gradient()); QPointF realCenter = g->center(); QPointF realFocal = g->focalPoint(); qreal realRadius = g->centerRadius() - g->focalRadius(); translationPoint = realFocal; QPointF fmp = realCenter - realFocal; shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Fmp), fmp); GLfloat fmp2_m_radius2 = -fmp.x() * fmp.x() - fmp.y() * fmp.y() + realRadius*realRadius; shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Fmp2MRadius2), fmp2_m_radius2); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Inverse2Fmp2MRadius2), GLfloat(1.0 / (2.0*fmp2_m_radius2))); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::SqrFr), GLfloat(g->focalRadius() * g->focalRadius())); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::BRadius), GLfloat(2 * (g->centerRadius() - g->focalRadius()) * g->focalRadius()), g->focalRadius(), g->centerRadius() - g->focalRadius()); QVector2D halfViewportSize(width*0.5, height*0.5); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize); } else if (style == Qt::TexturePattern) { const QPixmap& texPixmap = currentBrush.texture(); if (qHasPixmapTexture(currentBrush) && currentBrush.texture().isQBitmap()) { QColor col = qt_premultiplyColor(currentBrush.color(), (GLfloat)q->state()->opacity); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col); } QSizeF invertedTextureSize(1.0 / texPixmap.width(), 1.0 / texPixmap.height()); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::InvertedTextureSize), invertedTextureSize); QVector2D halfViewportSize(width*0.5, height*0.5); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::HalfViewportSize), halfViewportSize); } else qWarning("QOpenGL2PaintEngineEx: Unimplemented fill style"); const QPointF &brushOrigin = q->state()->brushOrigin; QTransform matrix = q->state()->matrix; matrix.translate(brushOrigin.x(), brushOrigin.y()); QTransform translate(1, 0, 0, 1, -translationPoint.x(), -translationPoint.y()); qreal m22 = -1; qreal dy = height; if (device->paintFlipped()) { m22 = 1; dy = 0; } QTransform gl_to_qt(1, 0, 0, m22, 0, dy); QTransform inv_matrix; if (style == Qt::TexturePattern && textureInvertedY == -1) inv_matrix = gl_to_qt * (QTransform(1, 0, 0, -1, 0, currentBrush.texture().height()) * brushQTransform * matrix).inverted() * translate; else inv_matrix = gl_to_qt * (brushQTransform * matrix).inverted() * translate; shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::BrushTransform), inv_matrix); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::BrushTexture), QT_BRUSH_TEXTURE_UNIT); } brushUniformsDirty = false; } // This assumes the shader manager has already setup the correct shader program void QOpenGL2PaintEngineExPrivate::updateMatrix() { // qDebug("QOpenGL2PaintEngineExPrivate::updateMatrix()"); const QTransform& transform = q->state()->matrix; // The projection matrix converts from Qt's coordinate system to GL's coordinate system // * GL's viewport is 2x2, Qt's is width x height // * GL has +y -> -y going from bottom -> top, Qt is the other way round // * GL has [0,0] in the center, Qt has it in the top-left // // This results in the Projection matrix below, which is multiplied by the painter's // transformation matrix, as shown below: // // Projection Matrix Painter Transform // ------------------------------------------------ ------------------------ // | 2.0 / width | 0.0 | -1.0 | | m11 | m21 | dx | // | 0.0 | -2.0 / height | 1.0 | * | m12 | m22 | dy | // | 0.0 | 0.0 | 1.0 | | m13 | m23 | m33 | // ------------------------------------------------ ------------------------ // // NOTE: The resultant matrix is also transposed, as GL expects column-major matracies const GLfloat wfactor = 2.0f / width; GLfloat hfactor = -2.0f / height; GLfloat dx = transform.dx(); GLfloat dy = transform.dy(); if (device->paintFlipped()) { hfactor *= -1; dy -= height; } // Non-integer translates can have strange effects for some rendering operations such as // anti-aliased text rendering. In such cases, we snap the translate to the pixel grid. if (snapToPixelGrid && transform.type() == QTransform::TxTranslate) { // 0.50 needs to rounded down to 0.0 for consistency with raster engine: dx = ceilf(dx - 0.5f); dy = ceilf(dy - 0.5f); } pmvMatrix[0][0] = (wfactor * transform.m11()) - transform.m13(); pmvMatrix[1][0] = (wfactor * transform.m21()) - transform.m23(); pmvMatrix[2][0] = (wfactor * dx) - transform.m33(); pmvMatrix[0][1] = (hfactor * transform.m12()) + transform.m13(); pmvMatrix[1][1] = (hfactor * transform.m22()) + transform.m23(); pmvMatrix[2][1] = (hfactor * dy) + transform.m33(); pmvMatrix[0][2] = transform.m13(); pmvMatrix[1][2] = transform.m23(); pmvMatrix[2][2] = transform.m33(); // 1/10000 == 0.0001, so we have good enough res to cover curves // that span the entire widget... inverseScale = qMax(1 / qMax( qMax(qAbs(transform.m11()), qAbs(transform.m22())), qMax(qAbs(transform.m12()), qAbs(transform.m21())) ), qreal(0.0001)); matrixDirty = false; matrixUniformDirty = true; // Set the PMV matrix attribute. As we use an attributes rather than uniforms, we only // need to do this once for every matrix change and persists across all shader programs. funcs.glVertexAttrib3fv(QT_PMV_MATRIX_1_ATTR, pmvMatrix[0]); funcs.glVertexAttrib3fv(QT_PMV_MATRIX_2_ATTR, pmvMatrix[1]); funcs.glVertexAttrib3fv(QT_PMV_MATRIX_3_ATTR, pmvMatrix[2]); dasher.setInvScale(inverseScale); stroker.setInvScale(inverseScale); } void QOpenGL2PaintEngineExPrivate::updateCompositionMode() { // NOTE: The entire paint engine works on pre-multiplied data - which is why some of these // composition modes look odd. // qDebug() << "QOpenGL2PaintEngineExPrivate::updateCompositionMode() - Setting GL composition mode for " << q->state()->composition_mode; switch(q->state()->composition_mode) { case QPainter::CompositionMode_SourceOver: glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); break; case QPainter::CompositionMode_DestinationOver: glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE); break; case QPainter::CompositionMode_Clear: glBlendFunc(GL_ZERO, GL_ZERO); break; case QPainter::CompositionMode_Source: glBlendFunc(GL_ONE, GL_ZERO); break; case QPainter::CompositionMode_Destination: glBlendFunc(GL_ZERO, GL_ONE); break; case QPainter::CompositionMode_SourceIn: glBlendFunc(GL_DST_ALPHA, GL_ZERO); break; case QPainter::CompositionMode_DestinationIn: glBlendFunc(GL_ZERO, GL_SRC_ALPHA); break; case QPainter::CompositionMode_SourceOut: glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ZERO); break; case QPainter::CompositionMode_DestinationOut: glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_ALPHA); break; case QPainter::CompositionMode_SourceAtop: glBlendFunc(GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break; case QPainter::CompositionMode_DestinationAtop: glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA); break; case QPainter::CompositionMode_Xor: glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break; case QPainter::CompositionMode_Plus: glBlendFunc(GL_ONE, GL_ONE); break; default: qWarning("Unsupported composition mode"); break; } compositionModeDirty = false; } static inline void setCoords(GLfloat *coords, const QOpenGLRect &rect) { coords[0] = rect.left; coords[1] = rect.top; coords[2] = rect.right; coords[3] = rect.top; coords[4] = rect.right; coords[5] = rect.bottom; coords[6] = rect.left; coords[7] = rect.bottom; } void QOpenGL2PaintEngineExPrivate::drawTexture(const QOpenGLRect& dest, const QOpenGLRect& src, const QSize &textureSize, bool opaque, bool pattern) { // Setup for texture drawing currentBrush = noBrush; shaderManager->setSrcPixelType(pattern ? QOpenGLEngineShaderManager::PatternSrc : QOpenGLEngineShaderManager::ImageSrc); if (snapToPixelGrid) { snapToPixelGrid = false; matrixDirty = true; } if (prepareForDraw(opaque)) shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::ImageTexture), QT_IMAGE_TEXTURE_UNIT); if (pattern) { QColor col = qt_premultiplyColor(q->state()->pen.color(), (GLfloat)q->state()->opacity); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col); } GLfloat dx = 1.0 / textureSize.width(); GLfloat dy = 1.0 / textureSize.height(); QOpenGLRect srcTextureRect(src.left*dx, src.top*dy, src.right*dx, src.bottom*dy); setCoords(staticVertexCoordinateArray, dest); setCoords(staticTextureCoordinateArray, srcTextureRect); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); } void QOpenGL2PaintEngineEx::beginNativePainting() { Q_D(QOpenGL2PaintEngineEx); ensureActive(); d->transferMode(BrushDrawingMode); d->nativePaintingActive = true; d->funcs.glUseProgram(0); // Disable all the vertex attribute arrays: for (int i = 0; i < QT_GL_VERTEX_ARRAY_TRACKED_COUNT; ++i) d->funcs.glDisableVertexAttribArray(i); #ifndef QT_OPENGL_ES_2 if (!QOpenGLFunctions::isES()) { Q_ASSERT(QOpenGLContext::currentContext()); const QOpenGLContext *ctx = d->ctx; const QSurfaceFormat &fmt = d->device->context()->format(); if (fmt.majorVersion() < 3 || (fmt.majorVersion() == 3 && fmt.minorVersion() < 1) || (fmt.majorVersion() == 3 && fmt.minorVersion() == 1 && ctx->hasExtension(QByteArrayLiteral("GL_ARB_compatibility"))) || fmt.profile() == QSurfaceFormat::CompatibilityProfile) { // be nice to people who mix OpenGL 1.x code with QPainter commands // by setting modelview and projection matrices to mirror the GL 1 // paint engine const QTransform& mtx = state()->matrix; float mv_matrix[4][4] = { { float(mtx.m11()), float(mtx.m12()), 0, float(mtx.m13()) }, { float(mtx.m21()), float(mtx.m22()), 0, float(mtx.m23()) }, { 0, 0, 1, 0 }, { float(mtx.dx()), float(mtx.dy()), 0, float(mtx.m33()) } }; const QSize sz = d->device->size(); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0, sz.width(), sz.height(), 0, -999999, 999999); glMatrixMode(GL_MODELVIEW); glLoadMatrixf(&mv_matrix[0][0]); } } #endif // QT_OPENGL_ES_2 d->lastTextureUsed = GLuint(-1); d->dirtyStencilRegion = QRect(0, 0, d->width, d->height); d->resetGLState(); d->shaderManager->setDirty(); d->needsSync = true; } void QOpenGL2PaintEngineExPrivate::resetGLState() { glDisable(GL_BLEND); funcs.glActiveTexture(GL_TEXTURE0); glDisable(GL_STENCIL_TEST); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDepthMask(true); glDepthFunc(GL_LESS); funcs.glClearDepthf(1); glStencilMask(0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); glStencilFunc(GL_ALWAYS, 0, 0xff); setVertexAttribArrayEnabled(QT_TEXTURE_COORDS_ATTR, false); setVertexAttribArrayEnabled(QT_VERTEX_COORDS_ATTR, false); setVertexAttribArrayEnabled(QT_OPACITY_ATTR, false); if (!QOpenGLFunctions::isES()) { // gl_Color, corresponding to vertex attribute 3, may have been changed float color[] = { 1.0f, 1.0f, 1.0f, 1.0f }; funcs.glVertexAttrib4fv(3, color); } } void QOpenGL2PaintEngineEx::endNativePainting() { Q_D(QOpenGL2PaintEngineEx); d->needsSync = true; d->nativePaintingActive = false; } void QOpenGL2PaintEngineEx::invalidateState() { Q_D(QOpenGL2PaintEngineEx); d->needsSync = true; } bool QOpenGL2PaintEngineEx::isNativePaintingActive() const { Q_D(const QOpenGL2PaintEngineEx); return d->nativePaintingActive; } void QOpenGL2PaintEngineExPrivate::transferMode(EngineMode newMode) { if (newMode == mode) return; if (mode != BrushDrawingMode) { lastTextureUsed = GLuint(-1); } if (newMode == TextDrawingMode) { shaderManager->setHasComplexGeometry(true); } else { shaderManager->setHasComplexGeometry(false); } if (newMode == ImageDrawingMode) { setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, staticVertexCoordinateArray); setVertexAttributePointer(QT_TEXTURE_COORDS_ATTR, staticTextureCoordinateArray); } if (newMode == ImageArrayDrawingMode || newMode == ImageOpacityArrayDrawingMode) { setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, (GLfloat*)vertexCoordinateArray.data()); setVertexAttributePointer(QT_TEXTURE_COORDS_ATTR, (GLfloat*)textureCoordinateArray.data()); if (newMode == ImageOpacityArrayDrawingMode) setVertexAttributePointer(QT_OPACITY_ATTR, (GLfloat*)opacityArray.data()); } // This needs to change when we implement high-quality anti-aliasing... if (newMode != TextDrawingMode) shaderManager->setMaskType(QOpenGLEngineShaderManager::NoMask); mode = newMode; } struct QOpenGL2PEVectorPathCache { #ifdef QT_OPENGL_CACHE_AS_VBOS GLuint vbo; GLuint ibo; #else float *vertices; void *indices; #endif int vertexCount; int indexCount; GLenum primitiveType; qreal iscale; QVertexIndexVector::Type indexType; }; void QOpenGL2PaintEngineExPrivate::cleanupVectorPath(QPaintEngineEx *engine, void *data) { QOpenGL2PEVectorPathCache *c = (QOpenGL2PEVectorPathCache *) data; #ifdef QT_OPENGL_CACHE_AS_VBOS Q_ASSERT(engine->type() == QPaintEngine::OpenGL2); static_cast(engine)->d_func()->unusedVBOSToClean << c->vbo; if (c->ibo) d->unusedIBOSToClean << c->ibo; #else Q_UNUSED(engine); free(c->vertices); free(c->indices); #endif delete c; } // Assumes everything is configured for the brush you want to use void QOpenGL2PaintEngineExPrivate::fill(const QVectorPath& path) { transferMode(BrushDrawingMode); if (snapToPixelGrid) { snapToPixelGrid = false; matrixDirty = true; } // Might need to call updateMatrix to re-calculate inverseScale if (matrixDirty) updateMatrix(); const QPointF* const points = reinterpret_cast(path.points()); // Check to see if there's any hints if (path.shape() == QVectorPath::RectangleHint) { QOpenGLRect rect(points[0].x(), points[0].y(), points[2].x(), points[2].y()); prepareForDraw(currentBrush.isOpaque()); composite(rect); } else if (path.isConvex()) { if (path.isCacheable()) { QVectorPath::CacheEntry *data = path.lookupCacheData(q); QOpenGL2PEVectorPathCache *cache; bool updateCache = false; if (data) { cache = (QOpenGL2PEVectorPathCache *) data->data; // Check if scale factor is exceeded for curved paths and generate curves if so... if (path.isCurved()) { qreal scaleFactor = cache->iscale / inverseScale; if (scaleFactor < 0.5 || scaleFactor > 2.0) { #ifdef QT_OPENGL_CACHE_AS_VBOS glDeleteBuffers(1, &cache->vbo); cache->vbo = 0; Q_ASSERT(cache->ibo == 0); #else free(cache->vertices); Q_ASSERT(cache->indices == 0); #endif updateCache = true; } } } else { cache = new QOpenGL2PEVectorPathCache; data = const_cast(path).addCacheData(q, cache, cleanupVectorPath); updateCache = true; } // Flatten the path at the current scale factor and fill it into the cache struct. if (updateCache) { vertexCoordinateArray.clear(); vertexCoordinateArray.addPath(path, inverseScale, false); int vertexCount = vertexCoordinateArray.vertexCount(); int floatSizeInBytes = vertexCount * 2 * sizeof(float); cache->vertexCount = vertexCount; cache->indexCount = 0; cache->primitiveType = GL_TRIANGLE_FAN; cache->iscale = inverseScale; #ifdef QT_OPENGL_CACHE_AS_VBOS glGenBuffers(1, &cache->vbo); glBindBuffer(GL_ARRAY_BUFFER, cache->vbo); glBufferData(GL_ARRAY_BUFFER, floatSizeInBytes, vertexCoordinateArray.data(), GL_STATIC_DRAW); cache->ibo = 0; #else cache->vertices = (float *) malloc(floatSizeInBytes); memcpy(cache->vertices, vertexCoordinateArray.data(), floatSizeInBytes); cache->indices = 0; #endif } prepareForDraw(currentBrush.isOpaque()); #ifdef QT_OPENGL_CACHE_AS_VBOS glBindBuffer(GL_ARRAY_BUFFER, cache->vbo); setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, 0); #else setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, cache->vertices); #endif glDrawArrays(cache->primitiveType, 0, cache->vertexCount); } else { // printf(" - Marking path as cachable...\n"); // Tag it for later so that if the same path is drawn twice, it is assumed to be static and thus cachable path.makeCacheable(); vertexCoordinateArray.clear(); vertexCoordinateArray.addPath(path, inverseScale, false); prepareForDraw(currentBrush.isOpaque()); drawVertexArrays(vertexCoordinateArray, GL_TRIANGLE_FAN); } } else { bool useCache = path.isCacheable(); if (useCache) { QRectF bbox = path.controlPointRect(); // If the path doesn't fit within these limits, it is possible that the triangulation will fail. useCache &= (bbox.left() > -0x8000 * inverseScale) && (bbox.right() < 0x8000 * inverseScale) && (bbox.top() > -0x8000 * inverseScale) && (bbox.bottom() < 0x8000 * inverseScale); } if (useCache) { QVectorPath::CacheEntry *data = path.lookupCacheData(q); QOpenGL2PEVectorPathCache *cache; bool updateCache = false; if (data) { cache = (QOpenGL2PEVectorPathCache *) data->data; // Check if scale factor is exceeded for curved paths and generate curves if so... if (path.isCurved()) { qreal scaleFactor = cache->iscale / inverseScale; if (scaleFactor < 0.5 || scaleFactor > 2.0) { #ifdef QT_OPENGL_CACHE_AS_VBOS glDeleteBuffers(1, &cache->vbo); glDeleteBuffers(1, &cache->ibo); #else free(cache->vertices); free(cache->indices); #endif updateCache = true; } } } else { cache = new QOpenGL2PEVectorPathCache; data = const_cast(path).addCacheData(q, cache, cleanupVectorPath); updateCache = true; } // Flatten the path at the current scale factor and fill it into the cache struct. if (updateCache) { QTriangleSet polys = qTriangulate(path, QTransform().scale(1 / inverseScale, 1 / inverseScale)); cache->vertexCount = polys.vertices.size() / 2; cache->indexCount = polys.indices.size(); cache->primitiveType = GL_TRIANGLES; cache->iscale = inverseScale; cache->indexType = polys.indices.type(); #ifdef QT_OPENGL_CACHE_AS_VBOS glGenBuffers(1, &cache->vbo); glGenBuffers(1, &cache->ibo); glBindBuffer(GL_ARRAY_BUFFER, cache->vbo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cache->ibo); if (polys.indices.type() == QVertexIndexVector::UnsignedInt) funcs.glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(quint32) * polys.indices.size(), polys.indices.data(), GL_STATIC_DRAW); else funcs.glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(quint16) * polys.indices.size(), polys.indices.data(), GL_STATIC_DRAW); QVarLengthArray vertices(polys.vertices.size()); for (int i = 0; i < polys.vertices.size(); ++i) vertices[i] = float(inverseScale * polys.vertices.at(i)); funcs.glBufferData(GL_ARRAY_BUFFER, sizeof(float) * vertices.size(), vertices.data(), GL_STATIC_DRAW); #else cache->vertices = (float *) malloc(sizeof(float) * polys.vertices.size()); if (polys.indices.type() == QVertexIndexVector::UnsignedInt) { cache->indices = (quint32 *) malloc(sizeof(quint32) * polys.indices.size()); memcpy(cache->indices, polys.indices.data(), sizeof(quint32) * polys.indices.size()); } else { cache->indices = (quint16 *) malloc(sizeof(quint16) * polys.indices.size()); memcpy(cache->indices, polys.indices.data(), sizeof(quint16) * polys.indices.size()); } for (int i = 0; i < polys.vertices.size(); ++i) cache->vertices[i] = float(inverseScale * polys.vertices.at(i)); #endif } prepareForDraw(currentBrush.isOpaque()); #ifdef QT_OPENGL_CACHE_AS_VBOS glBindBuffer(GL_ARRAY_BUFFER, cache->vbo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cache->ibo); setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, 0); if (cache->indexType == QVertexIndexVector::UnsignedInt) glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_INT, 0); else glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_SHORT, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); #else setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, cache->vertices); if (cache->indexType == QVertexIndexVector::UnsignedInt) glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_INT, (qint32 *)cache->indices); else glDrawElements(cache->primitiveType, cache->indexCount, GL_UNSIGNED_SHORT, (qint16 *)cache->indices); #endif } else { // printf(" - Marking path as cachable...\n"); // Tag it for later so that if the same path is drawn twice, it is assumed to be static and thus cachable path.makeCacheable(); if (device->context()->format().stencilBufferSize() <= 0) { // If there is no stencil buffer, triangulate the path instead. QRectF bbox = path.controlPointRect(); // If the path doesn't fit within these limits, it is possible that the triangulation will fail. bool withinLimits = (bbox.left() > -0x8000 * inverseScale) && (bbox.right() < 0x8000 * inverseScale) && (bbox.top() > -0x8000 * inverseScale) && (bbox.bottom() < 0x8000 * inverseScale); if (withinLimits) { QTriangleSet polys = qTriangulate(path, QTransform().scale(1 / inverseScale, 1 / inverseScale)); QVarLengthArray vertices(polys.vertices.size()); for (int i = 0; i < polys.vertices.size(); ++i) vertices[i] = float(inverseScale * polys.vertices.at(i)); prepareForDraw(currentBrush.isOpaque()); setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, vertices.constData()); if (funcs.hasOpenGLExtension(QOpenGLExtensions::ElementIndexUint)) glDrawElements(GL_TRIANGLES, polys.indices.size(), GL_UNSIGNED_INT, polys.indices.data()); else glDrawElements(GL_TRIANGLES, polys.indices.size(), GL_UNSIGNED_SHORT, polys.indices.data()); } else { // We can't handle big, concave painter paths with OpenGL without stencil buffer. qWarning("Painter path exceeds +/-32767 pixels."); } return; } // The path is too complicated & needs the stencil technique vertexCoordinateArray.clear(); vertexCoordinateArray.addPath(path, inverseScale, false); fillStencilWithVertexArray(vertexCoordinateArray, path.hasWindingFill()); glStencilMask(0xff); glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE); if (q->state()->clipTestEnabled) { // Pass when high bit is set, replace stencil value with current clip glStencilFunc(GL_NOTEQUAL, q->state()->currentClip, GL_STENCIL_HIGH_BIT); } else if (path.hasWindingFill()) { // Pass when any bit is set, replace stencil value with 0 glStencilFunc(GL_NOTEQUAL, 0, 0xff); } else { // Pass when high bit is set, replace stencil value with 0 glStencilFunc(GL_NOTEQUAL, 0, GL_STENCIL_HIGH_BIT); } prepareForDraw(currentBrush.isOpaque()); // Stencil the brush onto the dest buffer composite(vertexCoordinateArray.boundingRect()); glStencilMask(0); updateClipScissorTest(); } } } void QOpenGL2PaintEngineExPrivate::fillStencilWithVertexArray(const float *data, int count, int *stops, int stopCount, const QOpenGLRect &bounds, StencilFillMode mode) { Q_ASSERT(count || stops); // qDebug("QOpenGL2PaintEngineExPrivate::fillStencilWithVertexArray()"); glStencilMask(0xff); // Enable stencil writes if (dirtyStencilRegion.intersects(currentScissorBounds)) { QVector clearRegion = dirtyStencilRegion.intersected(currentScissorBounds).rects(); glClearStencil(0); // Clear to zero for (int i = 0; i < clearRegion.size(); ++i) { #ifndef QT_GL_NO_SCISSOR_TEST setScissor(clearRegion.at(i)); #endif glClear(GL_STENCIL_BUFFER_BIT); } dirtyStencilRegion -= currentScissorBounds; #ifndef QT_GL_NO_SCISSOR_TEST updateClipScissorTest(); #endif } glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // Disable color writes useSimpleShader(); glEnable(GL_STENCIL_TEST); // For some reason, this has to happen _after_ the simple shader is use()'d if (mode == WindingFillMode) { Q_ASSERT(stops && !count); if (q->state()->clipTestEnabled) { // Flatten clip values higher than current clip, and set high bit to match current clip glStencilFunc(GL_LEQUAL, GL_STENCIL_HIGH_BIT | q->state()->currentClip, ~GL_STENCIL_HIGH_BIT); glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE); composite(bounds); glStencilFunc(GL_EQUAL, GL_STENCIL_HIGH_BIT, GL_STENCIL_HIGH_BIT); } else if (!stencilClean) { // Clear stencil buffer within bounding rect glStencilFunc(GL_ALWAYS, 0, 0xff); glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO); composite(bounds); } // Inc. for front-facing triangle funcs.glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_INCR_WRAP, GL_INCR_WRAP); // Dec. for back-facing "holes" funcs.glStencilOpSeparate(GL_BACK, GL_KEEP, GL_DECR_WRAP, GL_DECR_WRAP); glStencilMask(~GL_STENCIL_HIGH_BIT); drawVertexArrays(data, stops, stopCount, GL_TRIANGLE_FAN); if (q->state()->clipTestEnabled) { // Clear high bit of stencil outside of path glStencilFunc(GL_EQUAL, q->state()->currentClip, ~GL_STENCIL_HIGH_BIT); glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE); glStencilMask(GL_STENCIL_HIGH_BIT); composite(bounds); } } else if (mode == OddEvenFillMode) { glStencilMask(GL_STENCIL_HIGH_BIT); glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); // Simply invert the stencil bit drawVertexArrays(data, stops, stopCount, GL_TRIANGLE_FAN); } else { // TriStripStrokeFillMode Q_ASSERT(count && !stops); // tristrips generated directly, so no vertexArray or stops glStencilMask(GL_STENCIL_HIGH_BIT); #if 0 glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT); // Simply invert the stencil bit setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, data); glDrawArrays(GL_TRIANGLE_STRIP, 0, count); #else glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); if (q->state()->clipTestEnabled) { glStencilFunc(GL_LEQUAL, q->state()->currentClip | GL_STENCIL_HIGH_BIT, ~GL_STENCIL_HIGH_BIT); } else { glStencilFunc(GL_ALWAYS, GL_STENCIL_HIGH_BIT, 0xff); } setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, data); glDrawArrays(GL_TRIANGLE_STRIP, 0, count); #endif } // Enable color writes & disable stencil writes glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); } /* If the maximum value in the stencil buffer is GL_STENCIL_HIGH_BIT - 1, restore the stencil buffer to a pristine state. The current clip region is set to 1, and the rest to 0. */ void QOpenGL2PaintEngineExPrivate::resetClipIfNeeded() { if (maxClip != (GL_STENCIL_HIGH_BIT - 1)) return; Q_Q(QOpenGL2PaintEngineEx); useSimpleShader(); glEnable(GL_STENCIL_TEST); glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); QRectF bounds = q->state()->matrix.inverted().mapRect(QRectF(0, 0, width, height)); QOpenGLRect rect(bounds.left(), bounds.top(), bounds.right(), bounds.bottom()); // Set high bit on clip region glStencilFunc(GL_LEQUAL, q->state()->currentClip, 0xff); glStencilOp(GL_KEEP, GL_INVERT, GL_INVERT); glStencilMask(GL_STENCIL_HIGH_BIT); composite(rect); // Reset clipping to 1 and everything else to zero glStencilFunc(GL_NOTEQUAL, 0x01, GL_STENCIL_HIGH_BIT); glStencilOp(GL_ZERO, GL_REPLACE, GL_REPLACE); glStencilMask(0xff); composite(rect); q->state()->currentClip = 1; q->state()->canRestoreClip = false; maxClip = 1; glStencilMask(0x0); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); } bool QOpenGL2PaintEngineExPrivate::prepareForCachedGlyphDraw(const QFontEngineGlyphCache &cache) { Q_Q(QOpenGL2PaintEngineEx); Q_ASSERT(cache.transform().type() <= QTransform::TxScale); QTransform &transform = q->state()->matrix; transform.scale(1.0 / cache.transform().m11(), 1.0 / cache.transform().m22()); bool ret = prepareForDraw(false); transform.scale(cache.transform().m11(), cache.transform().m22()); return ret; } bool QOpenGL2PaintEngineExPrivate::prepareForDraw(bool srcPixelsAreOpaque) { if (brushTextureDirty && (mode == TextDrawingMode || mode == BrushDrawingMode)) updateBrushTexture(); if (compositionModeDirty) updateCompositionMode(); if (matrixDirty) updateMatrix(); const bool stateHasOpacity = q->state()->opacity < 0.99f; if (q->state()->composition_mode == QPainter::CompositionMode_Source || (q->state()->composition_mode == QPainter::CompositionMode_SourceOver && srcPixelsAreOpaque && !stateHasOpacity)) { glDisable(GL_BLEND); } else { glEnable(GL_BLEND); } QOpenGLEngineShaderManager::OpacityMode opacityMode; if (mode == ImageOpacityArrayDrawingMode) { opacityMode = QOpenGLEngineShaderManager::AttributeOpacity; } else { opacityMode = stateHasOpacity ? QOpenGLEngineShaderManager::UniformOpacity : QOpenGLEngineShaderManager::NoOpacity; if (stateHasOpacity && (mode != ImageDrawingMode && mode != ImageArrayDrawingMode)) { // Using a brush bool brushIsPattern = (currentBrush.style() >= Qt::Dense1Pattern) && (currentBrush.style() <= Qt::DiagCrossPattern); if ((currentBrush.style() == Qt::SolidPattern) || brushIsPattern) opacityMode = QOpenGLEngineShaderManager::NoOpacity; // Global opacity handled by srcPixel shader } } shaderManager->setOpacityMode(opacityMode); bool changed = shaderManager->useCorrectShaderProg(); // If the shader program needs changing, we change it and mark all uniforms as dirty if (changed) { // The shader program has changed so mark all uniforms as dirty: brushUniformsDirty = true; opacityUniformDirty = true; matrixUniformDirty = true; } if (brushUniformsDirty && (mode == TextDrawingMode || mode == BrushDrawingMode)) updateBrushUniforms(); if (opacityMode == QOpenGLEngineShaderManager::UniformOpacity && opacityUniformDirty) { shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::GlobalOpacity), (GLfloat)q->state()->opacity); opacityUniformDirty = false; } if (matrixUniformDirty && shaderManager->hasComplexGeometry()) { shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::Matrix), pmvMatrix); matrixUniformDirty = false; } return changed; } void QOpenGL2PaintEngineExPrivate::composite(const QOpenGLRect& boundingRect) { setCoords(staticVertexCoordinateArray, boundingRect); setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, staticVertexCoordinateArray); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); } // Draws the vertex array as a set of triangle fans. void QOpenGL2PaintEngineExPrivate::drawVertexArrays(const float *data, int *stops, int stopCount, GLenum primitive) { // Now setup the pointer to the vertex array: setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, (GLfloat*)data); int previousStop = 0; for (int i=0; i %d:", previousStop, stop-1); for (int i=previousStop; isetBrush(brush); d->fill(path); } Q_GUI_EXPORT bool qt_scaleForTransform(const QTransform &transform, qreal *scale); // qtransform.cpp void QOpenGL2PaintEngineEx::stroke(const QVectorPath &path, const QPen &pen) { Q_D(QOpenGL2PaintEngineEx); const QBrush &penBrush = qpen_brush(pen); if (qpen_style(pen) == Qt::NoPen || qbrush_style(penBrush) == Qt::NoBrush) return; QOpenGL2PaintEngineState *s = state(); if (qt_pen_is_cosmetic(pen, state()->renderHints) && !qt_scaleForTransform(s->transform(), 0)) { // QTriangulatingStroker class is not meant to support cosmetically sheared strokes. QPaintEngineEx::stroke(path, pen); return; } ensureActive(); d->setBrush(penBrush); d->stroke(path, pen); } void QOpenGL2PaintEngineExPrivate::stroke(const QVectorPath &path, const QPen &pen) { const QOpenGL2PaintEngineState *s = q->state(); if (snapToPixelGrid) { snapToPixelGrid = false; matrixDirty = true; } const Qt::PenStyle penStyle = qpen_style(pen); const QBrush &penBrush = qpen_brush(pen); const bool opaque = penBrush.isOpaque() && s->opacity > 0.99; transferMode(BrushDrawingMode); // updateMatrix() is responsible for setting the inverse scale on // the strokers, so we need to call it here and not wait for // prepareForDraw() down below. updateMatrix(); QRectF clip = q->state()->matrix.inverted().mapRect(q->state()->clipEnabled ? q->state()->rectangleClip : QRectF(0, 0, width, height)); if (penStyle == Qt::SolidLine) { stroker.process(path, pen, clip, s->renderHints); } else { // Some sort of dash dasher.process(path, pen, clip, s->renderHints); QVectorPath dashStroke(dasher.points(), dasher.elementCount(), dasher.elementTypes(), s->renderHints); stroker.process(dashStroke, pen, clip, s->renderHints); } if (!stroker.vertexCount()) return; if (opaque) { prepareForDraw(opaque); setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, stroker.vertices()); glDrawArrays(GL_TRIANGLE_STRIP, 0, stroker.vertexCount() / 2); // QBrush b(Qt::green); // d->setBrush(&b); // d->prepareForDraw(true); // glDrawArrays(GL_LINE_STRIP, 0, d->stroker.vertexCount() / 2); } else { qreal width = qpen_widthf(pen) / 2; if (width == 0) width = 0.5; qreal extra = pen.joinStyle() == Qt::MiterJoin ? qMax(pen.miterLimit() * width, width) : width; if (qt_pen_is_cosmetic(pen, q->state()->renderHints)) extra = extra * inverseScale; QRectF bounds = path.controlPointRect().adjusted(-extra, -extra, extra, extra); fillStencilWithVertexArray(stroker.vertices(), stroker.vertexCount() / 2, 0, 0, bounds, QOpenGL2PaintEngineExPrivate::TriStripStrokeFillMode); glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE); // Pass when any bit is set, replace stencil value with 0 glStencilFunc(GL_NOTEQUAL, 0, GL_STENCIL_HIGH_BIT); prepareForDraw(false); // Stencil the brush onto the dest buffer composite(bounds); glStencilMask(0); updateClipScissorTest(); } } void QOpenGL2PaintEngineEx::penChanged() { } void QOpenGL2PaintEngineEx::brushChanged() { } void QOpenGL2PaintEngineEx::brushOriginChanged() { } void QOpenGL2PaintEngineEx::opacityChanged() { // qDebug("QOpenGL2PaintEngineEx::opacityChanged()"); Q_D(QOpenGL2PaintEngineEx); state()->opacityChanged = true; Q_ASSERT(d->shaderManager); d->brushUniformsDirty = true; d->opacityUniformDirty = true; } void QOpenGL2PaintEngineEx::compositionModeChanged() { // qDebug("QOpenGL2PaintEngineEx::compositionModeChanged()"); Q_D(QOpenGL2PaintEngineEx); state()->compositionModeChanged = true; d->compositionModeDirty = true; } void QOpenGL2PaintEngineEx::renderHintsChanged() { state()->renderHintsChanged = true; #ifndef QT_OPENGL_ES_2 if (!QOpenGLFunctions::isES()) { if ((state()->renderHints & QPainter::Antialiasing) || (state()->renderHints & QPainter::HighQualityAntialiasing)) glEnable(GL_MULTISAMPLE); else glDisable(GL_MULTISAMPLE); } #endif // QT_OPENGL_ES_2 Q_D(QOpenGL2PaintEngineEx); d->lastTextureUsed = GLuint(-1); d->brushTextureDirty = true; // qDebug("QOpenGL2PaintEngineEx::renderHintsChanged() not implemented!"); } void QOpenGL2PaintEngineEx::transformChanged() { Q_D(QOpenGL2PaintEngineEx); d->matrixDirty = true; state()->matrixChanged = true; } static const QRectF scaleRect(const QRectF &r, qreal sx, qreal sy) { return QRectF(r.x() * sx, r.y() * sy, r.width() * sx, r.height() * sy); } void QOpenGL2PaintEngineEx::drawPixmap(const QRectF& dest, const QPixmap & pixmap, const QRectF & src) { Q_D(QOpenGL2PaintEngineEx); QOpenGLContext *ctx = d->ctx; int max_texture_size = ctx->d_func()->maxTextureSize(); if (pixmap.width() > max_texture_size || pixmap.height() > max_texture_size) { QPixmap scaled = pixmap.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio); const qreal sx = scaled.width() / qreal(pixmap.width()); const qreal sy = scaled.height() / qreal(pixmap.height()); drawPixmap(dest, scaled, scaleRect(src, sx, sy)); return; } ensureActive(); d->transferMode(ImageDrawingMode); d->funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT); GLuint id = QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, pixmap); QOpenGLRect srcRect(src.left(), src.top(), src.right(), src.bottom()); bool isBitmap = pixmap.isQBitmap(); bool isOpaque = !isBitmap && !pixmap.hasAlpha(); d->updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE, state()->renderHints & QPainter::SmoothPixmapTransform, id); d->drawTexture(dest, srcRect, pixmap.size(), isOpaque, isBitmap); } void QOpenGL2PaintEngineEx::drawImage(const QRectF& dest, const QImage& image, const QRectF& src, Qt::ImageConversionFlags) { Q_D(QOpenGL2PaintEngineEx); QOpenGLContext *ctx = d->ctx; int max_texture_size = ctx->d_func()->maxTextureSize(); if (image.width() > max_texture_size || image.height() > max_texture_size) { QImage scaled = image.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio); const qreal sx = scaled.width() / qreal(image.width()); const qreal sy = scaled.height() / qreal(image.height()); drawImage(dest, scaled, scaleRect(src, sx, sy)); return; } ensureActive(); d->transferMode(ImageDrawingMode); d->funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT); GLuint id = QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, image); d->updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE, state()->renderHints & QPainter::SmoothPixmapTransform, id); d->drawTexture(dest, src, image.size(), !image.hasAlphaChannel()); } void QOpenGL2PaintEngineEx::drawStaticTextItem(QStaticTextItem *textItem) { Q_D(QOpenGL2PaintEngineEx); ensureActive(); QPainterState *s = state(); QFontEngine *fontEngine = textItem->fontEngine(); if (shouldDrawCachedGlyphs(fontEngine, s->matrix)) { QFontEngineGlyphCache::Type glyphType = fontEngine->glyphFormat >= 0 ? QFontEngineGlyphCache::Type(textItem->fontEngine()->glyphFormat) : d->glyphCacheType; if (glyphType == QFontEngineGlyphCache::Raster_RGBMask) { if (d->device->context()->format().alphaBufferSize() > 0 || s->matrix.type() > QTransform::TxTranslate || (s->composition_mode != QPainter::CompositionMode_Source && s->composition_mode != QPainter::CompositionMode_SourceOver)) { glyphType = QFontEngineGlyphCache::Raster_A8; } } d->drawCachedGlyphs(glyphType, textItem); } else { QPaintEngineEx::drawStaticTextItem(textItem); } } bool QOpenGL2PaintEngineEx::drawTexture(const QRectF &dest, GLuint textureId, const QSize &size, const QRectF &src) { Q_D(QOpenGL2PaintEngineEx); if (!d->shaderManager) return false; ensureActive(); d->transferMode(ImageDrawingMode); d->funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT); glBindTexture(GL_TEXTURE_2D, textureId); QOpenGLRect srcRect(src.left(), src.bottom(), src.right(), src.top()); d->updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE, state()->renderHints & QPainter::SmoothPixmapTransform, textureId); d->drawTexture(dest, srcRect, size, false); return true; } void QOpenGL2PaintEngineEx::drawTextItem(const QPointF &p, const QTextItem &textItem) { Q_D(QOpenGL2PaintEngineEx); ensureActive(); QOpenGL2PaintEngineState *s = state(); const QTextItemInt &ti = static_cast(textItem); QTransform::TransformationType txtype = s->matrix.type(); QFontEngineGlyphCache::Type glyphType = ti.fontEngine->glyphFormat >= 0 ? QFontEngineGlyphCache::Type(ti.fontEngine->glyphFormat) : d->glyphCacheType; if (glyphType == QFontEngineGlyphCache::Raster_RGBMask) { if (d->device->context()->format().alphaBufferSize() > 0 || txtype > QTransform::TxTranslate || (state()->composition_mode != QPainter::CompositionMode_Source && state()->composition_mode != QPainter::CompositionMode_SourceOver)) { glyphType = QFontEngineGlyphCache::Raster_A8; } } if (shouldDrawCachedGlyphs(ti.fontEngine, s->matrix)) { QVarLengthArray positions; QVarLengthArray glyphs; QTransform matrix = QTransform::fromTranslate(p.x(), p.y()); ti.fontEngine->getGlyphPositions(ti.glyphs, matrix, ti.flags, glyphs, positions); { QStaticTextItem staticTextItem; staticTextItem.chars = const_cast(ti.chars); staticTextItem.setFontEngine(ti.fontEngine); staticTextItem.glyphs = glyphs.data(); staticTextItem.numChars = ti.num_chars; staticTextItem.numGlyphs = glyphs.size(); staticTextItem.glyphPositions = positions.data(); d->drawCachedGlyphs(glyphType, &staticTextItem); } return; } QPaintEngineEx::drawTextItem(p, ti); } namespace { class QOpenGLStaticTextUserData: public QStaticTextUserData { public: QOpenGLStaticTextUserData() : QStaticTextUserData(OpenGLUserData), cacheSize(0, 0), cacheSerialNumber(0) { } ~QOpenGLStaticTextUserData() { } QSize cacheSize; QOpenGL2PEXVertexArray vertexCoordinateArray; QOpenGL2PEXVertexArray textureCoordinateArray; QFontEngineGlyphCache::Type glyphType; int cacheSerialNumber; }; } // #define QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO bool QOpenGL2PaintEngineEx::shouldDrawCachedGlyphs(QFontEngine *fontEngine, const QTransform &t) const { // The paint engine does not support projected cached glyph drawing if (t.type() == QTransform::TxProject) return false; // The font engine might not support filling the glyph cache // with the given transform applied, in which case we need to // fall back to the QPainterPath code-path. if (!fontEngine->supportsTransformation(t)) { // Except that drawing paths is slow, so for scales between // 0.5 and 2.0 we leave the glyph cache untransformed and deal // with the transform ourselves when painting, resulting in // drawing 1x cached glyphs with a smooth-scale. float det = t.determinant(); if (det >= 0.25f && det <= 4.f) { // Assuming the baseclass still agrees return QPaintEngineEx::shouldDrawCachedGlyphs(fontEngine, t); } return false; // Fall back to path-drawing } return QPaintEngineEx::shouldDrawCachedGlyphs(fontEngine, t); } void QOpenGL2PaintEngineExPrivate::drawCachedGlyphs(QFontEngineGlyphCache::Type glyphType, QStaticTextItem *staticTextItem) { Q_Q(QOpenGL2PaintEngineEx); QOpenGL2PaintEngineState *s = q->state(); void *cacheKey = ctx->shareGroup(); bool recreateVertexArrays = false; QTransform glyphCacheTransform; QFontEngine *fe = staticTextItem->fontEngine(); if (fe->supportsTransformation(s->matrix)) { // The font-engine supports rendering glyphs with the current transform, so we // build a glyph-cache with the scale pre-applied, so that the cache contains // glyphs with the appropriate resolution in the case of retina displays. glyphCacheTransform = s->matrix.type() < QTransform::TxRotate ? QTransform::fromScale(qAbs(s->matrix.m11()), qAbs(s->matrix.m22())) : QTransform::fromScale( QVector2D(s->matrix.m11(), s->matrix.m12()).length(), QVector2D(s->matrix.m21(), s->matrix.m22()).length()); } QOpenGLTextureGlyphCache *cache = (QOpenGLTextureGlyphCache *) fe->glyphCache(cacheKey, glyphType, glyphCacheTransform); if (!cache || cache->cacheType() != glyphType || cache->contextGroup() == 0) { cache = new QOpenGLTextureGlyphCache(glyphType, glyphCacheTransform); fe->setGlyphCache(cacheKey, cache); recreateVertexArrays = true; } if (staticTextItem->userDataNeedsUpdate) { recreateVertexArrays = true; } else if (staticTextItem->userData() == 0) { recreateVertexArrays = true; } else if (staticTextItem->userData()->type != QStaticTextUserData::OpenGLUserData) { recreateVertexArrays = true; } else { QOpenGLStaticTextUserData *userData = static_cast(staticTextItem->userData()); if (userData->glyphType != glyphType) { recreateVertexArrays = true; } else if (userData->cacheSerialNumber != cache->serialNumber()) { recreateVertexArrays = true; } } // We only need to update the cache with new glyphs if we are actually going to recreate the vertex arrays. // If the cache size has changed, we do need to regenerate the vertices, but we don't need to repopulate the // cache so this text is performed before we test if the cache size has changed. if (recreateVertexArrays) { cache->setPaintEnginePrivate(this); if (!cache->populate(fe, staticTextItem->numGlyphs, staticTextItem->glyphs, staticTextItem->glyphPositions)) { // No space for glyphs in cache. We need to reset it and try again. cache->clear(); cache->populate(fe, staticTextItem->numGlyphs, staticTextItem->glyphs, staticTextItem->glyphPositions); } cache->fillInPendingGlyphs(); } if (cache->width() == 0 || cache->height() == 0) return; if (glyphType == QFontEngineGlyphCache::Raster_ARGB) transferMode(ImageArrayDrawingMode); else transferMode(TextDrawingMode); int margin = fe->glyphMargin(glyphType); GLfloat dx = 1.0 / cache->width(); GLfloat dy = 1.0 / cache->height(); // Use global arrays by default QOpenGL2PEXVertexArray *vertexCoordinates = &vertexCoordinateArray; QOpenGL2PEXVertexArray *textureCoordinates = &textureCoordinateArray; if (staticTextItem->useBackendOptimizations) { QOpenGLStaticTextUserData *userData = 0; if (staticTextItem->userData() == 0 || staticTextItem->userData()->type != QStaticTextUserData::OpenGLUserData) { userData = new QOpenGLStaticTextUserData(); staticTextItem->setUserData(userData); } else { userData = static_cast(staticTextItem->userData()); } userData->glyphType = glyphType; userData->cacheSerialNumber = cache->serialNumber(); // Use cache if backend optimizations is turned on vertexCoordinates = &userData->vertexCoordinateArray; textureCoordinates = &userData->textureCoordinateArray; QSize size(cache->width(), cache->height()); if (userData->cacheSize != size) { recreateVertexArrays = true; userData->cacheSize = size; } } if (recreateVertexArrays) { vertexCoordinates->clear(); textureCoordinates->clear(); bool supportsSubPixelPositions = fe->supportsSubPixelPositions(); for (int i=0; inumGlyphs; ++i) { QFixed subPixelPosition; if (supportsSubPixelPositions) subPixelPosition = fe->subPixelPositionForX(staticTextItem->glyphPositions[i].x); QTextureGlyphCache::GlyphAndSubPixelPosition glyph(staticTextItem->glyphs[i], subPixelPosition); const QTextureGlyphCache::Coord &c = cache->coords[glyph]; if (c.isNull()) continue; int x = qFloor(staticTextItem->glyphPositions[i].x.toReal() * cache->transform().m11()) + c.baseLineX - margin; int y = qRound(staticTextItem->glyphPositions[i].y.toReal() * cache->transform().m22()) - c.baseLineY - margin; vertexCoordinates->addQuad(QRectF(x, y, c.w, c.h)); textureCoordinates->addQuad(QRectF(c.x*dx, c.y*dy, c.w * dx, c.h * dy)); } staticTextItem->userDataNeedsUpdate = false; } int numGlyphs = vertexCoordinates->vertexCount() / 4; if (numGlyphs == 0) return; if (elementIndices.size() < numGlyphs*6) { Q_ASSERT(elementIndices.size() % 6 == 0); int j = elementIndices.size() / 6 * 4; while (j < numGlyphs*4) { elementIndices.append(j + 0); elementIndices.append(j + 0); elementIndices.append(j + 1); elementIndices.append(j + 2); elementIndices.append(j + 3); elementIndices.append(j + 3); j += 4; } #if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO) if (elementIndicesVBOId == 0) glGenBuffers(1, &elementIndicesVBOId); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementIndicesVBOId); glBufferData(GL_ELEMENT_ARRAY_BUFFER, elementIndices.size() * sizeof(GLushort), elementIndices.constData(), GL_STATIC_DRAW); #endif } else { #if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementIndicesVBOId); #endif } if (glyphType != QFontEngineGlyphCache::Raster_ARGB || recreateVertexArrays) { setVertexAttributePointer(QT_VERTEX_COORDS_ATTR, (GLfloat*)vertexCoordinates->data()); setVertexAttributePointer(QT_TEXTURE_COORDS_ATTR, (GLfloat*)textureCoordinates->data()); } if (!snapToPixelGrid) { snapToPixelGrid = true; matrixDirty = true; } QBrush pensBrush = q->state()->pen.brush(); setBrush(pensBrush); if (glyphType == QFontEngineGlyphCache::Raster_RGBMask) { // Subpixel antialiasing without gamma correction QPainter::CompositionMode compMode = q->state()->composition_mode; Q_ASSERT(compMode == QPainter::CompositionMode_Source || compMode == QPainter::CompositionMode_SourceOver); shaderManager->setMaskType(QOpenGLEngineShaderManager::SubPixelMaskPass1); if (pensBrush.style() == Qt::SolidPattern) { // Solid patterns can get away with only one pass. QColor c = pensBrush.color(); qreal oldOpacity = q->state()->opacity; if (compMode == QPainter::CompositionMode_Source) { c = qt_premultiplyColor(c, q->state()->opacity); q->state()->opacity = 1; opacityUniformDirty = true; } compositionModeDirty = false; // I can handle this myself, thank you very much prepareForCachedGlyphDraw(*cache); // prepareForCachedGlyphDraw() have set the opacity on the current shader, so the opacity state can now be reset. if (compMode == QPainter::CompositionMode_Source) { q->state()->opacity = oldOpacity; opacityUniformDirty = true; } glEnable(GL_BLEND); glBlendFunc(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR); funcs.glBlendColor(c.redF(), c.greenF(), c.blueF(), c.alphaF()); } else { // Other brush styles need two passes. qreal oldOpacity = q->state()->opacity; if (compMode == QPainter::CompositionMode_Source) { q->state()->opacity = 1; opacityUniformDirty = true; pensBrush = Qt::white; setBrush(pensBrush); } compositionModeDirty = false; // I can handle this myself, thank you very much prepareForCachedGlyphDraw(*cache); glEnable(GL_BLEND); glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); funcs.glActiveTexture(GL_TEXTURE0 + QT_MASK_TEXTURE_UNIT); glBindTexture(GL_TEXTURE_2D, cache->texture()); updateTextureFilter(GL_TEXTURE_2D, GL_REPEAT, false); #if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO) glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, 0); #else glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, elementIndices.data()); #endif shaderManager->setMaskType(QOpenGLEngineShaderManager::SubPixelMaskPass2); if (compMode == QPainter::CompositionMode_Source) { q->state()->opacity = oldOpacity; opacityUniformDirty = true; pensBrush = q->state()->pen.brush(); setBrush(pensBrush); } compositionModeDirty = false; prepareForCachedGlyphDraw(*cache); glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ONE); } compositionModeDirty = true; } else if (glyphType == QFontEngineGlyphCache::Raster_ARGB) { currentBrush = noBrush; shaderManager->setSrcPixelType(QOpenGLEngineShaderManager::ImageSrc); if (prepareForCachedGlyphDraw(*cache)) shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::ImageTexture), QT_IMAGE_TEXTURE_UNIT); } else { // Greyscale/mono glyphs shaderManager->setMaskType(QOpenGLEngineShaderManager::PixelMask); prepareForCachedGlyphDraw(*cache); } QOpenGLTextureGlyphCache::FilterMode filterMode = (s->matrix.type() > QTransform::TxTranslate)?QOpenGLTextureGlyphCache::Linear:QOpenGLTextureGlyphCache::Nearest; if (lastMaskTextureUsed != cache->texture() || cache->filterMode() != filterMode) { if (glyphType == QFontEngineGlyphCache::Raster_ARGB) funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT); else funcs.glActiveTexture(GL_TEXTURE0 + QT_MASK_TEXTURE_UNIT); if (lastMaskTextureUsed != cache->texture()) { glBindTexture(GL_TEXTURE_2D, cache->texture()); lastMaskTextureUsed = cache->texture(); } if (cache->filterMode() != filterMode) { if (filterMode == QOpenGLTextureGlyphCache::Linear) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } cache->setFilterMode(filterMode); } } #if defined(QT_OPENGL_DRAWCACHEDGLYPHS_INDEX_ARRAY_VBO) glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #else glDrawElements(GL_TRIANGLE_STRIP, 6 * numGlyphs, GL_UNSIGNED_SHORT, elementIndices.data()); #endif } void QOpenGL2PaintEngineEx::drawPixmapFragments(const QPainter::PixmapFragment *fragments, int fragmentCount, const QPixmap &pixmap, QPainter::PixmapFragmentHints hints) { Q_D(QOpenGL2PaintEngineEx); // Use fallback for extended composition modes. if (state()->composition_mode > QPainter::CompositionMode_Plus) { QPaintEngineEx::drawPixmapFragments(fragments, fragmentCount, pixmap, hints); return; } ensureActive(); int max_texture_size = d->ctx->d_func()->maxTextureSize(); if (pixmap.width() > max_texture_size || pixmap.height() > max_texture_size) { QPixmap scaled = pixmap.scaled(max_texture_size, max_texture_size, Qt::KeepAspectRatio); d->drawPixmapFragments(fragments, fragmentCount, scaled, hints); } else { d->drawPixmapFragments(fragments, fragmentCount, pixmap, hints); } } void QOpenGL2PaintEngineExPrivate::drawPixmapFragments(const QPainter::PixmapFragment *fragments, int fragmentCount, const QPixmap &pixmap, QPainter::PixmapFragmentHints hints) { GLfloat dx = 1.0f / pixmap.size().width(); GLfloat dy = 1.0f / pixmap.size().height(); vertexCoordinateArray.clear(); textureCoordinateArray.clear(); opacityArray.reset(); if (snapToPixelGrid) { snapToPixelGrid = false; matrixDirty = true; } bool allOpaque = true; for (int i = 0; i < fragmentCount; ++i) { qreal s = 0; qreal c = 1; if (fragments[i].rotation != 0) { s = qFastSin(fragments[i].rotation * Q_PI / 180); c = qFastCos(fragments[i].rotation * Q_PI / 180); } qreal right = 0.5 * fragments[i].scaleX * fragments[i].width; qreal bottom = 0.5 * fragments[i].scaleY * fragments[i].height; QOpenGLPoint bottomRight(right * c - bottom * s, right * s + bottom * c); QOpenGLPoint bottomLeft(-right * c - bottom * s, -right * s + bottom * c); vertexCoordinateArray.addVertex(bottomRight.x + fragments[i].x, bottomRight.y + fragments[i].y); vertexCoordinateArray.addVertex(-bottomLeft.x + fragments[i].x, -bottomLeft.y + fragments[i].y); vertexCoordinateArray.addVertex(-bottomRight.x + fragments[i].x, -bottomRight.y + fragments[i].y); vertexCoordinateArray.addVertex(-bottomRight.x + fragments[i].x, -bottomRight.y + fragments[i].y); vertexCoordinateArray.addVertex(bottomLeft.x + fragments[i].x, bottomLeft.y + fragments[i].y); vertexCoordinateArray.addVertex(bottomRight.x + fragments[i].x, bottomRight.y + fragments[i].y); QOpenGLRect src(fragments[i].sourceLeft * dx, fragments[i].sourceTop * dy, (fragments[i].sourceLeft + fragments[i].width) * dx, (fragments[i].sourceTop + fragments[i].height) * dy); textureCoordinateArray.addVertex(src.right, src.bottom); textureCoordinateArray.addVertex(src.right, src.top); textureCoordinateArray.addVertex(src.left, src.top); textureCoordinateArray.addVertex(src.left, src.top); textureCoordinateArray.addVertex(src.left, src.bottom); textureCoordinateArray.addVertex(src.right, src.bottom); qreal opacity = fragments[i].opacity * q->state()->opacity; opacityArray << opacity << opacity << opacity << opacity << opacity << opacity; allOpaque &= (opacity >= 0.99f); } funcs.glActiveTexture(GL_TEXTURE0 + QT_IMAGE_TEXTURE_UNIT); GLuint id = QOpenGLTextureCache::cacheForContext(ctx)->bindTexture(ctx, pixmap); transferMode(ImageOpacityArrayDrawingMode); bool isBitmap = pixmap.isQBitmap(); bool isOpaque = !isBitmap && (!pixmap.hasAlpha() || (hints & QPainter::OpaqueHint)) && allOpaque; updateTextureFilter(GL_TEXTURE_2D, GL_CLAMP_TO_EDGE, q->state()->renderHints & QPainter::SmoothPixmapTransform, id); // Setup for texture drawing currentBrush = noBrush; shaderManager->setSrcPixelType(isBitmap ? QOpenGLEngineShaderManager::PatternSrc : QOpenGLEngineShaderManager::ImageSrc); if (prepareForDraw(isOpaque)) shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::ImageTexture), QT_IMAGE_TEXTURE_UNIT); if (isBitmap) { QColor col = qt_premultiplyColor(q->state()->pen.color(), (GLfloat)q->state()->opacity); shaderManager->currentProgram()->setUniformValue(location(QOpenGLEngineShaderManager::PatternColor), col); } glDrawArrays(GL_TRIANGLES, 0, 6 * fragmentCount); } bool QOpenGL2PaintEngineEx::begin(QPaintDevice *pdev) { Q_D(QOpenGL2PaintEngineEx); Q_ASSERT(pdev->devType() == QInternal::OpenGL); d->device = static_cast(pdev); if (!d->device) return false; if (d->device->context() != QOpenGLContext::currentContext()) { qWarning("QPainter::begin(): QOpenGLPaintDevice's context needs to be current"); return false; } d->ctx = QOpenGLContext::currentContext(); d->ctx->d_func()->active_engine = this; d->funcs.initializeOpenGLFunctions(); for (int i = 0; i < QT_GL_VERTEX_ARRAY_TRACKED_COUNT; ++i) d->vertexAttributeArraysEnabledState[i] = false; const QSize sz = d->device->size(); d->width = sz.width(); d->height = sz.height(); d->mode = BrushDrawingMode; d->brushTextureDirty = true; d->brushUniformsDirty = true; d->matrixUniformDirty = true; d->matrixDirty = true; d->compositionModeDirty = true; d->opacityUniformDirty = true; d->needsSync = true; d->useSystemClip = !systemClip().isEmpty(); d->currentBrush = QBrush(); d->dirtyStencilRegion = QRect(0, 0, d->width, d->height); d->stencilClean = true; d->shaderManager = new QOpenGLEngineShaderManager(d->ctx); glDisable(GL_STENCIL_TEST); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); d->glyphCacheType = QFontEngineGlyphCache::Raster_A8; #ifndef QT_OPENGL_ES_2 if (!QOpenGLFunctions::isES()) { glDisable(GL_MULTISAMPLE); d->glyphCacheType = QFontEngineGlyphCache::Raster_RGBMask; d->multisamplingAlwaysEnabled = false; } else #endif // QT_OPENGL_ES_2 { // OpenGL ES can't switch MSAA off, so if the gl paint device is // multisampled, it's always multisampled. d->multisamplingAlwaysEnabled = d->device->context()->format().samples() > 1; } return true; } bool QOpenGL2PaintEngineEx::end() { Q_D(QOpenGL2PaintEngineEx); QOpenGLContext *ctx = d->ctx; d->funcs.glUseProgram(0); d->transferMode(BrushDrawingMode); ctx->d_func()->active_engine = 0; d->resetGLState(); delete d->shaderManager; d->shaderManager = 0; d->currentBrush = QBrush(); #ifdef QT_OPENGL_CACHE_AS_VBOS if (!d->unusedVBOSToClean.isEmpty()) { glDeleteBuffers(d->unusedVBOSToClean.size(), d->unusedVBOSToClean.constData()); d->unusedVBOSToClean.clear(); } if (!d->unusedIBOSToClean.isEmpty()) { glDeleteBuffers(d->unusedIBOSToClean.size(), d->unusedIBOSToClean.constData()); d->unusedIBOSToClean.clear(); } #endif return false; } void QOpenGL2PaintEngineEx::ensureActive() { Q_D(QOpenGL2PaintEngineEx); QOpenGLContext *ctx = d->ctx; if (isActive() && ctx->d_func()->active_engine != this) { ctx->d_func()->active_engine = this; d->needsSync = true; } if (d->needsSync) { d->device->ensureActiveTarget(); d->transferMode(BrushDrawingMode); glViewport(0, 0, d->width, d->height); d->needsSync = false; d->lastMaskTextureUsed = 0; d->shaderManager->setDirty(); d->syncGlState(); for (int i = 0; i < 3; ++i) d->vertexAttribPointers[i] = (GLfloat*)-1; // Assume the pointers are clobbered setState(state()); } } void QOpenGL2PaintEngineExPrivate::updateClipScissorTest() { Q_Q(QOpenGL2PaintEngineEx); if (q->state()->clipTestEnabled) { glEnable(GL_STENCIL_TEST); glStencilFunc(GL_LEQUAL, q->state()->currentClip, ~GL_STENCIL_HIGH_BIT); } else { glDisable(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 0, 0xff); } #ifdef QT_GL_NO_SCISSOR_TEST currentScissorBounds = QRect(0, 0, width, height); #else QRect bounds = q->state()->rectangleClip; if (!q->state()->clipEnabled) { if (useSystemClip) bounds = systemClip.boundingRect(); else bounds = QRect(0, 0, width, height); } else { if (useSystemClip) bounds = bounds.intersected(systemClip.boundingRect()); else bounds = bounds.intersected(QRect(0, 0, width, height)); } currentScissorBounds = bounds; if (bounds == QRect(0, 0, width, height)) { glDisable(GL_SCISSOR_TEST); } else { glEnable(GL_SCISSOR_TEST); setScissor(bounds); } #endif } void QOpenGL2PaintEngineExPrivate::setScissor(const QRect &rect) { const int left = rect.left(); const int width = rect.width(); int bottom = height - (rect.top() + rect.height()); if (device->paintFlipped()) { bottom = rect.top(); } const int height = rect.height(); glScissor(left, bottom, width, height); } void QOpenGL2PaintEngineEx::clipEnabledChanged() { Q_D(QOpenGL2PaintEngineEx); state()->clipChanged = true; if (painter()->hasClipping()) d->regenerateClip(); else d->systemStateChanged(); } void QOpenGL2PaintEngineExPrivate::clearClip(uint value) { dirtyStencilRegion -= currentScissorBounds; glStencilMask(0xff); glClearStencil(value); glClear(GL_STENCIL_BUFFER_BIT); glStencilMask(0x0); q->state()->needsClipBufferClear = false; } void QOpenGL2PaintEngineExPrivate::writeClip(const QVectorPath &path, uint value) { transferMode(BrushDrawingMode); if (snapToPixelGrid) { snapToPixelGrid = false; matrixDirty = true; } if (matrixDirty) updateMatrix(); stencilClean = false; const bool singlePass = !path.hasWindingFill() && (((q->state()->currentClip == maxClip - 1) && q->state()->clipTestEnabled) || q->state()->needsClipBufferClear); const uint referenceClipValue = q->state()->needsClipBufferClear ? 1 : q->state()->currentClip; if (q->state()->needsClipBufferClear) clearClip(1); if (path.isEmpty()) { glEnable(GL_STENCIL_TEST); glStencilFunc(GL_LEQUAL, value, ~GL_STENCIL_HIGH_BIT); return; } if (q->state()->clipTestEnabled) glStencilFunc(GL_LEQUAL, q->state()->currentClip, ~GL_STENCIL_HIGH_BIT); else glStencilFunc(GL_ALWAYS, 0, 0xff); vertexCoordinateArray.clear(); vertexCoordinateArray.addPath(path, inverseScale, false); if (!singlePass) fillStencilWithVertexArray(vertexCoordinateArray, path.hasWindingFill()); glColorMask(false, false, false, false); glEnable(GL_STENCIL_TEST); useSimpleShader(); if (singlePass) { // Under these conditions we can set the new stencil value in a single // pass, by using the current value and the "new value" as the toggles glStencilFunc(GL_LEQUAL, referenceClipValue, ~GL_STENCIL_HIGH_BIT); glStencilOp(GL_KEEP, GL_INVERT, GL_INVERT); glStencilMask(value ^ referenceClipValue); drawVertexArrays(vertexCoordinateArray, GL_TRIANGLE_FAN); } else { glStencilOp(GL_KEEP, GL_REPLACE, GL_REPLACE); glStencilMask(0xff); if (!q->state()->clipTestEnabled && path.hasWindingFill()) { // Pass when any clip bit is set, set high bit glStencilFunc(GL_NOTEQUAL, GL_STENCIL_HIGH_BIT, ~GL_STENCIL_HIGH_BIT); composite(vertexCoordinateArray.boundingRect()); } // Pass when high bit is set, replace stencil value with new clip value glStencilFunc(GL_NOTEQUAL, value, GL_STENCIL_HIGH_BIT); composite(vertexCoordinateArray.boundingRect()); } glStencilFunc(GL_LEQUAL, value, ~GL_STENCIL_HIGH_BIT); glStencilMask(0); glColorMask(true, true, true, true); } void QOpenGL2PaintEngineEx::clip(const QVectorPath &path, Qt::ClipOperation op) { // qDebug("QOpenGL2PaintEngineEx::clip()"); Q_D(QOpenGL2PaintEngineEx); state()->clipChanged = true; ensureActive(); if (op == Qt::ReplaceClip) { op = Qt::IntersectClip; if (d->hasClipOperations()) { d->systemStateChanged(); state()->canRestoreClip = false; } } #ifndef QT_GL_NO_SCISSOR_TEST if (!path.isEmpty() && op == Qt::IntersectClip && (path.shape() == QVectorPath::RectangleHint)) { const QPointF* const points = reinterpret_cast(path.points()); QRectF rect(points[0], points[2]); if (state()->matrix.type() <= QTransform::TxScale || (state()->matrix.type() == QTransform::TxRotate && qFuzzyIsNull(state()->matrix.m11()) && qFuzzyIsNull(state()->matrix.m22()))) { state()->rectangleClip = state()->rectangleClip.intersected(state()->matrix.mapRect(rect).toRect()); d->updateClipScissorTest(); return; } } #endif const QRect pathRect = state()->matrix.mapRect(path.controlPointRect()).toAlignedRect(); switch (op) { case Qt::NoClip: if (d->useSystemClip) { state()->clipTestEnabled = true; state()->currentClip = 1; } else { state()->clipTestEnabled = false; } state()->rectangleClip = QRect(0, 0, d->width, d->height); state()->canRestoreClip = false; d->updateClipScissorTest(); break; case Qt::IntersectClip: state()->rectangleClip = state()->rectangleClip.intersected(pathRect); d->updateClipScissorTest(); d->resetClipIfNeeded(); ++d->maxClip; d->writeClip(path, d->maxClip); state()->currentClip = d->maxClip; state()->clipTestEnabled = true; break; default: break; } } void QOpenGL2PaintEngineExPrivate::regenerateClip() { systemStateChanged(); replayClipOperations(); } void QOpenGL2PaintEngineExPrivate::systemStateChanged() { Q_Q(QOpenGL2PaintEngineEx); q->state()->clipChanged = true; if (systemClip.isEmpty()) { useSystemClip = false; } else { if (q->paintDevice()->devType() == QInternal::Widget && currentClipDevice) { //QWidgetPrivate *widgetPrivate = qt_widget_private(static_cast(currentClipDevice)->window()); //useSystemClip = widgetPrivate->extra && widgetPrivate->extra->inRenderWithPainter; useSystemClip = true; } else { useSystemClip = true; } } q->state()->clipTestEnabled = false; q->state()->needsClipBufferClear = true; q->state()->currentClip = 1; maxClip = 1; q->state()->rectangleClip = useSystemClip ? systemClip.boundingRect() : QRect(0, 0, width, height); updateClipScissorTest(); if (systemClip.rectCount() == 1) { if (systemClip.boundingRect() == QRect(0, 0, width, height)) useSystemClip = false; #ifndef QT_GL_NO_SCISSOR_TEST // scissoring takes care of the system clip return; #endif } if (useSystemClip) { clearClip(0); QPainterPath path; path.addRegion(systemClip); q->state()->currentClip = 0; writeClip(qtVectorPathForPath(q->state()->matrix.inverted().map(path)), 1); q->state()->currentClip = 1; q->state()->clipTestEnabled = true; } } void QOpenGL2PaintEngineEx::setState(QPainterState *new_state) { // qDebug("QOpenGL2PaintEngineEx::setState()"); Q_D(QOpenGL2PaintEngineEx); QOpenGL2PaintEngineState *s = static_cast(new_state); QOpenGL2PaintEngineState *old_state = state(); QPaintEngineEx::setState(s); if (s->isNew) { // Newly created state object. The call to setState() // will either be followed by a call to begin(), or we are // setting the state as part of a save(). s->isNew = false; return; } // Setting the state as part of a restore(). if (old_state == s || old_state->renderHintsChanged) renderHintsChanged(); if (old_state == s || old_state->matrixChanged) d->matrixDirty = true; if (old_state == s || old_state->compositionModeChanged) d->compositionModeDirty = true; if (old_state == s || old_state->opacityChanged) d->opacityUniformDirty = true; if (old_state == s || old_state->clipChanged) { if (old_state && old_state != s && old_state->canRestoreClip) { d->updateClipScissorTest(); glDepthFunc(GL_LEQUAL); } else { d->regenerateClip(); } } } QPainterState *QOpenGL2PaintEngineEx::createState(QPainterState *orig) const { if (orig) const_cast(this)->ensureActive(); QOpenGL2PaintEngineState *s; if (!orig) s = new QOpenGL2PaintEngineState(); else s = new QOpenGL2PaintEngineState(*static_cast(orig)); s->matrixChanged = false; s->compositionModeChanged = false; s->opacityChanged = false; s->renderHintsChanged = false; s->clipChanged = false; return s; } QOpenGL2PaintEngineState::QOpenGL2PaintEngineState(QOpenGL2PaintEngineState &other) : QPainterState(other) { isNew = true; needsClipBufferClear = other.needsClipBufferClear; clipTestEnabled = other.clipTestEnabled; currentClip = other.currentClip; canRestoreClip = other.canRestoreClip; rectangleClip = other.rectangleClip; } QOpenGL2PaintEngineState::QOpenGL2PaintEngineState() { isNew = true; needsClipBufferClear = true; clipTestEnabled = false; canRestoreClip = true; } QOpenGL2PaintEngineState::~QOpenGL2PaintEngineState() { } void QOpenGL2PaintEngineExPrivate::setVertexAttribArrayEnabled(int arrayIndex, bool enabled) { Q_ASSERT(arrayIndex < QT_GL_VERTEX_ARRAY_TRACKED_COUNT); if (vertexAttributeArraysEnabledState[arrayIndex] && !enabled) funcs.glDisableVertexAttribArray(arrayIndex); if (!vertexAttributeArraysEnabledState[arrayIndex] && enabled) funcs.glEnableVertexAttribArray(arrayIndex); vertexAttributeArraysEnabledState[arrayIndex] = enabled; } void QOpenGL2PaintEngineExPrivate::syncGlState() { for (int i = 0; i < QT_GL_VERTEX_ARRAY_TRACKED_COUNT; ++i) { if (vertexAttributeArraysEnabledState[i]) funcs.glEnableVertexAttribArray(i); else funcs.glDisableVertexAttribArray(i); } } QT_END_NAMESPACE