// Copyright (C) 2016 The Qt Company Ltd. // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only WITH Qt-GPL-exception-1.0 #include #include #include // This is a more tolerant version of qFuzzyCompare that also handles the case // where one or more of the values being compare are close to zero static inline bool myFuzzyCompare(float p1, float p2) { if (qFuzzyIsNull(p1) && qFuzzyIsNull(p2)) return true; return qAbs(qAbs(p1) - qAbs(p2)) <= 0.00003f; } static inline bool myFuzzyCompare(const QVector3D &v1, const QVector3D &v2) { return myFuzzyCompare(v1.x(), v2.x()) && myFuzzyCompare(v1.y(), v2.y()) && myFuzzyCompare(v1.z(), v2.z()); } static inline bool myFuzzyCompare(const QQuaternion &q1, const QQuaternion &q2) { const float d = QQuaternion::dotProduct(q1, q2); return myFuzzyCompare(d * d, 1.0f); } static inline bool myFuzzyCompareRadians(float p1, float p2) { static const float fPI = float(M_PI); if (p1 < -fPI) p1 += 2.0f * fPI; else if (p1 > fPI) p1 -= 2.0f * fPI; if (p2 < -fPI) p2 += 2.0f * fPI; else if (p2 > fPI) p2 -= 2.0f * fPI; return qAbs(qAbs(p1) - qAbs(p2)) <= qDegreesToRadians(0.05f); } static inline bool myFuzzyCompareDegrees(float p1, float p2) { p1 = qDegreesToRadians(p1); p2 = qDegreesToRadians(p2); return myFuzzyCompareRadians(p1, p2); } class tst_QQuaternion : public QObject { Q_OBJECT public: tst_QQuaternion() {} ~tst_QQuaternion() {} private slots: void create(); void dotProduct_data(); void dotProduct(); void length_data(); void length(); void normalized_data(); void normalized(); void normalize_data(); void normalize(); void inverted_data(); void inverted(); void compare(); void add_data(); void add(); void subtract_data(); void subtract(); void multiply_data(); void multiply(); void multiplyFactor_data(); void multiplyFactor(); void divide_data(); void divide(); void negate_data(); void negate(); void conjugated_data(); void conjugated(); void fromAxisAndAngle_data(); void fromAxisAndAngle(); void fromRotationMatrix_data(); void fromRotationMatrix(); void fromAxes_data(); void fromAxes(); void rotationTo_data(); void rotationTo(); void fromDirection_data(); void fromDirection(); void fromEulerAngles_data(); void fromEulerAngles(); void slerp_data(); void slerp(); void nlerp_data(); void nlerp(); void properties(); void metaTypes(); }; // Test the creation of QQuaternion objects in various ways: // construct, copy, and modify. void tst_QQuaternion::create() { QQuaternion identity; QCOMPARE(identity.x(), 0.0f); QCOMPARE(identity.y(), 0.0f); QCOMPARE(identity.z(), 0.0f); QCOMPARE(identity.scalar(), 1.0f); QVERIFY(identity.isIdentity()); QQuaternion negativeZeroIdentity(1.0f, -0.0f, -0.0f, -0.0f); QCOMPARE(negativeZeroIdentity.x(), -0.0f); QCOMPARE(negativeZeroIdentity.y(), -0.0f); QCOMPARE(negativeZeroIdentity.z(), -0.0f); QCOMPARE(negativeZeroIdentity.scalar(), 1.0f); QVERIFY(negativeZeroIdentity.isIdentity()); QQuaternion v1(34.0f, 1.0f, 2.5f, -89.25f); QCOMPARE(v1.x(), 1.0f); QCOMPARE(v1.y(), 2.5f); QCOMPARE(v1.z(), -89.25f); QCOMPARE(v1.scalar(), 34.0f); QVERIFY(!v1.isNull()); QQuaternion v1i(34, 1, 2, -89); QCOMPARE(v1i.x(), 1.0f); QCOMPARE(v1i.y(), 2.0f); QCOMPARE(v1i.z(), -89.0f); QCOMPARE(v1i.scalar(), 34.0f); QVERIFY(!v1i.isNull()); QQuaternion v2(v1); QCOMPARE(v2.x(), 1.0f); QCOMPARE(v2.y(), 2.5f); QCOMPARE(v2.z(), -89.25f); QCOMPARE(v2.scalar(), 34.0f); QVERIFY(!v2.isNull()); QQuaternion v4; QCOMPARE(v4.x(), 0.0f); QCOMPARE(v4.y(), 0.0f); QCOMPARE(v4.z(), 0.0f); QCOMPARE(v4.scalar(), 1.0f); QVERIFY(v4.isIdentity()); v4 = v1; QCOMPARE(v4.x(), 1.0f); QCOMPARE(v4.y(), 2.5f); QCOMPARE(v4.z(), -89.25f); QCOMPARE(v4.scalar(), 34.0f); QVERIFY(!v4.isNull()); QQuaternion v9(34, QVector3D(1.0f, 2.5f, -89.25f)); QCOMPARE(v9.x(), 1.0f); QCOMPARE(v9.y(), 2.5f); QCOMPARE(v9.z(), -89.25f); QCOMPARE(v9.scalar(), 34.0f); QVERIFY(!v9.isNull()); v1.setX(3.0f); QCOMPARE(v1.x(), 3.0f); QCOMPARE(v1.y(), 2.5f); QCOMPARE(v1.z(), -89.25f); QCOMPARE(v1.scalar(), 34.0f); QVERIFY(!v1.isNull()); v1.setY(10.5f); QCOMPARE(v1.x(), 3.0f); QCOMPARE(v1.y(), 10.5f); QCOMPARE(v1.z(), -89.25f); QCOMPARE(v1.scalar(), 34.0f); QVERIFY(!v1.isNull()); v1.setZ(15.5f); QCOMPARE(v1.x(), 3.0f); QCOMPARE(v1.y(), 10.5f); QCOMPARE(v1.z(), 15.5f); QCOMPARE(v1.scalar(), 34.0f); QVERIFY(!v1.isNull()); v1.setScalar(6.0f); QCOMPARE(v1.x(), 3.0f); QCOMPARE(v1.y(), 10.5f); QCOMPARE(v1.z(), 15.5f); QCOMPARE(v1.scalar(), 6.0f); QVERIFY(!v1.isNull()); v1.setVector(2.0f, 6.5f, -1.25f); QCOMPARE(v1.x(), 2.0f); QCOMPARE(v1.y(), 6.5f); QCOMPARE(v1.z(), -1.25f); QCOMPARE(v1.scalar(), 6.0f); QVERIFY(!v1.isNull()); QVERIFY(v1.vector() == QVector3D(2.0f, 6.5f, -1.25f)); v1.setVector(QVector3D(-2.0f, -6.5f, 1.25f)); QCOMPARE(v1.x(), -2.0f); QCOMPARE(v1.y(), -6.5f); QCOMPARE(v1.z(), 1.25f); QCOMPARE(v1.scalar(), 6.0f); QVERIFY(!v1.isNull()); QVERIFY(v1.vector() == QVector3D(-2.0f, -6.5f, 1.25f)); v1.setX(0.0f); v1.setY(0.0f); v1.setZ(0.0f); v1.setScalar(0.0f); QCOMPARE(v1.x(), 0.0f); QCOMPARE(v1.y(), 0.0f); QCOMPARE(v1.z(), 0.0f); QCOMPARE(v1.scalar(), 0.0f); QVERIFY(v1.isNull()); QVector4D v10 = v9.toVector4D(); QCOMPARE(v10.x(), 1.0f); QCOMPARE(v10.y(), 2.5f); QCOMPARE(v10.z(), -89.25f); QCOMPARE(v10.w(), 34.0f); } // Test the computation of dot product. void tst_QQuaternion::dotProduct_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("scalar1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("scalar2"); QTest::addColumn("dot"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("identity") << 0.0f << 0.0f << 0.0f << 1.0f << 0.0f << 0.0f << 0.0f << 1.0f << 1.0f; QTest::newRow("unitvec") << 1.0f << 0.0f << 0.0f << 0.0f << 0.0f << 1.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("complex") << 1.0f << 2.0f << 3.0f << 4.0f << 4.0f << 5.0f << 6.0f << 7.0f << 60.0f; } void tst_QQuaternion::dotProduct() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, scalar1); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, scalar2); QFETCH(float, dot); QQuaternion q1(scalar1, x1, y1, z1); QQuaternion q2(scalar2, x2, y2, z2); QCOMPARE(QQuaternion::dotProduct(q1, q2), dot); QCOMPARE(QQuaternion::dotProduct(q2, q1), dot); } // Test length computation for quaternions. void tst_QQuaternion::length_data() { QTest::addColumn("x"); QTest::addColumn("y"); QTest::addColumn("z"); QTest::addColumn("w"); QTest::addColumn("len"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("1x") << 1.0f << 0.0f << 0.0f << 0.0f << 1.0f; QTest::newRow("1y") << 0.0f << 1.0f << 0.0f << 0.0f << 1.0f; QTest::newRow("1z") << 0.0f << 0.0f << 1.0f << 0.0f << 1.0f; QTest::newRow("1w") << 0.0f << 0.0f << 0.0f << 1.0f << 1.0f; QTest::newRow("-1x") << -1.0f << 0.0f << 0.0f << 0.0f << 1.0f; QTest::newRow("-1y") << 0.0f << -1.0f << 0.0f << 0.0f << 1.0f; QTest::newRow("-1z") << 0.0f << 0.0f << -1.0f << 0.0f << 1.0f; QTest::newRow("-1w") << 0.0f << 0.0f << 0.0f << -1.0f << 1.0f; QTest::newRow("two") << 2.0f << -2.0f << 2.0f << 2.0f << std::sqrt(16.0f); } void tst_QQuaternion::length() { QFETCH(float, x); QFETCH(float, y); QFETCH(float, z); QFETCH(float, w); QFETCH(float, len); QQuaternion v(w, x, y, z); QCOMPARE(v.length(), len); QCOMPARE(v.lengthSquared(), x * x + y * y + z * z + w * w); } // Test the unit vector conversion for quaternions. void tst_QQuaternion::normalized_data() { // Use the same test data as the length test. length_data(); } void tst_QQuaternion::normalized() { QFETCH(float, x); QFETCH(float, y); QFETCH(float, z); QFETCH(float, w); QFETCH(float, len); QQuaternion v(w, x, y, z); QQuaternion u = v.normalized(); if (v.isNull()) QVERIFY(u.isNull()); else QCOMPARE(u.length(), 1.0f); QCOMPARE(u.x() * len, v.x()); QCOMPARE(u.y() * len, v.y()); QCOMPARE(u.z() * len, v.z()); QCOMPARE(u.scalar() * len, v.scalar()); } // Test the unit vector conversion for quaternions. void tst_QQuaternion::normalize_data() { // Use the same test data as the length test. length_data(); } void tst_QQuaternion::normalize() { QFETCH(float, x); QFETCH(float, y); QFETCH(float, z); QFETCH(float, w); QQuaternion v(w, x, y, z); bool isNull = v.isNull(); v.normalize(); if (isNull) QVERIFY(v.isNull()); else QCOMPARE(v.length(), 1.0f); } void tst_QQuaternion::inverted_data() { // Use the same test data as the length test. length_data(); } void tst_QQuaternion::inverted() { QFETCH(float, x); QFETCH(float, y); QFETCH(float, z); QFETCH(float, w); QFETCH(float, len); QQuaternion v(w, x, y, z); QQuaternion u = v.inverted(); if (v.isNull()) { QVERIFY(u.isNull()); } else { len *= len; QCOMPARE(-u.x() * len, v.x()); QCOMPARE(-u.y() * len, v.y()); QCOMPARE(-u.z() * len, v.z()); QCOMPARE(u.scalar() * len, v.scalar()); } } // Test the comparison operators for quaternions. void tst_QQuaternion::compare() { QQuaternion v1(8, 1, 2, 4); QQuaternion v2(8, 1, 2, 4); QQuaternion v3(8, 3, 2, 4); QQuaternion v4(8, 1, 3, 4); QQuaternion v5(8, 1, 2, 3); QQuaternion v6(3, 1, 2, 4); QCOMPARE(v1, v2); QVERIFY(v1 != v3); QVERIFY(v1 != v4); QVERIFY(v1 != v5); QVERIFY(v1 != v6); } // Test addition for quaternions. void tst_QQuaternion::add_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("w1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("w2"); QTest::addColumn("x3"); QTest::addColumn("y3"); QTest::addColumn("z3"); QTest::addColumn("w3"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("xonly") << 1.0f << 0.0f << 0.0f << 0.0f << 2.0f << 0.0f << 0.0f << 0.0f << 3.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("yonly") << 0.0f << 1.0f << 0.0f << 0.0f << 0.0f << 2.0f << 0.0f << 0.0f << 0.0f << 3.0f << 0.0f << 0.0f; QTest::newRow("zonly") << 0.0f << 0.0f << 1.0f << 0.0f << 0.0f << 0.0f << 2.0f << 0.0f << 0.0f << 0.0f << 3.0f << 0.0f; QTest::newRow("wonly") << 0.0f << 0.0f << 0.0f << 1.0f << 0.0f << 0.0f << 0.0f << 2.0f << 0.0f << 0.0f << 0.0f << 3.0f; QTest::newRow("all") << 1.0f << 2.0f << 3.0f << 8.0f << 4.0f << 5.0f << -6.0f << 9.0f << 5.0f << 7.0f << -3.0f << 17.0f; } void tst_QQuaternion::add() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, w2); QFETCH(float, x3); QFETCH(float, y3); QFETCH(float, z3); QFETCH(float, w3); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); QQuaternion v3(w3, x3, y3, z3); QVERIFY((v1 + v2) == v3); QQuaternion v4(v1); v4 += v2; QCOMPARE(v4, v3); QCOMPARE(v4.x(), v1.x() + v2.x()); QCOMPARE(v4.y(), v1.y() + v2.y()); QCOMPARE(v4.z(), v1.z() + v2.z()); QCOMPARE(v4.scalar(), v1.scalar() + v2.scalar()); } // Test subtraction for quaternions. void tst_QQuaternion::subtract_data() { // Use the same test data as the add test. add_data(); } void tst_QQuaternion::subtract() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, w2); QFETCH(float, x3); QFETCH(float, y3); QFETCH(float, z3); QFETCH(float, w3); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); QQuaternion v3(w3, x3, y3, z3); QVERIFY((v3 - v1) == v2); QVERIFY((v3 - v2) == v1); QQuaternion v4(v3); v4 -= v1; QCOMPARE(v4, v2); QCOMPARE(v4.x(), v3.x() - v1.x()); QCOMPARE(v4.y(), v3.y() - v1.y()); QCOMPARE(v4.z(), v3.z() - v1.z()); QCOMPARE(v4.scalar(), v3.scalar() - v1.scalar()); QQuaternion v5(v3); v5 -= v2; QCOMPARE(v5, v1); QCOMPARE(v5.x(), v3.x() - v2.x()); QCOMPARE(v5.y(), v3.y() - v2.y()); QCOMPARE(v5.z(), v3.z() - v2.z()); QCOMPARE(v5.scalar(), v3.scalar() - v2.scalar()); } // Test quaternion multiplication. void tst_QQuaternion::multiply_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("w1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("w2"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("unitvec") << 1.0f << 0.0f << 0.0f << 1.0f << 0.0f << 1.0f << 0.0f << 1.0f; QTest::newRow("complex") << 1.0f << 2.0f << 3.0f << 7.0f << 4.0f << 5.0f << 6.0f << 8.0f; for (float w = -1.0f; w <= 1.0f; w += 0.5f) for (float x = -1.0f; x <= 1.0f; x += 0.5f) for (float y = -1.0f; y <= 1.0f; y += 0.5f) for (float z = -1.0f; z <= 1.0f; z += 0.5f) { QTest::newRow("exhaustive") << x << y << z << w << z << w << y << x; } } void tst_QQuaternion::multiply() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, w2); QQuaternion q1(w1, x1, y1, z1); QQuaternion q2(w2, x2, y2, z2); // Use the simple algorithm at: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q53 // to calculate the answer we expect to get. QVector3D v1(x1, y1, z1); QVector3D v2(x2, y2, z2); float scalar = w1 * w2 - QVector3D::dotProduct(v1, v2); QVector3D vector = w1 * v2 + w2 * v1 + QVector3D::crossProduct(v1, v2); QQuaternion result(scalar, vector); QVERIFY((q1 * q2) == result); } // Test multiplication by a factor for quaternions. void tst_QQuaternion::multiplyFactor_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("w1"); QTest::addColumn("factor"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("w2"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << 100.0f << 0.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("xonly") << 1.0f << 0.0f << 0.0f << 0.0f << 2.0f << 2.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("yonly") << 0.0f << 1.0f << 0.0f << 0.0f << 2.0f << 0.0f << 2.0f << 0.0f << 0.0f; QTest::newRow("zonly") << 0.0f << 0.0f << 1.0f << 0.0f << 2.0f << 0.0f << 0.0f << 2.0f << 0.0f; QTest::newRow("wonly") << 0.0f << 0.0f << 0.0f << 1.0f << 2.0f << 0.0f << 0.0f << 0.0f << 2.0f; QTest::newRow("all") << 1.0f << 2.0f << -3.0f << 4.0f << 2.0f << 2.0f << 4.0f << -6.0f << 8.0f; QTest::newRow("allzero") << 1.0f << 2.0f << -3.0f << 4.0f << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f; } void tst_QQuaternion::multiplyFactor() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QFETCH(float, factor); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, w2); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); QVERIFY((v1 * factor) == v2); QVERIFY((factor * v1) == v2); QQuaternion v3(v1); v3 *= factor; QCOMPARE(v3, v2); QCOMPARE(v3.x(), v1.x() * factor); QCOMPARE(v3.y(), v1.y() * factor); QCOMPARE(v3.z(), v1.z() * factor); QCOMPARE(v3.scalar(), v1.scalar() * factor); } // Test division by a factor for quaternions. void tst_QQuaternion::divide_data() { // Use the same test data as the multiply test. multiplyFactor_data(); } void tst_QQuaternion::divide() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QFETCH(float, factor); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, w2); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w2, x2, y2, z2); if (factor == 0.0f) return; QVERIFY((v2 / factor) == v1); QQuaternion v3(v2); v3 /= factor; QCOMPARE(v3, v1); QCOMPARE(v3.x(), v2.x() / factor); QCOMPARE(v3.y(), v2.y() / factor); QCOMPARE(v3.z(), v2.z() / factor); QCOMPARE(v3.scalar(), v2.scalar() / factor); } // Test negation for quaternions. void tst_QQuaternion::negate_data() { // Use the same test data as the add test. add_data(); } void tst_QQuaternion::negate() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(-w1, -x1, -y1, -z1); QCOMPARE(-v1, v2); } // Test quaternion conjugate calculations. void tst_QQuaternion::conjugated_data() { // Use the same test data as the add test. add_data(); } void tst_QQuaternion::conjugated() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, w1); QQuaternion v1(w1, x1, y1, z1); QQuaternion v2(w1, -x1, -y1, -z1); QCOMPARE(v1.conjugated(), v2); } // Test quaternion creation from an axis and an angle. void tst_QQuaternion::fromAxisAndAngle_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("angle"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f; QTest::newRow("xonly") << 1.0f << 0.0f << 0.0f << 90.0f; QTest::newRow("yonly") << 0.0f << 1.0f << 0.0f << 180.0f; QTest::newRow("zonly") << 0.0f << 0.0f << 1.0f << 270.0f; QTest::newRow("complex") << 1.0f << 2.0f << -3.0f << 45.0f; } void tst_QQuaternion::fromAxisAndAngle() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, angle); // Use a straight-forward implementation of the algorithm at: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 // to calculate the answer we expect to get. QVector3D vector = QVector3D(x1, y1, z1).normalized(); const float a = qDegreesToRadians(angle) / 2.0; const float sin_a = std::sin(a); const float cos_a = std::cos(a); QQuaternion result(cos_a, (vector.x() * sin_a), (vector.y() * sin_a), (vector.z() * sin_a)); result = result.normalized(); QQuaternion answer = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle); QCOMPARE(answer.x(), result.x()); QCOMPARE(answer.y(), result.y()); QCOMPARE(answer.z(), result.z()); QCOMPARE(answer.scalar(), result.scalar()); { QVector3D answerAxis; float answerAngle; answer.getAxisAndAngle(&answerAxis, &answerAngle); QCOMPARE(answerAxis.x(), vector.x()); QCOMPARE(answerAxis.y(), vector.y()); QCOMPARE(answerAxis.z(), vector.z()); QCOMPARE(answerAngle, angle); } answer = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle); QCOMPARE(answer.x(), result.x()); QCOMPARE(answer.y(), result.y()); QCOMPARE(answer.z(), result.z()); QCOMPARE(answer.scalar(), result.scalar()); { float answerAxisX, answerAxisY, answerAxisZ; float answerAngle; answer.getAxisAndAngle(&answerAxisX, &answerAxisY, &answerAxisZ, &answerAngle); QCOMPARE(answerAxisX, vector.x()); QCOMPARE(answerAxisY, vector.y()); QCOMPARE(answerAxisZ, vector.z()); QCOMPARE(answerAngle, angle); } } // Test quaternion convertion to and from rotation matrix. void tst_QQuaternion::fromRotationMatrix_data() { fromAxisAndAngle_data(); } void tst_QQuaternion::fromRotationMatrix() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, angle); QQuaternion result = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle); QMatrix3x3 rot3x3 = result.toRotationMatrix(); QQuaternion answer = QQuaternion::fromRotationMatrix(rot3x3); QVERIFY(qFuzzyCompare(answer, result) || qFuzzyCompare(-answer, result)); } // Test quaternion convertion to and from orthonormal axes. void tst_QQuaternion::fromAxes_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("angle"); QTest::addColumn("xAxis"); QTest::addColumn("yAxis"); QTest::addColumn("zAxis"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << QVector3D(1, 0, 0) << QVector3D(0, 1, 0) << QVector3D(0, 0, 1); QTest::newRow("xonly") << 1.0f << 0.0f << 0.0f << 90.0f << QVector3D(1, 0, 0) << QVector3D(0, 0, 1) << QVector3D(0, -1, 0); QTest::newRow("yonly") << 0.0f << 1.0f << 0.0f << 180.0f << QVector3D(-1, 0, 0) << QVector3D(0, 1, 0) << QVector3D(0, 0, -1); QTest::newRow("zonly") << 0.0f << 0.0f << 1.0f << 270.0f << QVector3D(0, -1, 0) << QVector3D(1, 0, 0) << QVector3D(0, 0, 1); QTest::newRow("complex") << 1.0f << 2.0f << -3.0f << 45.0f << QVector3D(0.728028f, -0.525105f, -0.440727f) << QVector3D(0.608789f, 0.790791f, 0.0634566f) << QVector3D(0.315202f, -0.314508f, 0.895395f); } void tst_QQuaternion::fromAxes() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, angle); QFETCH(QVector3D, xAxis); QFETCH(QVector3D, yAxis); QFETCH(QVector3D, zAxis); QQuaternion result = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle); QVector3D axes[3]; result.getAxes(&axes[0], &axes[1], &axes[2]); QVERIFY(myFuzzyCompare(axes[0], xAxis)); QVERIFY(myFuzzyCompare(axes[1], yAxis)); QVERIFY(myFuzzyCompare(axes[2], zAxis)); QQuaternion answer = QQuaternion::fromAxes(axes[0], axes[1], axes[2]); QVERIFY(qFuzzyCompare(answer, result) || qFuzzyCompare(-answer, result)); } // Test shortest arc quaternion. void tst_QQuaternion::rotationTo_data() { QTest::addColumn("from"); QTest::addColumn("to"); // same QTest::newRow("+X -> +X") << QVector3D(10.0f, 0.0f, 0.0f) << QVector3D(10.0f, 0.0f, 0.0f); QTest::newRow("-X -> -X") << QVector3D(-10.0f, 0.0f, 0.0f) << QVector3D(-10.0f, 0.0f, 0.0f); QTest::newRow("+Y -> +Y") << QVector3D(0.0f, 10.0f, 0.0f) << QVector3D(0.0f, 10.0f, 0.0f); QTest::newRow("-Y -> -Y") << QVector3D(0.0f, -10.0f, 0.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("+Z -> +Z") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(0.0f, 0.0f, 10.0f); QTest::newRow("-Z -> -Z") << QVector3D(0.0f, 0.0f, -10.0f) << QVector3D(0.0f, 0.0f, -10.0f); QTest::newRow("+X+Y+Z -> +X+Y+Z") << QVector3D(10.0f, 10.0f, 10.0f) << QVector3D(10.0f, 10.0f, 10.0f); QTest::newRow("-X-Y-Z -> -X-Y-Z") << QVector3D(-10.0f, -10.0f, -10.0f) << QVector3D(-10.0f, -10.0f, -10.0f); // arbitrary QTest::newRow("+Z -> +X") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(10.0f, 0.0f, 0.0f); QTest::newRow("+Z -> -X") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(-10.0f, 0.0f, 0.0f); QTest::newRow("+Z -> +Y") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(0.0f, 10.0f, 0.0f); QTest::newRow("+Z -> -Y") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("-Z -> +X") << QVector3D(0.0f, 0.0f, -10.0f) << QVector3D(10.0f, 0.0f, 0.0f); QTest::newRow("-Z -> -X") << QVector3D(0.0f, 0.0f, -10.0f) << QVector3D(-10.0f, 0.0f, 0.0f); QTest::newRow("-Z -> +Y") << QVector3D(0.0f, 0.0f, -10.0f) << QVector3D(0.0f, 10.0f, 0.0f); QTest::newRow("-Z -> -Y") << QVector3D(0.0f, 0.0f, -10.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("+X -> +Y") << QVector3D(10.0f, 0.0f, 0.0f) << QVector3D(0.0f, 10.0f, 0.0f); QTest::newRow("+X -> -Y") << QVector3D(10.0f, 0.0f, 0.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("-X -> +Y") << QVector3D(-10.0f, 0.0f, 0.0f) << QVector3D(0.0f, 10.0f, 0.0f); QTest::newRow("-X -> -Y") << QVector3D(-10.0f, 0.0f, 0.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("+X+Y+Z -> +X-Y-Z") << QVector3D(10.0f, 10.0f, 10.0f) << QVector3D(10.0f, -10.0f, -10.0f); QTest::newRow("-X-Y+Z -> -X+Y-Z") << QVector3D(-10.0f, -10.0f, 10.0f) << QVector3D(-10.0f, 10.0f, -10.0f); QTest::newRow("+X+Y+Z -> +Z") << QVector3D(10.0f, 10.0f, 10.0f) << QVector3D(0.0f, 0.0f, 10.0f); // collinear QTest::newRow("+X -> -X") << QVector3D(10.0f, 0.0f, 0.0f) << QVector3D(-10.0f, 0.0f, 0.0f); QTest::newRow("+Y -> -Y") << QVector3D(0.0f, 10.0f, 0.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("+Z -> -Z") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(0.0f, 0.0f, -10.0f); QTest::newRow("+X+Y+Z -> -X-Y-Z") << QVector3D(10.0f, 10.0f, 10.0f) << QVector3D(-10.0f, -10.0f, -10.0f); } void tst_QQuaternion::rotationTo() { QFETCH(QVector3D, from); QFETCH(QVector3D, to); QQuaternion q1 = QQuaternion::rotationTo(from, to); QVERIFY(myFuzzyCompare(q1, q1.normalized())); QVector3D vec1(q1 * from); vec1 *= (to.length() / from.length()); // discard rotated length QVERIFY(myFuzzyCompare(vec1, to)); QQuaternion q2 = QQuaternion::rotationTo(to, from); QVERIFY(myFuzzyCompare(q2, q2.normalized())); QVector3D vec2(q2 * to); vec2 *= (from.length() / to.length()); // discard rotated length QVERIFY(myFuzzyCompare(vec2, from)); } static QByteArray testnameForAxis(const QVector3D &axis) { QByteArray testname; if (axis == QVector3D()) { testname = "null"; } else { if (axis.x()) { testname += axis.x() < 0 ? '-' : '+'; testname += 'X'; } if (axis.y()) { testname += axis.y() < 0 ? '-' : '+'; testname += 'Y'; } if (axis.z()) { testname += axis.z() < 0 ? '-' : '+'; testname += 'Z'; } } return testname; } // Test quaternion convertion to and from orthonormal axes. void tst_QQuaternion::fromDirection_data() { QTest::addColumn("direction"); QTest::addColumn("up"); QList orientations; orientations << QQuaternion(); for (int angle = 45; angle <= 360; angle += 45) { orientations << QQuaternion::fromAxisAndAngle(QVector3D(1, 0, 0), angle) << QQuaternion::fromAxisAndAngle(QVector3D(0, 1, 0), angle) << QQuaternion::fromAxisAndAngle(QVector3D(0, 0, 1), angle) << QQuaternion::fromAxisAndAngle(QVector3D(1, 0, 0), angle) * QQuaternion::fromAxisAndAngle(QVector3D(0, 1, 0), angle) * QQuaternion::fromAxisAndAngle(QVector3D(0, 0, 1), angle); } // othonormal up and dir foreach (const QQuaternion &q, orientations) { QVector3D xAxis, yAxis, zAxis; q.getAxes(&xAxis, &yAxis, &zAxis); QTest::newRow("dir: " + testnameForAxis(zAxis) + ", up: " + testnameForAxis(yAxis)) << zAxis * 10.0f << yAxis * 10.0f; } // collinear up and dir QTest::newRow("dir: +X, up: +X") << QVector3D(10.0f, 0.0f, 0.0f) << QVector3D(10.0f, 0.0f, 0.0f); QTest::newRow("dir: +X, up: -X") << QVector3D(10.0f, 0.0f, 0.0f) << QVector3D(-10.0f, 0.0f, 0.0f); QTest::newRow("dir: +Y, up: +Y") << QVector3D(0.0f, 10.0f, 0.0f) << QVector3D(0.0f, 10.0f, 0.0f); QTest::newRow("dir: +Y, up: -Y") << QVector3D(0.0f, 10.0f, 0.0f) << QVector3D(0.0f, -10.0f, 0.0f); QTest::newRow("dir: +Z, up: +Z") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(0.0f, 0.0f, 10.0f); QTest::newRow("dir: +Z, up: -Z") << QVector3D(0.0f, 0.0f, 10.0f) << QVector3D(0.0f, 0.0f, -10.0f); QTest::newRow("dir: +X+Y+Z, up: +X+Y+Z") << QVector3D(10.0f, 10.0f, 10.0f) << QVector3D(10.0f, 10.0f, 10.0f); QTest::newRow("dir: +X+Y+Z, up: -X-Y-Z") << QVector3D(10.0f, 10.0f, 10.0f) << QVector3D(-10.0f, -10.0f, -10.0f); // invalid up foreach (const QQuaternion &q, orientations) { QVector3D xAxis, yAxis, zAxis; q.getAxes(&xAxis, &yAxis, &zAxis); QTest::newRow("dir: " + testnameForAxis(zAxis) + ", up: null") << zAxis * 10.0f << QVector3D(); } } void tst_QQuaternion::fromDirection() { QFETCH(QVector3D, direction); QFETCH(QVector3D, up); QVector3D expextedZ(direction != QVector3D() ? direction.normalized() : QVector3D(0, 0, 1)); QVector3D expextedY(up.normalized()); QQuaternion result = QQuaternion::fromDirection(direction, up); QVERIFY(myFuzzyCompare(result, result.normalized())); QVector3D xAxis, yAxis, zAxis; result.getAxes(&xAxis, &yAxis, &zAxis); QVERIFY(myFuzzyCompare(zAxis, expextedZ)); if (!qFuzzyIsNull(QVector3D::crossProduct(expextedZ, expextedY).lengthSquared())) { QVector3D expextedX(QVector3D::crossProduct(expextedY, expextedZ)); QVERIFY(myFuzzyCompare(yAxis, expextedY)); QVERIFY(myFuzzyCompare(xAxis, expextedX)); } } // Test quaternion creation from an axis and an angle. void tst_QQuaternion::fromEulerAngles_data() { QTest::addColumn("pitch"); QTest::addColumn("yaw"); QTest::addColumn("roll"); QTest::addColumn("quaternion"); QTest::newRow("null") << 0.0f << 0.0f << 0.0f << QQuaternion(1.0f, 0.0f, 0.0f, 0.0f); QTest::newRow("xonly") << 90.0f << 0.0f << 0.0f << QQuaternion(0.707107f, 0.707107f, 0.0f, 0.0f); QTest::newRow("yonly") << 0.0f << 180.0f << 0.0f << QQuaternion(0.0f, 0.0f, 1.0f, 0.0f); QTest::newRow("zonly") << 0.0f << 0.0f << 270.0f << QQuaternion(-0.707107f, 0.0f, 0.0f, 0.707107f); QTest::newRow("x+z") << 30.0f << 0.0f << 45.0f << QQuaternion(0.892399f, 0.239118f, -0.099046f, 0.369644f); QTest::newRow("x+y") << 30.0f << 90.0f << 0.0f << QQuaternion(0.683013f, 0.183013f, 0.683013f, -0.183013f); QTest::newRow("y+z") << 0.0f << 45.0f << 30.0f << QQuaternion(0.892399f, 0.099046f, 0.369644f, 0.239118f); QTest::newRow("complex") << 30.0f << 240.0f << -45.0f << QQuaternion(-0.531976f, -0.43968f, 0.723317f, -0.02226f); // Three gimbal_lock cases are not unique for the conversions from quaternion // to euler, Qt will use only XY rotations for these cases. // For example, QQuaternion(0.5f, 0.5f, -0.5f, 0.5f) can be EulerXYZ(90.0f, 0.0f, 90.0f), too. // But Qt will always convert it to EulerXYZ(90.0f, -90.0f, 0.0f) without Z-rotation. QTest::newRow("gimbal_lock_1") << 90.0f << -90.0f << 0.0f << QQuaternion(0.5f, 0.5f, -0.5f, 0.5f); QTest::newRow("gimbal_lock_2") << 90.0f << 40.0f << 0.0f << QQuaternion(0.664463f, 0.664463f, 0.241845f, -0.241845f); QTest::newRow("gimbal_lock_3") << 90.0f << 170.0f << 0.0f << QQuaternion(0.0616285f, 0.0616285f, 0.704416f, -0.704416f); // These four examples have a fraction of errors that would bypass normalize() threshold // and could make Gimbal lock detection fail. QTest::newRow("gimbal_lock_fraction_1") << -90.0f << 90.001152f << 0.0f << QQuaternion(0.499989986f, -0.5f, 0.5f, 0.5f); QTest::newRow("gimbal_lock_fraction_2") << -90.0f << -179.999985f << 0.0f << QQuaternion(1.00000001e-07f, 1.00000001e-10f, -0.707106769f, -0.707105756f); QTest::newRow("gimbal_lock_fraction_3") << -90.0f << 90.0011597f << 0.0f << QQuaternion(0.499989986f, -0.49999994f, 0.5f, 0.5f); QTest::newRow("gimbal_lock_fraction_4") << -90.0f << -180.0f << 0.0f << QQuaternion(9.99999996e-12f, 9.99999996e-12f, -0.707106769f, -0.707096756f); } void tst_QQuaternion::fromEulerAngles() { QFETCH(float, pitch); QFETCH(float, yaw); QFETCH(float, roll); QFETCH(QQuaternion, quaternion); // Use a straight-forward implementation of the algorithm at: // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q60 // to calculate the answer we expect to get. QQuaternion qx = QQuaternion::fromAxisAndAngle(QVector3D(1, 0, 0), pitch); QQuaternion qy = QQuaternion::fromAxisAndAngle(QVector3D(0, 1, 0), yaw); QQuaternion qz = QQuaternion::fromAxisAndAngle(QVector3D(0, 0, 1), roll); QQuaternion result = qy * (qx * qz); QQuaternion answer = QQuaternion::fromEulerAngles(QVector3D(pitch, yaw, roll)); QVERIFY(myFuzzyCompare(answer.x(), result.x())); QVERIFY(myFuzzyCompare(answer.y(), result.y())); QVERIFY(myFuzzyCompare(answer.z(), result.z())); QVERIFY(myFuzzyCompare(answer.scalar(), result.scalar())); // quaternion should be the same as the result QVERIFY(myFuzzyCompare(answer.x(), quaternion.x())); QVERIFY(myFuzzyCompare(answer.y(), quaternion.y())); QVERIFY(myFuzzyCompare(answer.z(), quaternion.z())); QVERIFY(myFuzzyCompare(answer.scalar(), quaternion.scalar())); { QVector3D answerEulerAngles = answer.toEulerAngles(); QVERIFY(myFuzzyCompareDegrees(answerEulerAngles.x(), pitch)); QVERIFY(myFuzzyCompareDegrees(answerEulerAngles.y(), yaw)); QVERIFY(myFuzzyCompareDegrees(answerEulerAngles.z(), roll)); QVector3D quaternionEulerAngles = quaternion.toEulerAngles(); QVERIFY(myFuzzyCompareDegrees(quaternionEulerAngles.x(), pitch)); QVERIFY(myFuzzyCompareDegrees(quaternionEulerAngles.y(), yaw)); QVERIFY(myFuzzyCompareDegrees(quaternionEulerAngles.z(), roll)); } answer = QQuaternion::fromEulerAngles(pitch, yaw, roll); QVERIFY(myFuzzyCompare(answer.x(), result.x())); QVERIFY(myFuzzyCompare(answer.y(), result.y())); QVERIFY(myFuzzyCompare(answer.z(), result.z())); QVERIFY(myFuzzyCompare(answer.scalar(), result.scalar())); { float answerPitch, answerYaw, answerRoll; answer.getEulerAngles(&answerPitch, &answerYaw, &answerRoll); QVERIFY(myFuzzyCompareDegrees(answerPitch, pitch)); QVERIFY(myFuzzyCompareDegrees(answerYaw, yaw)); QVERIFY(myFuzzyCompareDegrees(answerRoll, roll)); float quaternionPitch, quaternionYaw, quaternionRoll; quaternion.getEulerAngles(&quaternionPitch, &quaternionYaw, &quaternionRoll); QVERIFY(myFuzzyCompareDegrees(quaternionPitch, pitch)); QVERIFY(myFuzzyCompareDegrees(quaternionYaw, yaw)); QVERIFY(myFuzzyCompareDegrees(quaternionRoll, roll)); } } // Test spherical interpolation of quaternions. void tst_QQuaternion::slerp_data() { QTest::addColumn("x1"); QTest::addColumn("y1"); QTest::addColumn("z1"); QTest::addColumn("angle1"); QTest::addColumn("x2"); QTest::addColumn("y2"); QTest::addColumn("z2"); QTest::addColumn("angle2"); QTest::addColumn("t"); QTest::addColumn("x3"); QTest::addColumn("y3"); QTest::addColumn("z3"); QTest::addColumn("angle3"); QTest::newRow("first") << 1.0f << 2.0f << -3.0f << 90.0f << 1.0f << 2.0f << -3.0f << 180.0f << 0.0f << 1.0f << 2.0f << -3.0f << 90.0f; QTest::newRow("first2") << 1.0f << 2.0f << -3.0f << 90.0f << 1.0f << 2.0f << -3.0f << 180.0f << -0.5f << 1.0f << 2.0f << -3.0f << 90.0f; QTest::newRow("second") << 1.0f << 2.0f << -3.0f << 90.0f << 1.0f << 2.0f << -3.0f << 180.0f << 1.0f << 1.0f << 2.0f << -3.0f << 180.0f; QTest::newRow("second2") << 1.0f << 2.0f << -3.0f << 90.0f << 1.0f << 2.0f << -3.0f << 180.0f << 1.5f << 1.0f << 2.0f << -3.0f << 180.0f; QTest::newRow("middle") << 1.0f << 2.0f << -3.0f << 90.0f << 1.0f << 2.0f << -3.0f << 180.0f << 0.5f << 1.0f << 2.0f << -3.0f << 135.0f; QTest::newRow("wide angle") << 1.0f << 2.0f << -3.0f << 0.0f << 1.0f << 2.0f << -3.0f << 270.0f << 0.5f << 1.0f << 2.0f << -3.0f << -45.0f; } void tst_QQuaternion::slerp() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, angle1); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, angle2); QFETCH(float, t); QFETCH(float, x3); QFETCH(float, y3); QFETCH(float, z3); QFETCH(float, angle3); QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1); QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2); QQuaternion q3 = QQuaternion::fromAxisAndAngle(x3, y3, z3, angle3); QQuaternion result = QQuaternion::slerp(q1, q2, t); QCOMPARE(result.x(), q3.x()); QCOMPARE(result.y(), q3.y()); QCOMPARE(result.z(), q3.z()); QCOMPARE(result.scalar(), q3.scalar()); } // Test normalized linear interpolation of quaternions. void tst_QQuaternion::nlerp_data() { slerp_data(); } void tst_QQuaternion::nlerp() { QFETCH(float, x1); QFETCH(float, y1); QFETCH(float, z1); QFETCH(float, angle1); QFETCH(float, x2); QFETCH(float, y2); QFETCH(float, z2); QFETCH(float, angle2); QFETCH(float, t); QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1); QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2); QQuaternion result = QQuaternion::nlerp(q1, q2, t); float resultx, resulty, resultz, resultscalar; if (t <= 0.0f) { resultx = q1.x(); resulty = q1.y(); resultz = q1.z(); resultscalar = q1.scalar(); } else if (t >= 1.0f) { resultx = q2.x(); resulty = q2.y(); resultz = q2.z(); resultscalar = q2.scalar(); } else if (qAbs(angle1 - angle2) <= 180.f) { resultx = q1.x() * (1 - t) + q2.x() * t; resulty = q1.y() * (1 - t) + q2.y() * t; resultz = q1.z() * (1 - t) + q2.z() * t; resultscalar = q1.scalar() * (1 - t) + q2.scalar() * t; } else { // Angle greater than 180 degrees: negate q2. resultx = q1.x() * (1 - t) - q2.x() * t; resulty = q1.y() * (1 - t) - q2.y() * t; resultz = q1.z() * (1 - t) - q2.z() * t; resultscalar = q1.scalar() * (1 - t) - q2.scalar() * t; } QQuaternion q3 = QQuaternion(resultscalar, resultx, resulty, resultz).normalized(); QCOMPARE(result.x(), q3.x()); QCOMPARE(result.y(), q3.y()); QCOMPARE(result.z(), q3.z()); QCOMPARE(result.scalar(), q3.scalar()); } class tst_QQuaternionProperties : public QObject { Q_OBJECT Q_PROPERTY(QQuaternion quaternion READ quaternion WRITE setQuaternion) public: tst_QQuaternionProperties(QObject *parent = nullptr) : QObject(parent) {} QQuaternion quaternion() const { return q; } void setQuaternion(const QQuaternion& value) { q = value; } private: QQuaternion q; }; // Test getting and setting quaternion properties via the metaobject system. void tst_QQuaternion::properties() { tst_QQuaternionProperties obj; obj.setQuaternion(QQuaternion(6.0f, 7.0f, 8.0f, 9.0f)); QQuaternion q = qvariant_cast(obj.property("quaternion")); QCOMPARE(q.scalar(), 6.0f); QCOMPARE(q.x(), 7.0f); QCOMPARE(q.y(), 8.0f); QCOMPARE(q.z(), 9.0f); obj.setProperty("quaternion", QVariant::fromValue(QQuaternion(-6.0f, -7.0f, -8.0f, -9.0f))); q = qvariant_cast(obj.property("quaternion")); QCOMPARE(q.scalar(), -6.0f); QCOMPARE(q.x(), -7.0f); QCOMPARE(q.y(), -8.0f); QCOMPARE(q.z(), -9.0f); } void tst_QQuaternion::metaTypes() { QCOMPARE(QMetaType::fromName("QQuaternion").id(), int(QMetaType::QQuaternion)); QCOMPARE(QByteArray(QMetaType(QMetaType::QQuaternion).name()), QByteArray("QQuaternion")); QVERIFY(QMetaType::isRegistered(QMetaType::QQuaternion)); QCOMPARE(qMetaTypeId(), int(QMetaType::QQuaternion)); } QTEST_APPLESS_MAIN(tst_QQuaternion) #include "tst_qquaternion.moc"