/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: http://www.qt.io/licensing/ ** ** This file is part of the examples of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:BSD$ ** You may use this file under the terms of the BSD license as follows: ** ** "Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are ** met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** * Neither the name of The Qt Company Ltd nor the names of its ** contributors may be used to endorse or promote products derived ** from this software without specific prior written permission. ** ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "glwindow.h" #include #include #include #include #include //#include #include #include #include #include #ifndef GL_READ_WRITE #define GL_READ_WRITE 0x88BA #endif #ifndef GL_RGBA8 #define GL_RGBA8 0x8058 #endif #ifndef GL_SHADER_IMAGE_ACCESS_BARRIER_BIT #define GL_SHADER_IMAGE_ACCESS_BARRIER_BIT 0x00000020 #endif GLWindow::GLWindow() : m_texImageInput(0), m_texImageTmp(0), m_texImageProcessed(0), m_shaderDisplay(0), m_shaderComputeV(0), m_shaderComputeH(0), m_blurRadius(0.0f), m_animate(true) { const float animationStart = 0.0; const float animationEnd = 10.0; const float animationLength = 1000; m_animationGroup = new QSequentialAnimationGroup(this); m_animationGroup->setLoopCount(-1); m_animationForward = new QPropertyAnimation(this, QByteArrayLiteral("blurRadius")); m_animationForward->setStartValue(animationStart); m_animationForward->setEndValue(animationEnd); m_animationForward->setDuration(animationLength); m_animationGroup->addAnimation(m_animationForward); m_animationBackward = new QPropertyAnimation(this, QByteArrayLiteral("blurRadius")); m_animationBackward->setStartValue(animationEnd); m_animationBackward->setEndValue(animationStart); m_animationBackward->setDuration(animationLength); m_animationGroup->addAnimation(m_animationBackward); m_animationGroup->start(); } GLWindow::~GLWindow() { makeCurrent(); delete m_texImageInput; delete m_texImageProcessed; delete m_texImageTmp; delete m_shaderDisplay; delete m_shaderComputeH; delete m_shaderComputeV; delete m_animationGroup; delete m_animationForward; delete m_animationBackward; } void GLWindow::setBlurRadius(float blurRadius) { int radius = int(blurRadius); if (radius != m_blurRadius) { m_blurRadius = radius; update(); } } void GLWindow::setAnimating(bool animate) { m_animate = animate; if (animate) m_animationGroup->start(); else m_animationGroup->stop(); } void GLWindow::keyPressEvent(QKeyEvent *e) { if (e->key() == Qt::Key_Space) { // pause setAnimating(!m_animate); } update(); } static const char *vsDisplaySource = "const vec4 vertices[4] = vec4[4] (\n" " vec4( -1.0, 1.0, 0.0, 1.0),\n" " vec4( -1.0, -1.0, 0.0, 1.0),\n" " vec4( 1.0, 1.0, 0.0, 1.0),\n" " vec4( 1.0, -1.0, 0.0, 1.0)\n" ");\n" "const vec2 texCoords[4] = vec2[4] (\n" " vec2( 0.0, 1.0),\n" " vec2( 0.0, 0.0),\n" " vec2( 1.0, 1.0),\n" " vec2( 1.0, 0.0)\n" ");\n" "out vec2 texCoord;\n" "uniform mat4 matProjection;\n" "uniform vec2 imageRatio;\n" "void main() {\n" " gl_Position = matProjection * ( vertices[gl_VertexID] * vec4(imageRatio,0,1) );\n" " texCoord = texCoords[gl_VertexID];\n" "}\n"; static const char *fsDisplaySource = "in lowp vec2 texCoord; \n" "uniform sampler2D samImage; \n" "layout(location = 0) out lowp vec4 color;\n" "void main() {\n" " lowp vec4 texColor = texture(samImage,texCoord);\n" " color = vec4(texColor.rgb, 1.0);\n" "}\n"; static const char *csComputeSourceV = //"#extension GL_EXT_gpu_shader5 : require \n" "#define COMPUTEPATCHSIZE 32 \n" "#define IMGFMT rgba8 \n" "layout (local_size_x = COMPUTEPATCHSIZE, local_size_y = COMPUTEPATCHSIZE) in;\n" "layout(binding=0, IMGFMT) uniform highp image2D inputImage; // Use a sampler to improve performance \n" "layout(binding=1, IMGFMT) uniform highp image2D resultImage;\n" "uniform int radius;\n" "const float cutoff = 2.2;\n" "float sigma = clamp(float(radius) / cutoff,0.02,100.0);\n" // Const initialization with dynamically uniform expressions doesn't work in GLES "float expFactor = 1.0 / (2.0 * sigma * sigma);\n" // Same here "float gaussian(float distance) {\n" " return exp( -(distance * distance) * expFactor);\n" "}\n" "void main() {\n" " ivec2 imgSize = imageSize(resultImage);\n" " int x = int(gl_GlobalInvocationID.x);\n" " int y = int(gl_GlobalInvocationID.y);\n" " if ( (x >= imgSize.x) || (y >= imgSize.y) ) return;\n" " vec4 sumPixels = vec4(0.0);\n" " float sumWeights = 0.0;\n" " int left = clamp(x - radius, 0, imgSize.x - 1);\n" " int right = clamp(x + radius, 0, imgSize.x - 1);\n" " int top = clamp(y - radius, 0, imgSize.y - 1);\n" " int bottom = clamp(y + radius, 0, imgSize.y - 1);\n" " for (int iY = top; iY <= bottom; iY++) {\n" " float dy = float(abs(iY - y));\n" " vec4 imgValue = imageLoad(inputImage, ivec2(x,iY));\n" " float weight = gaussian(dy);\n" " sumWeights += weight;\n" " sumPixels += (imgValue * weight);\n" " }\n" " sumPixels /= sumWeights;\n" " imageStore(resultImage, ivec2(x,y), sumPixels);" "}\n"; static const char *csComputeSourceH = //"#extension GL_EXT_gpu_shader5 : require \n" "#define COMPUTEPATCHSIZE 32 \n" "#define IMGFMT rgba8 \n" "layout (local_size_x = COMPUTEPATCHSIZE, local_size_y = COMPUTEPATCHSIZE) in;\n" "layout(binding=0, IMGFMT) uniform highp image2D inputImage; // Use a sampler to improve performance \n" "layout(binding=1, IMGFMT) uniform highp image2D resultImage;\n" "uniform int radius;\n" "const float cutoff = 2.2;\n" "float sigma = clamp(float(radius) / cutoff,0.02,100.0);\n" "float expFactor = 1.0 / (2.0 * sigma * sigma);\n" "float gaussian(float distance) {\n" " return exp( -(distance * distance) * expFactor);\n" "}\n" "void main() {\n" " ivec2 imgSize = imageSize(resultImage);\n" " int x = int(gl_GlobalInvocationID.x);\n" " int y = int(gl_GlobalInvocationID.y);\n" " if ( (x >= imgSize.x) || (y >= imgSize.y) ) return;\n" " vec4 sumPixels = vec4(0.0);\n" " float sumWeights = 0.0;\n" " int left = clamp(x - radius, 0, imgSize.x - 1);\n" " int right = clamp(x + radius, 0, imgSize.x - 1);\n" " int top = clamp(y - radius, 0, imgSize.y - 1);\n" " int bottom = clamp(y + radius, 0, imgSize.y - 1);\n" " for (int iX = left; iX <= right; iX++) {\n" " float dx = float(abs(iX - x));\n" " vec4 imgValue = imageLoad(inputImage, ivec2(iX,y));\n" " float weight = gaussian(dx);\n" " sumWeights += weight;\n" " sumPixels += (imgValue * weight);\n" " }\n" " sumPixels /= sumWeights;\n" " imageStore(resultImage, ivec2(x,y), sumPixels);" "}\n"; QByteArray versionedShaderCode(const char *src) { QByteArray versionedSrc; if (QOpenGLContext::currentContext()->isOpenGLES()) versionedSrc.append(QByteArrayLiteral("#version 310 es\n")); else versionedSrc.append(QByteArrayLiteral("#version 430\n")); versionedSrc.append(src); return versionedSrc; } void computeProjection(int winWidth, int winHeight, int imgWidth, int imgHeight, QMatrix4x4 &outProjection, QSizeF &outQuadSize) { float ratioImg = float(imgWidth) / float(imgHeight); float ratioCanvas = float(winWidth) / float(winHeight); float correction = ratioImg / ratioCanvas; float rescaleFactor = 1.0f; float quadWidth = 1.0f; float quadHeight = 1.0f; if (correction < 1.0f) // canvas larger than image -- height = 1.0, vertical black bands { quadHeight = 1.0f; quadWidth = 1.0f * ratioImg; rescaleFactor = ratioCanvas; correction = 1.0f / rescaleFactor; } else // image larger than canvas -- width = 1.0, horizontal black bands { quadWidth = 1.0f; quadHeight = 1.0f / ratioImg; correction = 1.0f / ratioCanvas; } const float frustumWidth = 1.0f * rescaleFactor; const float frustumHeight = 1.0f * rescaleFactor * correction; outProjection = QMatrix4x4(); outProjection.ortho( -frustumWidth, frustumWidth, -frustumHeight, frustumHeight, -1.0f, 1.0f); outQuadSize = QSizeF(quadWidth,quadHeight); } void GLWindow::initializeGL() { QOpenGLContext *ctx = QOpenGLContext::currentContext(); qDebug() << "Got a " << ctx->format().majorVersion() << "." << ctx->format().minorVersion() << ((ctx->format().renderableType() == QSurfaceFormat::OpenGLES) ? (" GLES") : (" GL")) << " context"; //QOpenGLFunctions *f = ctx->functions(); if (m_texImageInput) { delete m_texImageInput; m_texImageInput = 0; } QImage img(":/Qt-logo-medium.png"); Q_ASSERT(!img.isNull()); m_texImageInput = new QOpenGLTexture(img.convertToFormat(QImage::Format_RGBA8888).mirrored()); if (m_texImageTmp) { delete m_texImageTmp; m_texImageTmp = 0; } m_texImageTmp = new QOpenGLTexture(QOpenGLTexture::Target2D); m_texImageTmp->setFormat(m_texImageInput->format()); m_texImageTmp->setSize(m_texImageInput->width(),m_texImageInput->height()); m_texImageTmp->allocateStorage(QOpenGLTexture::RGBA,QOpenGLTexture::UInt8); // WTF? if (m_texImageProcessed) { delete m_texImageProcessed; m_texImageProcessed = 0; } m_texImageProcessed = new QOpenGLTexture(QOpenGLTexture::Target2D); m_texImageProcessed->setFormat(m_texImageInput->format()); m_texImageProcessed->setSize(m_texImageInput->width(),m_texImageInput->height()); m_texImageProcessed->allocateStorage(QOpenGLTexture::RGBA,QOpenGLTexture::UInt8); m_texImageProcessed->setMagnificationFilter(QOpenGLTexture::Linear); m_texImageProcessed->setMinificationFilter(QOpenGLTexture::Linear); m_texImageProcessed->setWrapMode(QOpenGLTexture::ClampToEdge); if (m_shaderDisplay) { delete m_shaderDisplay; m_shaderDisplay = 0; } m_shaderDisplay = new QOpenGLShaderProgram; // Prepend the correct version directive to the sources. The rest is the // same, thanks to the common GLSL syntax. m_shaderDisplay->addShaderFromSourceCode(QOpenGLShader::Vertex, versionedShaderCode(vsDisplaySource)); m_shaderDisplay->addShaderFromSourceCode(QOpenGLShader::Fragment, versionedShaderCode(fsDisplaySource)); m_shaderDisplay->link(); if (m_shaderComputeV) { delete m_shaderComputeV; m_shaderComputeV = 0; } m_shaderComputeV = new QOpenGLShaderProgram; m_shaderComputeV->addShaderFromSourceCode(QOpenGLShader::Compute, versionedShaderCode(csComputeSourceV)); m_shaderComputeV->link(); if (m_shaderComputeH) { delete m_shaderComputeH; m_shaderComputeH = 0; } m_shaderComputeH = new QOpenGLShaderProgram; m_shaderComputeH->addShaderFromSourceCode(QOpenGLShader::Compute, versionedShaderCode(csComputeSourceH)); m_shaderComputeH->link(); } void GLWindow::resizeGL(int w, int h) { computeProjection(w,h,m_texImageInput->width(),m_texImageInput->height(),m_proj,m_quadSize); } QSize getWorkGroups(int workGroupSize, const QSize &imageSize) { int x = imageSize.width(); x = (x % workGroupSize) ? (x / workGroupSize) + 1 : (x / workGroupSize); int y = imageSize.height(); y = (y % workGroupSize) ? (y / workGroupSize) + 1 : (y / workGroupSize); return QSize(x,y); } void GLWindow::paintGL() { // Now use QOpenGLExtraFunctions instead of QOpenGLFunctions as we want to // do more than what GL(ES) 2.0 offers. QOpenGLExtraFunctions *f = QOpenGLContext::currentContext()->extraFunctions(); // Process input image QSize workGroups = getWorkGroups( 32, QSize(m_texImageInput->width(), m_texImageInput->height())); // Pass 1 f->glBindImageTexture(0, m_texImageInput->textureId(), 0, 0, 0, GL_READ_WRITE, GL_RGBA8); f->glBindImageTexture(1, m_texImageTmp->textureId(), 0, 0, 0, GL_READ_WRITE, GL_RGBA8); m_shaderComputeV->bind(); m_shaderComputeV->setUniformValue("radius",m_blurRadius); f->glDispatchCompute(workGroups.width(),workGroups.height(),1); f->glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); m_shaderComputeV->release(); // Pass 2 f->glBindImageTexture(0, m_texImageTmp->textureId(), 0, 0, 0, GL_READ_WRITE, GL_RGBA8); f->glBindImageTexture(1, m_texImageProcessed->textureId(), 0, 0, 0, GL_READ_WRITE, GL_RGBA8); m_shaderComputeH->bind(); m_shaderComputeH->setUniformValue("radius",m_blurRadius); f->glDispatchCompute(workGroups.width(),workGroups.height(),1); f->glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); m_shaderComputeH->release(); // Compute cleanup f->glBindImageTexture(0, 0, 0, 0, 0, GL_READ_WRITE, GL_RGBA8); f->glBindImageTexture(1, 0, 0, 0, 0, GL_READ_WRITE, GL_RGBA8); // Display processed image f->glClearColor(0, 0, 0, 1); f->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); m_texImageProcessed->bind(GL_TEXTURE0); m_shaderDisplay->bind(); m_shaderDisplay->setUniformValue("matProjection",m_proj); m_shaderDisplay->setUniformValue("imageRatio",m_quadSize); m_shaderDisplay->setUniformValue("samImage",0); f->glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); m_shaderDisplay->release(); m_texImageProcessed->release(GL_TEXTURE0); }