qt5base-lts/examples/vulkan/hellovulkancubes/renderer.cpp
Ahmad Samir 09b852b1d8 examples/: compile with QT_NO_CONTEXTLESS_CONNECT
Examples are usually a good way to get to know a new codebase, do not
teach developers who are new to Qt about the 3-arg connect() to begin
with.

Drive-by changes:
- `this` can't be implicitly captured with [=] in a lambda, instead
  capture by reference
- Update docs related to the sqlbrowser example; the overloaded signal
  it mentions has been removed in Qt6
- In the sqlbrowser example, rename addConnection() (no-arg) overload to
  openNewConnectionDialog, suggested in code review

Change-Id: I30c9f35bda4ac2f460d767ab7f84422ae3ed09f7
Reviewed-by: Volker Hilsheimer <volker.hilsheimer@qt.io>
2023-09-08 19:17:36 +03:00

1003 lines
35 KiB
C++

// Copyright (C) 2017 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
#include "renderer.h"
#include "qrandom.h"
#include <QVulkanFunctions>
#include <QtConcurrentRun>
#include <QTime>
static float quadVert[] = { // Y up, front = CW
-1, -1, 0,
-1, 1, 0,
1, -1, 0,
1, 1, 0
};
#define DBG Q_UNLIKELY(m_window->isDebugEnabled())
const int MAX_INSTANCES = 16384;
const VkDeviceSize PER_INSTANCE_DATA_SIZE = 6 * sizeof(float); // instTranslate, instDiffuseAdjust
static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
{
return (v + byteAlign - 1) & ~(byteAlign - 1);
}
Renderer::Renderer(VulkanWindow *w, int initialCount)
: m_window(w),
// Have the light positioned just behind the default camera position, looking forward.
m_lightPos(0.0f, 0.0f, 25.0f),
m_cam(QVector3D(0.0f, 0.0f, 20.0f)), // starting camera position
m_instCount(initialCount)
{
m_floorModel.translate(0, -5, 0);
m_floorModel.rotate(-90, 1, 0, 0);
m_floorModel.scale(20, 100, 1);
m_blockMesh.load(QStringLiteral(":/block.buf"));
m_logoMesh.load(QStringLiteral(":/qt_logo.buf"));
QObject::connect(&m_frameWatcher, &QFutureWatcherBase::finished, m_window, [this] {
if (m_framePending) {
m_framePending = false;
m_window->frameReady();
m_window->requestUpdate();
}
});
}
void Renderer::preInitResources()
{
const QList<int> sampleCounts = m_window->supportedSampleCounts();
if (DBG)
qDebug() << "Supported sample counts:" << sampleCounts;
if (sampleCounts.contains(4)) {
if (DBG)
qDebug("Requesting 4x MSAA");
m_window->setSampleCount(4);
}
}
void Renderer::initResources()
{
if (DBG)
qDebug("Renderer init");
m_animating = true;
m_framePending = false;
QVulkanInstance *inst = m_window->vulkanInstance();
VkDevice dev = m_window->device();
const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;
m_devFuncs = inst->deviceFunctions(dev);
// Note the std140 packing rules. A vec3 still has an alignment of 16,
// while a mat3 is like 3 * vec3.
m_itemMaterial.vertUniSize = aligned(2 * 64 + 48, uniAlign); // see color_phong.vert
m_itemMaterial.fragUniSize = aligned(6 * 16 + 12 + 2 * 4, uniAlign); // see color_phong.frag
if (!m_itemMaterial.vs.isValid())
m_itemMaterial.vs.load(inst, dev, QStringLiteral(":/color_phong_vert.spv"));
if (!m_itemMaterial.fs.isValid())
m_itemMaterial.fs.load(inst, dev, QStringLiteral(":/color_phong_frag.spv"));
if (!m_floorMaterial.vs.isValid())
m_floorMaterial.vs.load(inst, dev, QStringLiteral(":/color_vert.spv"));
if (!m_floorMaterial.fs.isValid())
m_floorMaterial.fs.load(inst, dev, QStringLiteral(":/color_frag.spv"));
m_pipelinesFuture = QtConcurrent::run(&Renderer::createPipelines, this);
}
void Renderer::createPipelines()
{
VkDevice dev = m_window->device();
VkPipelineCacheCreateInfo pipelineCacheInfo;
memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VkResult err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline cache: %d", err);
createItemPipeline();
createFloorPipeline();
}
void Renderer::createItemPipeline()
{
VkDevice dev = m_window->device();
// Vertex layout.
VkVertexInputBindingDescription vertexBindingDesc[] = {
{
0, // binding
8 * sizeof(float),
VK_VERTEX_INPUT_RATE_VERTEX
},
{
1,
6 * sizeof(float),
VK_VERTEX_INPUT_RATE_INSTANCE
}
};
VkVertexInputAttributeDescription vertexAttrDesc[] = {
{ // position
0, // location
0, // binding
VK_FORMAT_R32G32B32_SFLOAT,
0 // offset
},
{ // normal
1,
0,
VK_FORMAT_R32G32B32_SFLOAT,
5 * sizeof(float)
},
{ // instTranslate
2,
1,
VK_FORMAT_R32G32B32_SFLOAT,
0
},
{ // instDiffuseAdjust
3,
1,
VK_FORMAT_R32G32B32_SFLOAT,
3 * sizeof(float)
}
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.pNext = nullptr;
vertexInputInfo.flags = 0;
vertexInputInfo.vertexBindingDescriptionCount = sizeof(vertexBindingDesc) / sizeof(vertexBindingDesc[0]);
vertexInputInfo.pVertexBindingDescriptions = vertexBindingDesc;
vertexInputInfo.vertexAttributeDescriptionCount = sizeof(vertexAttrDesc) / sizeof(vertexAttrDesc[0]);
vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;
// Descriptor set layout.
VkDescriptorPoolSize descPoolSizes[] = {
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 2 }
};
VkDescriptorPoolCreateInfo descPoolInfo;
memset(&descPoolInfo, 0, sizeof(descPoolInfo));
descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descPoolInfo.maxSets = 1; // a single set is enough due to the dynamic uniform buffer
descPoolInfo.poolSizeCount = sizeof(descPoolSizes) / sizeof(descPoolSizes[0]);
descPoolInfo.pPoolSizes = descPoolSizes;
VkResult err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_itemMaterial.descPool);
if (err != VK_SUCCESS)
qFatal("Failed to create descriptor pool: %d", err);
VkDescriptorSetLayoutBinding layoutBindings[] =
{
{
0, // binding
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
1, // descriptorCount
VK_SHADER_STAGE_VERTEX_BIT,
nullptr
},
{
1,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
1,
VK_SHADER_STAGE_FRAGMENT_BIT,
nullptr
}
};
VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
nullptr,
0,
sizeof(layoutBindings) / sizeof(layoutBindings[0]),
layoutBindings
};
err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_itemMaterial.descSetLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create descriptor set layout: %d", err);
VkDescriptorSetAllocateInfo descSetAllocInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
nullptr,
m_itemMaterial.descPool,
1,
&m_itemMaterial.descSetLayout
};
err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_itemMaterial.descSet);
if (err != VK_SUCCESS)
qFatal("Failed to allocate descriptor set: %d", err);
// Graphics pipeline.
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = &m_itemMaterial.descSetLayout;
err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_itemMaterial.pipelineLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline layout: %d", err);
VkGraphicsPipelineCreateInfo pipelineInfo;
memset(&pipelineInfo, 0, sizeof(pipelineInfo));
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
VkPipelineShaderStageCreateInfo shaderStages[2] = {
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_VERTEX_BIT,
m_itemMaterial.vs.data()->shaderModule,
"main",
nullptr
},
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_FRAGMENT_BIT,
m_itemMaterial.fs.data()->shaderModule,
"main",
nullptr
}
};
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
VkPipelineInputAssemblyStateCreateInfo ia;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
pipelineInfo.pInputAssemblyState = &ia;
VkPipelineViewportStateCreateInfo vp;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
vp.scissorCount = 1;
pipelineInfo.pViewportState = &vp;
VkPipelineRasterizationStateCreateInfo rs;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_BACK_BIT;
rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rs.lineWidth = 1.0f;
pipelineInfo.pRasterizationState = &rs;
VkPipelineMultisampleStateCreateInfo ms;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms.rasterizationSamples = m_window->sampleCountFlagBits();
pipelineInfo.pMultisampleState = &ms;
VkPipelineDepthStencilStateCreateInfo ds;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
pipelineInfo.pDepthStencilState = &ds;
VkPipelineColorBlendStateCreateInfo cb;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
VkPipelineColorBlendAttachmentState att;
memset(&att, 0, sizeof(att));
att.colorWriteMask = 0xF;
cb.attachmentCount = 1;
cb.pAttachments = &att;
pipelineInfo.pColorBlendState = &cb;
VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dyn;
memset(&dyn, 0, sizeof(dyn));
dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
dyn.pDynamicStates = dynEnable;
pipelineInfo.pDynamicState = &dyn;
pipelineInfo.layout = m_itemMaterial.pipelineLayout;
pipelineInfo.renderPass = m_window->defaultRenderPass();
err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_itemMaterial.pipeline);
if (err != VK_SUCCESS)
qFatal("Failed to create graphics pipeline: %d", err);
}
void Renderer::createFloorPipeline()
{
VkDevice dev = m_window->device();
// Vertex layout.
VkVertexInputBindingDescription vertexBindingDesc = {
0, // binding
3 * sizeof(float),
VK_VERTEX_INPUT_RATE_VERTEX
};
VkVertexInputAttributeDescription vertexAttrDesc[] = {
{ // position
0, // location
0, // binding
VK_FORMAT_R32G32B32_SFLOAT,
0 // offset
},
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.pNext = nullptr;
vertexInputInfo.flags = 0;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
vertexInputInfo.vertexAttributeDescriptionCount = sizeof(vertexAttrDesc) / sizeof(vertexAttrDesc[0]);
vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;
// Do not bother with uniform buffers and descriptors, all the data fits
// into the spec mandated minimum of 128 bytes for push constants.
VkPushConstantRange pcr[] = {
// mvp
{
VK_SHADER_STAGE_VERTEX_BIT,
0,
64
},
// color
{
VK_SHADER_STAGE_FRAGMENT_BIT,
64,
12
}
};
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.pushConstantRangeCount = sizeof(pcr) / sizeof(pcr[0]);
pipelineLayoutInfo.pPushConstantRanges = pcr;
VkResult err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_floorMaterial.pipelineLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline layout: %d", err);
VkGraphicsPipelineCreateInfo pipelineInfo;
memset(&pipelineInfo, 0, sizeof(pipelineInfo));
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
VkPipelineShaderStageCreateInfo shaderStages[2] = {
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_VERTEX_BIT,
m_floorMaterial.vs.data()->shaderModule,
"main",
nullptr
},
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_FRAGMENT_BIT,
m_floorMaterial.fs.data()->shaderModule,
"main",
nullptr
}
};
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
VkPipelineInputAssemblyStateCreateInfo ia;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
pipelineInfo.pInputAssemblyState = &ia;
VkPipelineViewportStateCreateInfo vp;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
vp.scissorCount = 1;
pipelineInfo.pViewportState = &vp;
VkPipelineRasterizationStateCreateInfo rs;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_BACK_BIT;
rs.frontFace = VK_FRONT_FACE_CLOCKWISE;
rs.lineWidth = 1.0f;
pipelineInfo.pRasterizationState = &rs;
VkPipelineMultisampleStateCreateInfo ms;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms.rasterizationSamples = m_window->sampleCountFlagBits();
pipelineInfo.pMultisampleState = &ms;
VkPipelineDepthStencilStateCreateInfo ds;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
pipelineInfo.pDepthStencilState = &ds;
VkPipelineColorBlendStateCreateInfo cb;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
VkPipelineColorBlendAttachmentState att;
memset(&att, 0, sizeof(att));
att.colorWriteMask = 0xF;
cb.attachmentCount = 1;
cb.pAttachments = &att;
pipelineInfo.pColorBlendState = &cb;
VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dyn;
memset(&dyn, 0, sizeof(dyn));
dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
dyn.pDynamicStates = dynEnable;
pipelineInfo.pDynamicState = &dyn;
pipelineInfo.layout = m_floorMaterial.pipelineLayout;
pipelineInfo.renderPass = m_window->defaultRenderPass();
err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_floorMaterial.pipeline);
if (err != VK_SUCCESS)
qFatal("Failed to create graphics pipeline: %d", err);
}
void Renderer::initSwapChainResources()
{
m_proj = m_window->clipCorrectionMatrix();
const QSize sz = m_window->swapChainImageSize();
m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 1000.0f);
markViewProjDirty();
}
void Renderer::releaseSwapChainResources()
{
// It is important to finish the pending frame right here since this is the
// last opportunity to act with all resources intact.
m_frameWatcher.waitForFinished();
// Cannot count on the finished() signal being emitted before returning
// from here.
if (m_framePending) {
m_framePending = false;
m_window->frameReady();
}
}
void Renderer::releaseResources()
{
if (DBG)
qDebug("Renderer release");
m_pipelinesFuture.waitForFinished();
VkDevice dev = m_window->device();
if (m_itemMaterial.descSetLayout) {
m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_itemMaterial.descSetLayout, nullptr);
m_itemMaterial.descSetLayout = VK_NULL_HANDLE;
}
if (m_itemMaterial.descPool) {
m_devFuncs->vkDestroyDescriptorPool(dev, m_itemMaterial.descPool, nullptr);
m_itemMaterial.descPool = VK_NULL_HANDLE;
}
if (m_itemMaterial.pipeline) {
m_devFuncs->vkDestroyPipeline(dev, m_itemMaterial.pipeline, nullptr);
m_itemMaterial.pipeline = VK_NULL_HANDLE;
}
if (m_itemMaterial.pipelineLayout) {
m_devFuncs->vkDestroyPipelineLayout(dev, m_itemMaterial.pipelineLayout, nullptr);
m_itemMaterial.pipelineLayout = VK_NULL_HANDLE;
}
if (m_floorMaterial.pipeline) {
m_devFuncs->vkDestroyPipeline(dev, m_floorMaterial.pipeline, nullptr);
m_floorMaterial.pipeline = VK_NULL_HANDLE;
}
if (m_floorMaterial.pipelineLayout) {
m_devFuncs->vkDestroyPipelineLayout(dev, m_floorMaterial.pipelineLayout, nullptr);
m_floorMaterial.pipelineLayout = VK_NULL_HANDLE;
}
if (m_pipelineCache) {
m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
m_pipelineCache = VK_NULL_HANDLE;
}
if (m_blockVertexBuf) {
m_devFuncs->vkDestroyBuffer(dev, m_blockVertexBuf, nullptr);
m_blockVertexBuf = VK_NULL_HANDLE;
}
if (m_logoVertexBuf) {
m_devFuncs->vkDestroyBuffer(dev, m_logoVertexBuf, nullptr);
m_logoVertexBuf = VK_NULL_HANDLE;
}
if (m_floorVertexBuf) {
m_devFuncs->vkDestroyBuffer(dev, m_floorVertexBuf, nullptr);
m_floorVertexBuf = VK_NULL_HANDLE;
}
if (m_uniBuf) {
m_devFuncs->vkDestroyBuffer(dev, m_uniBuf, nullptr);
m_uniBuf = VK_NULL_HANDLE;
}
if (m_bufMem) {
m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
m_bufMem = VK_NULL_HANDLE;
}
if (m_instBuf) {
m_devFuncs->vkDestroyBuffer(dev, m_instBuf, nullptr);
m_instBuf = VK_NULL_HANDLE;
}
if (m_instBufMem) {
m_devFuncs->vkFreeMemory(dev, m_instBufMem, nullptr);
m_instBufMem = VK_NULL_HANDLE;
}
if (m_itemMaterial.vs.isValid()) {
m_devFuncs->vkDestroyShaderModule(dev, m_itemMaterial.vs.data()->shaderModule, nullptr);
m_itemMaterial.vs.reset();
}
if (m_itemMaterial.fs.isValid()) {
m_devFuncs->vkDestroyShaderModule(dev, m_itemMaterial.fs.data()->shaderModule, nullptr);
m_itemMaterial.fs.reset();
}
if (m_floorMaterial.vs.isValid()) {
m_devFuncs->vkDestroyShaderModule(dev, m_floorMaterial.vs.data()->shaderModule, nullptr);
m_floorMaterial.vs.reset();
}
if (m_floorMaterial.fs.isValid()) {
m_devFuncs->vkDestroyShaderModule(dev, m_floorMaterial.fs.data()->shaderModule, nullptr);
m_floorMaterial.fs.reset();
}
}
void Renderer::ensureBuffers()
{
if (m_blockVertexBuf)
return;
VkDevice dev = m_window->device();
const int concurrentFrameCount = m_window->concurrentFrameCount();
// Vertex buffer for the block.
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(bufInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
const int blockMeshByteCount = m_blockMesh.data()->vertexCount * 8 * sizeof(float);
bufInfo.size = blockMeshByteCount;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_blockVertexBuf);
if (err != VK_SUCCESS)
qFatal("Failed to create vertex buffer: %d", err);
VkMemoryRequirements blockVertMemReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_blockVertexBuf, &blockVertMemReq);
// Vertex buffer for the logo.
const int logoMeshByteCount = m_logoMesh.data()->vertexCount * 8 * sizeof(float);
bufInfo.size = logoMeshByteCount;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_logoVertexBuf);
if (err != VK_SUCCESS)
qFatal("Failed to create vertex buffer: %d", err);
VkMemoryRequirements logoVertMemReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_logoVertexBuf, &logoVertMemReq);
// Vertex buffer for the floor.
bufInfo.size = sizeof(quadVert);
err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_floorVertexBuf);
if (err != VK_SUCCESS)
qFatal("Failed to create vertex buffer: %d", err);
VkMemoryRequirements floorVertMemReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_floorVertexBuf, &floorVertMemReq);
// Uniform buffer. Instead of using multiple descriptor sets, we take a
// different approach: have a single dynamic uniform buffer and specify the
// active-frame-specific offset at the time of binding the descriptor set.
bufInfo.size = (m_itemMaterial.vertUniSize + m_itemMaterial.fragUniSize) * concurrentFrameCount;
bufInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_uniBuf);
if (err != VK_SUCCESS)
qFatal("Failed to create uniform buffer: %d", err);
VkMemoryRequirements uniMemReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_uniBuf, &uniMemReq);
// Allocate memory for everything at once.
VkDeviceSize logoVertStartOffset = aligned(0 + blockVertMemReq.size, logoVertMemReq.alignment);
VkDeviceSize floorVertStartOffset = aligned(logoVertStartOffset + logoVertMemReq.size, floorVertMemReq.alignment);
m_itemMaterial.uniMemStartOffset = aligned(floorVertStartOffset + floorVertMemReq.size, uniMemReq.alignment);
VkMemoryAllocateInfo memAllocInfo = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
nullptr,
m_itemMaterial.uniMemStartOffset + uniMemReq.size,
m_window->hostVisibleMemoryIndex()
};
err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
if (err != VK_SUCCESS)
qFatal("Failed to allocate memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_blockVertexBuf, m_bufMem, 0);
if (err != VK_SUCCESS)
qFatal("Failed to bind vertex buffer memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_logoVertexBuf, m_bufMem, logoVertStartOffset);
if (err != VK_SUCCESS)
qFatal("Failed to bind vertex buffer memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_floorVertexBuf, m_bufMem, floorVertStartOffset);
if (err != VK_SUCCESS)
qFatal("Failed to bind vertex buffer memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_uniBuf, m_bufMem, m_itemMaterial.uniMemStartOffset);
if (err != VK_SUCCESS)
qFatal("Failed to bind uniform buffer memory: %d", err);
// Copy vertex data.
quint8 *p;
err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, m_itemMaterial.uniMemStartOffset, 0, reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
memcpy(p, m_blockMesh.data()->geom.constData(), blockMeshByteCount);
memcpy(p + logoVertStartOffset, m_logoMesh.data()->geom.constData(), logoMeshByteCount);
memcpy(p + floorVertStartOffset, quadVert, sizeof(quadVert));
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
// Write descriptors for the uniform buffers in the vertex and fragment shaders.
VkDescriptorBufferInfo vertUni = { m_uniBuf, 0, m_itemMaterial.vertUniSize };
VkDescriptorBufferInfo fragUni = { m_uniBuf, m_itemMaterial.vertUniSize, m_itemMaterial.fragUniSize };
VkWriteDescriptorSet descWrite[2];
memset(descWrite, 0, sizeof(descWrite));
descWrite[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descWrite[0].dstSet = m_itemMaterial.descSet;
descWrite[0].dstBinding = 0;
descWrite[0].descriptorCount = 1;
descWrite[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
descWrite[0].pBufferInfo = &vertUni;
descWrite[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descWrite[1].dstSet = m_itemMaterial.descSet;
descWrite[1].dstBinding = 1;
descWrite[1].descriptorCount = 1;
descWrite[1].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
descWrite[1].pBufferInfo = &fragUni;
m_devFuncs->vkUpdateDescriptorSets(dev, 2, descWrite, 0, nullptr);
}
void Renderer::ensureInstanceBuffer()
{
if (m_instCount == m_preparedInstCount && m_instBuf)
return;
Q_ASSERT(m_instCount <= MAX_INSTANCES);
VkDevice dev = m_window->device();
// allocate only once, for the maximum instance count
if (!m_instBuf) {
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(bufInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufInfo.size = MAX_INSTANCES * PER_INSTANCE_DATA_SIZE;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
// Keep a copy of the data since we may lose all graphics resources on
// unexpose, and reinitializing to new random positions afterwards
// would not be nice.
m_instData.resize(bufInfo.size);
VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_instBuf);
if (err != VK_SUCCESS)
qFatal("Failed to create instance buffer: %d", err);
VkMemoryRequirements memReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_instBuf, &memReq);
if (DBG)
qDebug("Allocating %u bytes for instance data", uint32_t(memReq.size));
VkMemoryAllocateInfo memAllocInfo = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
nullptr,
memReq.size,
m_window->hostVisibleMemoryIndex()
};
err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_instBufMem);
if (err != VK_SUCCESS)
qFatal("Failed to allocate memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_instBuf, m_instBufMem, 0);
if (err != VK_SUCCESS)
qFatal("Failed to bind instance buffer memory: %d", err);
}
if (m_instCount != m_preparedInstCount) {
if (DBG)
qDebug("Preparing instances %d..%d", m_preparedInstCount, m_instCount - 1);
char *p = m_instData.data();
p += m_preparedInstCount * PER_INSTANCE_DATA_SIZE;
auto gen = [](int a, int b) {
return float(QRandomGenerator::global()->bounded(double(b - a)) + a);
};
for (int i = m_preparedInstCount; i < m_instCount; ++i) {
// Apply a random translation to each instance of the mesh.
float t[] = { gen(-5, 5), gen(-4, 6), gen(-30, 5) };
memcpy(p, t, 12);
// Apply a random adjustment to the diffuse color for each instance. (default is 0.7)
float d[] = { gen(-6, 3) / 10.0f, gen(-6, 3) / 10.0f, gen(-6, 3) / 10.0f };
memcpy(p + 12, d, 12);
p += PER_INSTANCE_DATA_SIZE;
}
m_preparedInstCount = m_instCount;
}
quint8 *p;
VkResult err = m_devFuncs->vkMapMemory(dev, m_instBufMem, 0, m_instCount * PER_INSTANCE_DATA_SIZE, 0,
reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
memcpy(p, m_instData.constData(), m_instData.size());
m_devFuncs->vkUnmapMemory(dev, m_instBufMem);
}
void Renderer::getMatrices(QMatrix4x4 *vp, QMatrix4x4 *model, QMatrix3x3 *modelNormal, QVector3D *eyePos)
{
model->setToIdentity();
if (m_useLogo)
model->rotate(90, 1, 0, 0);
model->rotate(m_rotation, 1, 1, 0);
*modelNormal = model->normalMatrix();
QMatrix4x4 view = m_cam.viewMatrix();
*vp = m_proj * view;
*eyePos = view.inverted().column(3).toVector3D();
}
void Renderer::writeFragUni(quint8 *p, const QVector3D &eyePos)
{
float ECCameraPosition[] = { eyePos.x(), eyePos.y(), eyePos.z() };
memcpy(p, ECCameraPosition, 12);
p += 16;
// Material
float ka[] = { 0.05f, 0.05f, 0.05f };
memcpy(p, ka, 12);
p += 16;
float kd[] = { 0.7f, 0.7f, 0.7f };
memcpy(p, kd, 12);
p += 16;
float ks[] = { 0.66f, 0.66f, 0.66f };
memcpy(p, ks, 12);
p += 16;
// Light parameters
float ECLightPosition[] = { m_lightPos.x(), m_lightPos.y(), m_lightPos.z() };
memcpy(p, ECLightPosition, 12);
p += 16;
float att[] = { 1, 0, 0 };
memcpy(p, att, 12);
p += 16;
float color[] = { 1.0f, 1.0f, 1.0f };
memcpy(p, color, 12);
p += 12; // next we have two floats which have an alignment of 4, hence 12 only
float intensity = 0.8f;
memcpy(p, &intensity, 4);
p += 4;
float specularExp = 150.0f;
memcpy(p, &specularExp, 4);
p += 4;
}
void Renderer::startNextFrame()
{
// For demonstration purposes offload the command buffer generation onto a
// worker thread and continue with the frame submission only when it has
// finished.
Q_ASSERT(!m_framePending);
m_framePending = true;
QFuture<void> future = QtConcurrent::run(&Renderer::buildFrame, this);
m_frameWatcher.setFuture(future);
}
void Renderer::buildFrame()
{
QMutexLocker locker(&m_guiMutex);
ensureBuffers();
ensureInstanceBuffer();
m_pipelinesFuture.waitForFinished();
VkCommandBuffer cb = m_window->currentCommandBuffer();
const QSize sz = m_window->swapChainImageSize();
VkClearColorValue clearColor = {{ 0.67f, 0.84f, 0.9f, 1.0f }};
VkClearDepthStencilValue clearDS = { 1, 0 };
VkClearValue clearValues[3];
memset(clearValues, 0, sizeof(clearValues));
clearValues[0].color = clearValues[2].color = clearColor;
clearValues[1].depthStencil = clearDS;
VkRenderPassBeginInfo rpBeginInfo;
memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpBeginInfo.renderPass = m_window->defaultRenderPass();
rpBeginInfo.framebuffer = m_window->currentFramebuffer();
rpBeginInfo.renderArea.extent.width = sz.width();
rpBeginInfo.renderArea.extent.height = sz.height();
rpBeginInfo.clearValueCount = m_window->sampleCountFlagBits() > VK_SAMPLE_COUNT_1_BIT ? 3 : 2;
rpBeginInfo.pClearValues = clearValues;
VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = {
0, 0,
float(sz.width()), float(sz.height()),
0, 1
};
m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);
VkRect2D scissor = {
{ 0, 0 },
{ uint32_t(sz.width()), uint32_t(sz.height()) }
};
m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);
buildDrawCallsForFloor();
buildDrawCallsForItems();
m_devFuncs->vkCmdEndRenderPass(cmdBuf);
}
void Renderer::buildDrawCallsForItems()
{
VkDevice dev = m_window->device();
VkCommandBuffer cb = m_window->currentCommandBuffer();
m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_itemMaterial.pipeline);
VkDeviceSize vbOffset = 0;
m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, m_useLogo ? &m_logoVertexBuf : &m_blockVertexBuf, &vbOffset);
m_devFuncs->vkCmdBindVertexBuffers(cb, 1, 1, &m_instBuf, &vbOffset);
// Now provide offsets so that the two dynamic buffers point to the
// beginning of the vertex and fragment uniform data for the current frame.
uint32_t frameUniOffset = m_window->currentFrame() * (m_itemMaterial.vertUniSize + m_itemMaterial.fragUniSize);
uint32_t frameUniOffsets[] = { frameUniOffset, frameUniOffset };
m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_itemMaterial.pipelineLayout, 0, 1,
&m_itemMaterial.descSet, 2, frameUniOffsets);
if (m_animating)
m_rotation += 0.5;
if (m_animating || m_vpDirty) {
if (m_vpDirty)
--m_vpDirty;
QMatrix4x4 vp, model;
QMatrix3x3 modelNormal;
QVector3D eyePos;
getMatrices(&vp, &model, &modelNormal, &eyePos);
// Map the uniform data for the current frame, ignore the geometry data at
// the beginning and the uniforms for other frames.
quint8 *p;
VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem,
m_itemMaterial.uniMemStartOffset + frameUniOffset,
m_itemMaterial.vertUniSize + m_itemMaterial.fragUniSize,
0, reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
// Vertex shader uniforms
memcpy(p, vp.constData(), 64);
memcpy(p + 64, model.constData(), 64);
const float *mnp = modelNormal.constData();
memcpy(p + 128, mnp, 12);
memcpy(p + 128 + 16, mnp + 3, 12);
memcpy(p + 128 + 32, mnp + 6, 12);
// Fragment shader uniforms
p += m_itemMaterial.vertUniSize;
writeFragUni(p, eyePos);
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
}
m_devFuncs->vkCmdDraw(cb, (m_useLogo ? m_logoMesh.data() : m_blockMesh.data())->vertexCount, m_instCount, 0, 0);
}
void Renderer::buildDrawCallsForFloor()
{
VkCommandBuffer cb = m_window->currentCommandBuffer();
m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_floorMaterial.pipeline);
VkDeviceSize vbOffset = 0;
m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_floorVertexBuf, &vbOffset);
QMatrix4x4 mvp = m_proj * m_cam.viewMatrix() * m_floorModel;
m_devFuncs->vkCmdPushConstants(cb, m_floorMaterial.pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, 64, mvp.constData());
float color[] = { 0.67f, 1.0f, 0.2f };
m_devFuncs->vkCmdPushConstants(cb, m_floorMaterial.pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 64, 12, color);
m_devFuncs->vkCmdDraw(cb, 4, 1, 0, 0);
}
void Renderer::addNew()
{
QMutexLocker locker(&m_guiMutex);
m_instCount = qMin(m_instCount + 16, MAX_INSTANCES);
}
void Renderer::yaw(float degrees)
{
QMutexLocker locker(&m_guiMutex);
m_cam.yaw(degrees);
markViewProjDirty();
}
void Renderer::pitch(float degrees)
{
QMutexLocker locker(&m_guiMutex);
m_cam.pitch(degrees);
markViewProjDirty();
}
void Renderer::walk(float amount)
{
QMutexLocker locker(&m_guiMutex);
m_cam.walk(amount);
markViewProjDirty();
}
void Renderer::strafe(float amount)
{
QMutexLocker locker(&m_guiMutex);
m_cam.strafe(amount);
markViewProjDirty();
}
void Renderer::setUseLogo(bool b)
{
QMutexLocker locker(&m_guiMutex);
m_useLogo = b;
if (!m_animating)
m_window->requestUpdate();
}