qt5base-lts/src/corelib/global/qnumeric_p.h
Giuseppe D'Angelo 5c2d177552 Mark some more functions with Q_DECL_CONST_FUNCTION
Saves a mere 300byte of text.

Change-Id: Ibc87a395af83757e855477a57e48e1e190504757
Reviewed-by: Thiago Macieira <thiago.macieira@intel.com>
2017-04-05 08:00:04 +00:00

364 lines
13 KiB
C++

/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2016 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef QNUMERIC_P_H
#define QNUMERIC_P_H
//
// W A R N I N G
// -------------
//
// This file is not part of the Qt API. It exists purely as an
// implementation detail. This header file may change from version to
// version without notice, or even be removed.
//
// We mean it.
//
#include "QtCore/private/qglobal_p.h"
#include <cmath>
#include <limits>
#if defined(Q_CC_MSVC)
# include <intrin.h>
#elif defined(Q_CC_INTEL)
# include <immintrin.h> // for _addcarry_u<nn>
#endif
#if defined(Q_CC_MSVC)
#include <float.h>
#endif
#if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL))
# include <math.h>
# ifdef isnan
# define QT_MATH_H_DEFINES_MACROS
QT_BEGIN_NAMESPACE
namespace qnumeric_std_wrapper {
// the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros.
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); }
}
QT_END_NAMESPACE
// These macros from math.h conflict with the real functions in the std namespace.
# undef signbit
# undef isnan
# undef isinf
# undef isfinite
# endif // defined(isnan)
#endif
QT_BEGIN_NAMESPACE
namespace qnumeric_std_wrapper {
#if defined(QT_MATH_H_DEFINES_MACROS)
# undef QT_MATH_H_DEFINES_MACROS
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); }
#else
Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(d); }
Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(d); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(d); }
Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(f); }
Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(f); }
Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(f); }
#endif
}
Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_inf() Q_DECL_NOEXCEPT
{
Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_infinity,
"platform has no definition for infinity for type double");
return std::numeric_limits<double>::infinity();
}
// Signaling NaN
Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_snan() Q_DECL_NOEXCEPT
{
Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_signaling_NaN,
"platform has no definition for signaling NaN for type double");
return std::numeric_limits<double>::signaling_NaN();
}
// Quiet NaN
Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_qnan() Q_DECL_NOEXCEPT
{
Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_quiet_NaN,
"platform has no definition for quiet NaN for type double");
return std::numeric_limits<double>::quiet_NaN();
}
Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d)
{
return qnumeric_std_wrapper::isinf(d);
}
Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d)
{
return qnumeric_std_wrapper::isnan(d);
}
Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d)
{
return qnumeric_std_wrapper::isfinite(d);
}
Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f)
{
return qnumeric_std_wrapper::isinf(f);
}
Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f)
{
return qnumeric_std_wrapper::isnan(f);
}
Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f)
{
return qnumeric_std_wrapper::isfinite(f);
}
//
// Unsigned overflow math
//
namespace {
template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type
add_overflow(T v1, T v2, T *r)
{
// unsigned additions are well-defined
*r = v1 + v2;
return v1 > T(v1 + v2);
}
template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type
mul_overflow(T v1, T v2, T *r)
{
// use the next biggest type
// Note: for 64-bit systems where __int128 isn't supported, this will cause an error.
// A fallback is present below.
typedef typename QIntegerForSize<sizeof(T) * 2>::Unsigned Larger;
Larger lr = Larger(v1) * Larger(v2);
*r = T(lr);
return lr > std::numeric_limits<T>::max();
}
#if defined(__SIZEOF_INT128__)
# define HAVE_MUL64_OVERFLOW
#endif
// GCC 5 and Clang have builtins to detect overflows
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_uadd_overflow)
template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r)
{ return __builtin_uadd_overflow(v1, v2, r); }
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_uaddl_overflow)
template <> inline bool add_overflow(unsigned long v1, unsigned long v2, unsigned long *r)
{ return __builtin_uaddl_overflow(v1, v2, r); }
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_uaddll_overflow)
template <> inline bool add_overflow(unsigned long long v1, unsigned long long v2, unsigned long long *r)
{ return __builtin_uaddll_overflow(v1, v2, r); }
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_umul_overflow)
template <> inline bool mul_overflow(unsigned v1, unsigned v2, unsigned *r)
{ return __builtin_umul_overflow(v1, v2, r); }
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_umull_overflow)
template <> inline bool mul_overflow(unsigned long v1, unsigned long v2, unsigned long *r)
{ return __builtin_umull_overflow(v1, v2, r); }
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_umulll_overflow)
template <> inline bool mul_overflow(unsigned long long v1, unsigned long long v2, unsigned long long *r)
{ return __builtin_umulll_overflow(v1, v2, r); }
# define HAVE_MUL64_OVERFLOW
#endif
#if ((defined(Q_CC_MSVC) && _MSC_VER >= 1800) || defined(Q_CC_INTEL)) && defined(Q_PROCESSOR_X86) && !QT_HAS_BUILTIN(__builtin_uadd_overflow)
template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r)
{ return _addcarry_u32(0, v1, v2, r); }
# ifdef Q_CC_MSVC // longs are 32-bit
template <> inline bool add_overflow(unsigned long v1, unsigned long v2, unsigned long *r)
{ return _addcarry_u32(0, v1, v2, reinterpret_cast<unsigned *>(r)); }
# endif
#endif
#if ((defined(Q_CC_MSVC) && _MSC_VER >= 1800) || defined(Q_CC_INTEL)) && defined(Q_PROCESSOR_X86_64) && !QT_HAS_BUILTIN(__builtin_uadd_overflow)
template <> inline bool add_overflow(quint64 v1, quint64 v2, quint64 *r)
{ return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r)); }
# ifndef Q_CC_MSVC // longs are 64-bit
template <> inline bool add_overflow(unsigned long v1, unsigned long v2, unsigned long *r)
{ return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r)); }
# endif
#endif
#if defined(Q_CC_MSVC) && (defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_IA64)) && !QT_HAS_BUILTIN(__builtin_uadd_overflow)
#pragma intrinsic(_umul128)
template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r)
{
// use 128-bit multiplication with the _umul128 intrinsic
// https://msdn.microsoft.com/en-us/library/3dayytw9.aspx
quint64 high;
*r = _umul128(v1, v2, &high);
return high;
}
# define HAVE_MUL64_OVERFLOW
#endif
#if !defined(HAVE_MUL64_OVERFLOW) && defined(__LP64__)
// no 128-bit multiplication, we need to figure out with a slow division
template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r)
{
if (v2 && v1 > std::numeric_limits<quint64>::max() / v2)
return true;
*r = v1 * v2;
return false;
}
template <> inline bool mul_overflow(unsigned long v1, unsigned long v2, unsigned long *r)
{
return mul_overflow<quint64>(v1, v2, reinterpret_cast<quint64 *>(r));
}
#else
# undef HAVE_MUL64_OVERFLOW
#endif
//
// Signed overflow math
//
// In C++, signed overflow math is Undefined Behavior. However, many CPUs do implement some way to
// check for overflow. Some compilers expose intrinsics to use this functionality. If the no
// intrinsic is exposed, overflow checking can be done by widening the result type and "manually"
// checking for overflow. Or, alternatively, by using inline assembly to use the CPU features.
//
// Only int overflow checking is implemented, because it's the only one used.
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_sadd_overflow)
inline bool add_overflow(int v1, int v2, int *r)
{ return __builtin_sadd_overflow(v1, v2, r); }
#elif defined(Q_CC_GNU) && defined(Q_PROCESSOR_X86)
inline bool add_overflow(int v1, int v2, int *r)
{
quint8 overflow = 0;
int res = v1;
asm ("addl %2, %1\n"
"seto %0"
: "=q" (overflow), "=r" (res)
: "r" (v2), "1" (res)
: "cc"
);
*r = res;
return overflow;
}
#else
inline bool add_overflow(int v1, int v2, int *r)
{
qint64 t = qint64(v1) + v2;
*r = static_cast<int>(t);
return t > std::numeric_limits<int>::max() || t < std::numeric_limits<int>::min();
}
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_ssub_overflow)
inline bool sub_overflow(int v1, int v2, int *r)
{ return __builtin_ssub_overflow(v1, v2, r); }
#elif defined(Q_CC_GNU) && defined(Q_PROCESSOR_X86)
inline bool sub_overflow(int v1, int v2, int *r)
{
quint8 overflow = 0;
int res = v1;
asm ("subl %2, %1\n"
"seto %0"
: "=q" (overflow), "=r" (res)
: "r" (v2), "1" (res)
: "cc"
);
*r = res;
return overflow;
}
#else
inline bool sub_overflow(int v1, int v2, int *r)
{
qint64 t = qint64(v1) - v2;
*r = static_cast<int>(t);
return t > std::numeric_limits<int>::max() || t < std::numeric_limits<int>::min();
}
#endif
#if (defined(Q_CC_GNU) && !defined(Q_CC_INTEL) && Q_CC_GNU >= 500) || QT_HAS_BUILTIN(__builtin_smul_overflow)
inline bool mul_overflow(int v1, int v2, int *r)
{ return __builtin_smul_overflow(v1, v2, r); }
#elif defined(Q_CC_GNU) && defined(Q_PROCESSOR_X86)
inline bool mul_overflow(int v1, int v2, int *r)
{
quint8 overflow = 0;
int res = v1;
asm ("imul %2, %1\n"
"seto %0"
: "=q" (overflow), "=r" (res)
: "r" (v2), "1" (res)
: "cc"
);
*r = res;
return overflow;
}
#else
inline bool mul_overflow(int v1, int v2, int *r)
{
qint64 t = qint64(v1) * v2;
*r = static_cast<int>(t);
return t > std::numeric_limits<int>::max() || t < std::numeric_limits<int>::min();
}
#endif
}
QT_END_NAMESPACE
#endif // QNUMERIC_P_H