7bbe79fe5f
This abstraction imposed serious performance penalties and is being dropped from the public API. In particular, by allowing file names to be arbitrarily hijacked by different file engines, and requiring engines to be instantiated in order to decide, it imposed unnecessary overhead on all file operations. Another flaw in the design with direct impact on performance is how engines have no way to provide (or retain) additional information obtained when querying the filesystem. In many places this has meant repeated operations on the file system, where useful information is immediately discarded to be queried again subsequently. For Qt 4.8 a major refactoring of the code base took place to allow bypassing the file-engine abstraction in select places, with considerable performance gains observed. In Qt 5 it is expected we'll be able to take this further, reaping even more benefits, but the abstraction has to go. [Dropping this now does not preclude that virtual file systems make an appearance in Qt at a later point in Qt 5's lifecycle. Hopefully with a new and improved abstraction.] Forward declarations for QFileExtension(Result) were dropped, as the classes were never used or defined. Tests using "internalized" classes will only fully run on developer builds. QFSFileEngine was removed altogether from exception safety test, as it isn't its intent to test internal API. Change-Id: Ie910e6c2628be202ea9e05366b091d6d529b246b Reviewed-by: Thiago Macieira <thiago.macieira@intel.com> Reviewed-by: Lars Knoll <lars.knoll@nokia.com> |
||
---|---|---|
.. | ||
corelib | ||
dbus | ||
gui | ||
network | ||
opengl | ||
plugins/imageformats/jpeg | ||
sql | ||
benchmarks.pro | ||
README | ||
trusted-benchmarks.pri |
The most reliable way of running benchmarks is to do it in an otherwise idle system. On a busy system, the results will vary according to the other tasks demanding attention in the system. We have managed to obtain quite reliable results by doing the following on Linux (and you need root): - switching the scheduler to a Real-Time mode - setting the processor affinity to one single processor - disabling the other thread of the same core This should work rather well for CPU-intensive tasks. A task that is in Real- Time mode will simply not be preempted by the OS. But if you make OS syscalls, especially I/O ones, your task will be de-scheduled. Note that this includes page faults, so if you can, make sure your benchmark's warmup code paths touch most of the data. To do this you need a tool called schedtool (package schedtool), from http://freequaos.host.sk/schedtool/ From this point on, we are using CPU0 for all tasks: If you have a Hyperthreaded multi-core processor (Core-i5 and Core-i7), you have to disable the other thread of the same core as CPU0. To discover which one it is: $ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list This will print something like 0,4, meaning that CPUs 0 and 4 are sibling threads on the same core. So we'll turn CPU 4 off: (as root) # echo 0 > /sys/devices/system/cpu/cpu4/online To turn it back on, echo 1 into the same file. To run a task on CPU 0 exclusively, using FIFO RT priority 10, you run the following: (as root) # schedtool -F -p 10 -a 1 -e ./taskname For example: # schedtool -F -p 10 -a 1 -e ./tst_bench_qstring -tickcounter Warning: if your task livelocks or takes far too long to complete, your system may be unusable for a long time, especially if you don't have other cores to run stuff on. To prevent that, run it before schedtool and time it. You can also limit the CPU time that the task is allowed to take. Run in the same shell as you'll run schedtool: $ ulimit -s 300 To limit to 300 seconds (5 minutes) If your task runs away, it will get a SIGXCPU after consuming 5 minutes of CPU time (5 minutes running at 100%). If your app is multithreaded, you may want to give it more CPUs, like CPU0 and CPU1 with -a 3 (it's a bitmask). For best results, you should disable ALL other cores and threads of the same processor. The new Core-i7 have one processor with 4 cores, each core can run 2 threads; the older Mac Pros have two processors with 4 cores each. So on those Mac Pros, you'd disable cores 1, 2 and 3, while on the Core-i7, you'll need to disable all other CPUs. However, disabling just the sibling thread seems to produce very reliable results for me already, with variance often below 0.5% (even though there are some measurable spikes). Other things to try: Running the benchmark with highest priority, i.e. "sudo nice -19" usually produces stable results on some machines. If the benchmark also involves displaying something on the screen (on X11), running it with "-sync" is a must. Though, in that case the "real" cost is not correct, but it is useful to discover regressions. Also; not many people know about ionice (1) ionice - get/set program io scheduling class and priority