qt5base-lts/tests/benchmarks/gui/math3d/qmatrix4x4/tst_qmatrix4x4.cpp
Jason McDonald 5635823e17 Remove "All rights reserved" line from license headers.
As in the past, to avoid rewriting various autotests that contain
line-number information, an extra blank line has been inserted at the
end of the license text to ensure that this commit does not change the
total number of lines in the license header.

Change-Id: I311e001373776812699d6efc045b5f742890c689
Reviewed-by: Rohan McGovern <rohan.mcgovern@nokia.com>
2012-01-30 03:54:59 +01:00

673 lines
17 KiB
C++

/****************************************************************************
**
** Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/
**
** This file is part of the QtOpenGL module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** GNU Lesser General Public License Usage
** This file may be used under the terms of the GNU Lesser General Public
** License version 2.1 as published by the Free Software Foundation and
** appearing in the file LICENSE.LGPL included in the packaging of this
** file. Please review the following information to ensure the GNU Lesser
** General Public License version 2.1 requirements will be met:
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU General
** Public License version 3.0 as published by the Free Software Foundation
** and appearing in the file LICENSE.GPL included in the packaging of this
** file. Please review the following information to ensure the GNU General
** Public License version 3.0 requirements will be met:
** http://www.gnu.org/copyleft/gpl.html.
**
** Other Usage
** Alternatively, this file may be used in accordance with the terms and
** conditions contained in a signed written agreement between you and Nokia.
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QtTest/QtTest>
#include <QtGui/qmatrix4x4.h>
class tst_QMatrix4x4 : public QObject
{
Q_OBJECT
public:
tst_QMatrix4x4() {}
~tst_QMatrix4x4() {}
private slots:
void multiply_data();
void multiply();
void multiplyInPlace_data();
void multiplyInPlace();
void multiplyDirect_data();
void multiplyDirect();
void mapVector3D_data();
void mapVector3D();
void mapVector2D_data();
void mapVector2D();
void mapVectorDirect_data();
void mapVectorDirect();
void compareTranslate_data();
void compareTranslate();
void compareTranslateAfterScale_data();
void compareTranslateAfterScale();
void compareTranslateAfterRotate_data();
void compareTranslateAfterRotate();
void compareScale_data();
void compareScale();
void compareScaleAfterTranslate_data();
void compareScaleAfterTranslate();
void compareScaleAfterRotate_data();
void compareScaleAfterRotate();
void compareRotate_data();
void compareRotate();
void compareRotateAfterTranslate_data();
void compareRotateAfterTranslate();
void compareRotateAfterScale_data();
void compareRotateAfterScale();
};
static qreal const generalValues[16] =
{1.0f, 2.0f, 3.0f, 4.0f,
5.0f, 6.0f, 7.0f, 8.0f,
9.0f, 10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f, 16.0f};
void tst_QMatrix4x4::multiply_data()
{
QTest::addColumn<QMatrix4x4>("m1");
QTest::addColumn<QMatrix4x4>("m2");
QTest::newRow("identity * identity")
<< QMatrix4x4() << QMatrix4x4();
QTest::newRow("identity * general")
<< QMatrix4x4() << QMatrix4x4(generalValues);
QTest::newRow("general * identity")
<< QMatrix4x4(generalValues) << QMatrix4x4();
QTest::newRow("general * general")
<< QMatrix4x4(generalValues) << QMatrix4x4(generalValues);
}
QMatrix4x4 mresult;
void tst_QMatrix4x4::multiply()
{
QFETCH(QMatrix4x4, m1);
QFETCH(QMatrix4x4, m2);
QMatrix4x4 m3;
QBENCHMARK {
m3 = m1 * m2;
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
mresult = m3;
}
void tst_QMatrix4x4::multiplyInPlace_data()
{
multiply_data();
}
void tst_QMatrix4x4::multiplyInPlace()
{
QFETCH(QMatrix4x4, m1);
QFETCH(QMatrix4x4, m2);
QMatrix4x4 m3;
QBENCHMARK {
m3 = m1;
m3 *= m2;
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
mresult = m3;
}
// Use a direct naive multiplication algorithm. This is used
// to compare against the optimized routines to see if they are
// actually faster than the naive implementation.
void tst_QMatrix4x4::multiplyDirect_data()
{
multiply_data();
}
void tst_QMatrix4x4::multiplyDirect()
{
QFETCH(QMatrix4x4, m1);
QFETCH(QMatrix4x4, m2);
QMatrix4x4 m3;
const qreal *m1data = m1.constData();
const qreal *m2data = m2.constData();
qreal *m3data = m3.data();
QBENCHMARK {
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
m3data[col * 4 + row] = 0.0f;
for (int j = 0; j < 4; ++j) {
m3data[col * 4 + row] +=
m1data[j * 4 + row] * m2data[col * 4 + j];
}
}
}
}
}
QVector3D vresult;
void tst_QMatrix4x4::mapVector3D_data()
{
QTest::addColumn<QMatrix4x4>("m1");
QTest::newRow("identity") << QMatrix4x4();
QTest::newRow("general") << QMatrix4x4(generalValues);
QMatrix4x4 t1;
t1.translate(-100.5f, 64.0f, 75.25f);
QTest::newRow("translate3D") << t1;
QMatrix4x4 t2;
t2.translate(-100.5f, 64.0f);
QTest::newRow("translate2D") << t2;
QMatrix4x4 s1;
s1.scale(-100.5f, 64.0f, 75.25f);
QTest::newRow("scale3D") << s1;
QMatrix4x4 s2;
s2.scale(-100.5f, 64.0f);
QTest::newRow("scale2D") << s2;
}
void tst_QMatrix4x4::mapVector3D()
{
QFETCH(QMatrix4x4, m1);
QVector3D v(10.5f, -2.0f, 3.0f);
QVector3D result;
m1.optimize();
QBENCHMARK {
result = m1 * v;
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
vresult = result;
}
QPointF vresult2;
void tst_QMatrix4x4::mapVector2D_data()
{
mapVector3D_data();
}
void tst_QMatrix4x4::mapVector2D()
{
QFETCH(QMatrix4x4, m1);
QPointF v(10.5f, -2.0f);
QPointF result;
m1.optimize();
QBENCHMARK {
result = m1 * v;
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
vresult2 = result;
}
// Use a direct naive multiplication algorithm. This is used
// to compare against the optimized routines to see if they are
// actually faster than the naive implementation.
void tst_QMatrix4x4::mapVectorDirect_data()
{
mapVector3D_data();
}
void tst_QMatrix4x4::mapVectorDirect()
{
QFETCH(QMatrix4x4, m1);
const qreal *m1data = m1.constData();
qreal v[4] = {10.5f, -2.0f, 3.0f, 1.0f};
qreal result[4];
QBENCHMARK {
for (int row = 0; row < 4; ++row) {
result[row] = 0.0f;
for (int col = 0; col < 4; ++col) {
result[row] += m1data[col * 4 + row] * v[col];
}
}
result[0] /= result[3];
result[1] /= result[3];
result[2] /= result[3];
}
}
// Compare the performance of QTransform::translate() to
// QMatrix4x4::translate().
void tst_QMatrix4x4::compareTranslate_data()
{
QTest::addColumn<bool>("useQTransform");
QTest::addColumn<QVector3D>("translation");
QTest::newRow("QTransform::translate(0, 0, 0)")
<< true << QVector3D(0, 0, 0);
QTest::newRow("QMatrix4x4::translate(0, 0, 0)")
<< false << QVector3D(0, 0, 0);
QTest::newRow("QTransform::translate(1, 2, 0)")
<< true << QVector3D(1, 2, 0);
QTest::newRow("QMatrix4x4::translate(1, 2, 0)")
<< false << QVector3D(1, 2, 0);
QTest::newRow("QTransform::translate(1, 2, 4)")
<< true << QVector3D(1, 2, 4);
QTest::newRow("QMatrix4x4::translate(1, 2, 4)")
<< false << QVector3D(1, 2, 4);
}
void tst_QMatrix4x4::compareTranslate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, translation);
qreal x = translation.x();
qreal y = translation.y();
qreal z = translation.z();
if (useQTransform) {
QTransform t;
QBENCHMARK {
t.translate(x, y);
}
} else if (z == 0.0f) {
QMatrix4x4 m;
QBENCHMARK {
m.translate(x, y);
}
} else {
QMatrix4x4 m;
QBENCHMARK {
m.translate(x, y, z);
}
}
}
// Compare the performance of QTransform::translate() to
// QMatrix4x4::translate() after priming the matrix with a scale().
void tst_QMatrix4x4::compareTranslateAfterScale_data()
{
compareTranslate_data();
}
void tst_QMatrix4x4::compareTranslateAfterScale()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, translation);
qreal x = translation.x();
qreal y = translation.y();
qreal z = translation.z();
if (useQTransform) {
QTransform t;
t.scale(3, 4);
QBENCHMARK {
t.translate(x, y);
}
} else if (z == 0.0f) {
QMatrix4x4 m;
m.scale(3, 4);
QBENCHMARK {
m.translate(x, y);
}
} else {
QMatrix4x4 m;
m.scale(3, 4, 5);
QBENCHMARK {
m.translate(x, y, z);
}
}
}
// Compare the performance of QTransform::translate() to
// QMatrix4x4::translate() after priming the matrix with a rotate().
void tst_QMatrix4x4::compareTranslateAfterRotate_data()
{
compareTranslate_data();
}
void tst_QMatrix4x4::compareTranslateAfterRotate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, translation);
qreal x = translation.x();
qreal y = translation.y();
qreal z = translation.z();
if (useQTransform) {
QTransform t;
t.rotate(45.0f);
QBENCHMARK {
t.translate(x, y);
}
} else if (z == 0.0f) {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.translate(x, y);
}
} else {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.translate(x, y, z);
}
}
}
// Compare the performance of QTransform::scale() to
// QMatrix4x4::scale().
void tst_QMatrix4x4::compareScale_data()
{
QTest::addColumn<bool>("useQTransform");
QTest::addColumn<QVector3D>("scale");
QTest::newRow("QTransform::scale(1, 1, 1)")
<< true << QVector3D(1, 1, 1);
QTest::newRow("QMatrix4x4::scale(1, 1, 1)")
<< false << QVector3D(1, 1, 1);
QTest::newRow("QTransform::scale(3, 6, 1)")
<< true << QVector3D(3, 6, 1);
QTest::newRow("QMatrix4x4::scale(3, 6, 1)")
<< false << QVector3D(3, 6, 1);
QTest::newRow("QTransform::scale(3, 6, 4)")
<< true << QVector3D(3, 6, 4);
QTest::newRow("QMatrix4x4::scale(3, 6, 4)")
<< false << QVector3D(3, 6, 4);
}
void tst_QMatrix4x4::compareScale()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, scale);
qreal x = scale.x();
qreal y = scale.y();
qreal z = scale.z();
if (useQTransform) {
QTransform t;
QBENCHMARK {
t.scale(x, y);
}
} else if (z == 1.0f) {
QMatrix4x4 m;
QBENCHMARK {
m.scale(x, y);
}
} else {
QMatrix4x4 m;
QBENCHMARK {
m.scale(x, y, z);
}
}
}
// Compare the performance of QTransform::scale() to
// QMatrix4x4::scale() after priming the matrix with a translate().
void tst_QMatrix4x4::compareScaleAfterTranslate_data()
{
compareScale_data();
}
void tst_QMatrix4x4::compareScaleAfterTranslate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, scale);
qreal x = scale.x();
qreal y = scale.y();
qreal z = scale.z();
if (useQTransform) {
QTransform t;
t.translate(20, 34);
QBENCHMARK {
t.scale(x, y);
}
} else if (z == 1.0f) {
QMatrix4x4 m;
m.translate(20, 34);
QBENCHMARK {
m.scale(x, y);
}
} else {
QMatrix4x4 m;
m.translate(20, 34, 42);
QBENCHMARK {
m.scale(x, y, z);
}
}
}
// Compare the performance of QTransform::scale() to
// QMatrix4x4::scale() after priming the matrix with a rotate().
void tst_QMatrix4x4::compareScaleAfterRotate_data()
{
compareScale_data();
}
void tst_QMatrix4x4::compareScaleAfterRotate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, scale);
qreal x = scale.x();
qreal y = scale.y();
qreal z = scale.z();
if (useQTransform) {
QTransform t;
t.rotate(45.0f);
QBENCHMARK {
t.scale(x, y);
}
} else if (z == 1.0f) {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.scale(x, y);
}
} else {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.scale(x, y, z);
}
}
}
// Compare the performance of QTransform::rotate() to
// QMatrix4x4::rotate().
void tst_QMatrix4x4::compareRotate_data()
{
QTest::addColumn<bool>("useQTransform");
QTest::addColumn<qreal>("angle");
QTest::addColumn<QVector3D>("rotation");
QTest::addColumn<int>("axis");
QTest::newRow("QTransform::rotate(0, ZAxis)")
<< true << qreal(0.0f) << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QMatrix4x4::rotate(0, ZAxis)")
<< false << qreal(0.0f) << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QTransform::rotate(45, ZAxis)")
<< true << qreal(45.0f) << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QMatrix4x4::rotate(45, ZAxis)")
<< false << qreal(45.0f) << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QTransform::rotate(90, ZAxis)")
<< true << qreal(90.0f) << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QMatrix4x4::rotate(90, ZAxis)")
<< false << qreal(90.0f) << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QTransform::rotate(0, YAxis)")
<< true << qreal(0.0f) << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QMatrix4x4::rotate(0, YAxis)")
<< false << qreal(0.0f) << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QTransform::rotate(45, YAxis)")
<< true << qreal(45.0f) << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QMatrix4x4::rotate(45, YAxis)")
<< false << qreal(45.0f) << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QTransform::rotate(90, YAxis)")
<< true << qreal(90.0f) << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QMatrix4x4::rotate(90, YAxis)")
<< false << qreal(90.0f) << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QTransform::rotate(0, XAxis)")
<< true << qreal(0.0f) << QVector3D(0, 1, 0) << int(Qt::XAxis);
QTest::newRow("QMatrix4x4::rotate(0, XAxis)")
<< false << qreal(0.0f) << QVector3D(0, 1, 0) << int(Qt::XAxis);
QTest::newRow("QTransform::rotate(45, XAxis)")
<< true << qreal(45.0f) << QVector3D(1, 0, 0) << int(Qt::XAxis);
QTest::newRow("QMatrix4x4::rotate(45, XAxis)")
<< false << qreal(45.0f) << QVector3D(1, 0, 0) << int(Qt::XAxis);
QTest::newRow("QTransform::rotate(90, XAxis)")
<< true << qreal(90.0f) << QVector3D(1, 0, 0) << int(Qt::XAxis);
QTest::newRow("QMatrix4x4::rotate(90, XAxis)")
<< false << qreal(90.0f) << QVector3D(1, 0, 0) << int(Qt::XAxis);
}
void tst_QMatrix4x4::compareRotate()
{
QFETCH(bool, useQTransform);
QFETCH(qreal, angle);
QFETCH(QVector3D, rotation);
QFETCH(int, axis);
qreal x = rotation.x();
qreal y = rotation.y();
qreal z = rotation.z();
if (useQTransform) {
QTransform t;
QBENCHMARK {
t.rotate(angle, Qt::Axis(axis));
}
} else {
QMatrix4x4 m;
QBENCHMARK {
m.rotate(angle, x, y, z);
}
}
}
// Compare the performance of QTransform::rotate() to
// QMatrix4x4::rotate() after priming the matrix with a translate().
void tst_QMatrix4x4::compareRotateAfterTranslate_data()
{
compareRotate_data();
}
void tst_QMatrix4x4::compareRotateAfterTranslate()
{
QFETCH(bool, useQTransform);
QFETCH(qreal, angle);
QFETCH(QVector3D, rotation);
QFETCH(int, axis);
qreal x = rotation.x();
qreal y = rotation.y();
qreal z = rotation.z();
if (useQTransform) {
QTransform t;
t.translate(3, 4);
QBENCHMARK {
t.rotate(angle, Qt::Axis(axis));
}
} else {
QMatrix4x4 m;
m.translate(3, 4, 5);
QBENCHMARK {
m.rotate(angle, x, y, z);
}
}
}
// Compare the performance of QTransform::rotate() to
// QMatrix4x4::rotate() after priming the matrix with a scale().
void tst_QMatrix4x4::compareRotateAfterScale_data()
{
compareRotate_data();
}
void tst_QMatrix4x4::compareRotateAfterScale()
{
QFETCH(bool, useQTransform);
QFETCH(qreal, angle);
QFETCH(QVector3D, rotation);
QFETCH(int, axis);
qreal x = rotation.x();
qreal y = rotation.y();
qreal z = rotation.z();
if (useQTransform) {
QTransform t;
t.scale(3, 4);
QBENCHMARK {
t.rotate(angle, Qt::Axis(axis));
}
} else {
QMatrix4x4 m;
m.scale(3, 4, 5);
QBENCHMARK {
m.rotate(angle, x, y, z);
}
}
}
QTEST_MAIN(tst_QMatrix4x4)
#include "tst_qmatrix4x4.moc"