qt5base-lts/demos/boxes/3rdparty/fbm.c
Qt by Nokia 38be0d1383 Initial import from the monolithic Qt.
This is the beginning of revision history for this module. If you
want to look at revision history older than this, please refer to the
Qt Git wiki for how to use Git history grafting. At the time of
writing, this wiki is located here:

http://qt.gitorious.org/qt/pages/GitIntroductionWithQt

If you have already performed the grafting and you don't see any
history beyond this commit, try running "git log" with the "--follow"
argument.

Branched from the monolithic repo, Qt master branch, at commit
896db169ea224deb96c59ce8af800d019de63f12
2011-04-27 12:05:43 +02:00

208 lines
4.4 KiB
C

/*****************************************************************
Implementation of the fractional Brownian motion algorithm. These
functions were originally the work of F. Kenton Musgrave.
For documentation of the different functions please refer to the
book:
"Texturing and modeling: a procedural approach"
by David S. Ebert et. al.
******************************************************************/
#if defined (_MSC_VER)
#include <qglobal.h>
#endif
#include <time.h>
#include <stdlib.h>
#include "fbm.h"
#if defined(Q_CC_MSVC)
#pragma warning(disable:4244)
#endif
/* Definitions used by the noise2() functions */
//#define B 0x100
//#define BM 0xff
#define B 0x20
#define BM 0x1f
#define N 0x1000
#define NP 12 /* 2^N */
#define NM 0xfff
static int p[B + B + 2];
static float g3[B + B + 2][3];
static float g2[B + B + 2][2];
static float g1[B + B + 2];
static int start = 1;
static void init(void);
#define s_curve(t) ( t * t * (3. - 2. * t) )
#define lerp(t, a, b) ( a + t * (b - a) )
#define setup(i,b0,b1,r0,r1)\
t = vec[i] + N;\
b0 = ((int)t) & BM;\
b1 = (b0+1) & BM;\
r0 = t - (int)t;\
r1 = r0 - 1.;
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
/* Fractional Brownian Motion function */
double fBm( Vector point, double H, double lacunarity, double octaves,
int init )
{
double value, frequency, remainder;
int i;
static double exponent_array[10];
float vec[3];
/* precompute and store spectral weights */
if ( init ) {
start = 1;
srand( time(0) );
/* seize required memory for exponent_array */
frequency = 1.0;
for (i=0; i<=octaves; i++) {
/* compute weight for each frequency */
exponent_array[i] = pow( frequency, -H );
frequency *= lacunarity;
}
}
value = 0.0; /* initialize vars to proper values */
frequency = 1.0;
vec[0]=point.x;
vec[1]=point.y;
vec[2]=point.z;
/* inner loop of spectral construction */
for (i=0; i<octaves; i++) {
/* value += noise3( vec ) * exponent_array[i];*/
value += noise3( vec ) * exponent_array[i];
vec[0] *= lacunarity;
vec[1] *= lacunarity;
vec[2] *= lacunarity;
} /* for */
remainder = octaves - (int)octaves;
if ( remainder ) /* add in ``octaves'' remainder */
/* ``i'' and spatial freq. are preset in loop above */
value += remainder * noise3( vec ) * exponent_array[i];
return( value );
} /* fBm() */
float noise3(float vec[3])
{
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
register int i, j;
if (start) {
start = 0;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
setup(2, bz0,bz1, rz0,rz1);
i = p[ bx0 ];
j = p[ bx1 ];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
a = lerp(t, u, v);
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
b = lerp(t, u, v);
c = lerp(sy, a, b);
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
a = lerp(t, u, v);
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
b = lerp(t, u, v);
d = lerp(sy, a, b);
return lerp(sz, c, d);
}
static void normalize2(float v[2])
{
float s;
s = sqrt(v[0] * v[0] + v[1] * v[1]);
v[0] = v[0] / s;
v[1] = v[1] / s;
}
static void normalize3(float v[3])
{
float s;
s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
v[0] = v[0] / s;
v[1] = v[1] / s;
v[2] = v[2] / s;
}
static void init(void)
{
int i, j, k;
for (i = 0 ; i < B ; i++) {
p[i] = i;
g1[i] = (float)((rand() % (B + B)) - B) / B;
for (j = 0 ; j < 2 ; j++)
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize3(g3[i]);
}
while (--i) {
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++) {
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
g3[B + i][j] = g3[i][j];
}
}