qt5base-lts/tests/benchmarks/gui/math3d/qmatrix4x4/tst_qmatrix4x4.cpp
Lucie Gérard 05fc3aef53 Use SPDX license identifiers
Replace the current license disclaimer in files by
a SPDX-License-Identifier.
Files that have to be modified by hand are modified.
License files are organized under LICENSES directory.

Task-number: QTBUG-67283
Change-Id: Id880c92784c40f3bbde861c0d93f58151c18b9f1
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
2022-05-16 16:37:38 +02:00

637 lines
16 KiB
C++

// Copyright (C) 2016 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only WITH Qt-GPL-exception-1.0
#include <QTest>
#include <QtGui/qmatrix4x4.h>
class tst_QMatrix4x4 : public QObject
{
Q_OBJECT
public:
tst_QMatrix4x4() {}
~tst_QMatrix4x4() {}
private slots:
void multiply_data();
void multiply();
void multiplyInPlace_data();
void multiplyInPlace();
void multiplyDirect_data();
void multiplyDirect();
void mapVector3D_data();
void mapVector3D();
void mapVector2D_data();
void mapVector2D();
void mapVectorDirect_data();
void mapVectorDirect();
void compareTranslate_data();
void compareTranslate();
void compareTranslateAfterScale_data();
void compareTranslateAfterScale();
void compareTranslateAfterRotate_data();
void compareTranslateAfterRotate();
void compareScale_data();
void compareScale();
void compareScaleAfterTranslate_data();
void compareScaleAfterTranslate();
void compareScaleAfterRotate_data();
void compareScaleAfterRotate();
void compareRotate_data();
void compareRotate();
void compareRotateAfterTranslate_data();
void compareRotateAfterTranslate();
void compareRotateAfterScale_data();
void compareRotateAfterScale();
};
static float const generalValues[16] =
{1.0f, 2.0f, 3.0f, 4.0f,
5.0f, 6.0f, 7.0f, 8.0f,
9.0f, 10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f, 16.0f};
void tst_QMatrix4x4::multiply_data()
{
QTest::addColumn<QMatrix4x4>("m1");
QTest::addColumn<QMatrix4x4>("m2");
QTest::newRow("identity * identity")
<< QMatrix4x4() << QMatrix4x4();
QTest::newRow("identity * general")
<< QMatrix4x4() << QMatrix4x4(generalValues);
QTest::newRow("general * identity")
<< QMatrix4x4(generalValues) << QMatrix4x4();
QTest::newRow("general * general")
<< QMatrix4x4(generalValues) << QMatrix4x4(generalValues);
}
QMatrix4x4 mresult;
void tst_QMatrix4x4::multiply()
{
QFETCH(QMatrix4x4, m1);
QFETCH(QMatrix4x4, m2);
QMatrix4x4 m3;
QBENCHMARK {
m3 = m1 * m2;
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
mresult = m3;
}
void tst_QMatrix4x4::multiplyInPlace_data()
{
multiply_data();
}
void tst_QMatrix4x4::multiplyInPlace()
{
QFETCH(QMatrix4x4, m1);
QFETCH(QMatrix4x4, m2);
QMatrix4x4 m3;
QBENCHMARK {
m3 = m1;
m3 *= m2;
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
mresult = m3;
}
// Use a direct naive multiplication algorithm. This is used
// to compare against the optimized routines to see if they are
// actually faster than the naive implementation.
void tst_QMatrix4x4::multiplyDirect_data()
{
multiply_data();
}
void tst_QMatrix4x4::multiplyDirect()
{
QFETCH(QMatrix4x4, m1);
QFETCH(QMatrix4x4, m2);
QMatrix4x4 m3;
const float *m1data = m1.constData();
const float *m2data = m2.constData();
float *m3data = m3.data();
QBENCHMARK {
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
m3data[col * 4 + row] = 0.0f;
for (int j = 0; j < 4; ++j) {
m3data[col * 4 + row] +=
m1data[j * 4 + row] * m2data[col * 4 + j];
}
}
}
}
}
QVector3D vresult;
void tst_QMatrix4x4::mapVector3D_data()
{
QTest::addColumn<QMatrix4x4>("m1");
QTest::newRow("identity") << QMatrix4x4();
QTest::newRow("general") << QMatrix4x4(generalValues);
QMatrix4x4 t1;
t1.translate(-100.5f, 64.0f, 75.25f);
QTest::newRow("translate3D") << t1;
QMatrix4x4 t2;
t2.translate(-100.5f, 64.0f);
QTest::newRow("translate2D") << t2;
QMatrix4x4 s1;
s1.scale(-100.5f, 64.0f, 75.25f);
QTest::newRow("scale3D") << s1;
QMatrix4x4 s2;
s2.scale(-100.5f, 64.0f);
QTest::newRow("scale2D") << s2;
}
void tst_QMatrix4x4::mapVector3D()
{
QFETCH(QMatrix4x4, m1);
QVector3D v(10.5f, -2.0f, 3.0f);
QVector3D result;
m1.optimize();
QBENCHMARK {
result = m1.map(v);
Q_UNUSED(result)
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
vresult = result;
}
QPointF vresult2;
void tst_QMatrix4x4::mapVector2D_data()
{
mapVector3D_data();
}
void tst_QMatrix4x4::mapVector2D()
{
QFETCH(QMatrix4x4, m1);
QPointF v(10.5f, -2.0f);
QPointF result;
m1.optimize();
QBENCHMARK {
result = m1.map(v);
Q_UNUSED(result)
}
// Force the result to be stored so the compiler doesn't
// optimize away the contents of the benchmark loop.
vresult2 = result;
}
// Use a direct naive multiplication algorithm. This is used
// to compare against the optimized routines to see if they are
// actually faster than the naive implementation.
void tst_QMatrix4x4::mapVectorDirect_data()
{
mapVector3D_data();
}
void tst_QMatrix4x4::mapVectorDirect()
{
QFETCH(QMatrix4x4, m1);
const float *m1data = m1.constData();
float v[4] = {10.5f, -2.0f, 3.0f, 1.0f};
float result[4];
QBENCHMARK {
for (int row = 0; row < 4; ++row) {
result[row] = 0.0f;
for (int col = 0; col < 4; ++col) {
result[row] += m1data[col * 4 + row] * v[col];
}
}
result[0] /= result[3];
result[1] /= result[3];
result[2] /= result[3];
}
}
// Compare the performance of QTransform::translate() to
// QMatrix4x4::translate().
void tst_QMatrix4x4::compareTranslate_data()
{
QTest::addColumn<bool>("useQTransform");
QTest::addColumn<QVector3D>("translation");
QTest::newRow("QTransform::translate(0, 0, 0)")
<< true << QVector3D(0, 0, 0);
QTest::newRow("QMatrix4x4::translate(0, 0, 0)")
<< false << QVector3D(0, 0, 0);
QTest::newRow("QTransform::translate(1, 2, 0)")
<< true << QVector3D(1, 2, 0);
QTest::newRow("QMatrix4x4::translate(1, 2, 0)")
<< false << QVector3D(1, 2, 0);
QTest::newRow("QTransform::translate(1, 2, 4)")
<< true << QVector3D(1, 2, 4);
QTest::newRow("QMatrix4x4::translate(1, 2, 4)")
<< false << QVector3D(1, 2, 4);
}
void tst_QMatrix4x4::compareTranslate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, translation);
float x = translation.x();
float y = translation.y();
float z = translation.z();
if (useQTransform) {
QTransform t;
QBENCHMARK {
t.translate(x, y);
}
} else if (z == 0.0f) {
QMatrix4x4 m;
QBENCHMARK {
m.translate(x, y);
}
} else {
QMatrix4x4 m;
QBENCHMARK {
m.translate(x, y, z);
}
}
}
// Compare the performance of QTransform::translate() to
// QMatrix4x4::translate() after priming the matrix with a scale().
void tst_QMatrix4x4::compareTranslateAfterScale_data()
{
compareTranslate_data();
}
void tst_QMatrix4x4::compareTranslateAfterScale()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, translation);
float x = translation.x();
float y = translation.y();
float z = translation.z();
if (useQTransform) {
QTransform t;
t.scale(3, 4);
QBENCHMARK {
t.translate(x, y);
}
} else if (z == 0.0f) {
QMatrix4x4 m;
m.scale(3, 4);
QBENCHMARK {
m.translate(x, y);
}
} else {
QMatrix4x4 m;
m.scale(3, 4, 5);
QBENCHMARK {
m.translate(x, y, z);
}
}
}
// Compare the performance of QTransform::translate() to
// QMatrix4x4::translate() after priming the matrix with a rotate().
void tst_QMatrix4x4::compareTranslateAfterRotate_data()
{
compareTranslate_data();
}
void tst_QMatrix4x4::compareTranslateAfterRotate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, translation);
float x = translation.x();
float y = translation.y();
float z = translation.z();
if (useQTransform) {
QTransform t;
t.rotate(45.0f);
QBENCHMARK {
t.translate(x, y);
}
} else if (z == 0.0f) {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.translate(x, y);
}
} else {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.translate(x, y, z);
}
}
}
// Compare the performance of QTransform::scale() to
// QMatrix4x4::scale().
void tst_QMatrix4x4::compareScale_data()
{
QTest::addColumn<bool>("useQTransform");
QTest::addColumn<QVector3D>("scale");
QTest::newRow("QTransform::scale(1, 1, 1)")
<< true << QVector3D(1, 1, 1);
QTest::newRow("QMatrix4x4::scale(1, 1, 1)")
<< false << QVector3D(1, 1, 1);
QTest::newRow("QTransform::scale(3, 6, 1)")
<< true << QVector3D(3, 6, 1);
QTest::newRow("QMatrix4x4::scale(3, 6, 1)")
<< false << QVector3D(3, 6, 1);
QTest::newRow("QTransform::scale(3, 6, 4)")
<< true << QVector3D(3, 6, 4);
QTest::newRow("QMatrix4x4::scale(3, 6, 4)")
<< false << QVector3D(3, 6, 4);
}
void tst_QMatrix4x4::compareScale()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, scale);
float x = scale.x();
float y = scale.y();
float z = scale.z();
if (useQTransform) {
QTransform t;
QBENCHMARK {
t.scale(x, y);
}
} else if (z == 1.0f) {
QMatrix4x4 m;
QBENCHMARK {
m.scale(x, y);
}
} else {
QMatrix4x4 m;
QBENCHMARK {
m.scale(x, y, z);
}
}
}
// Compare the performance of QTransform::scale() to
// QMatrix4x4::scale() after priming the matrix with a translate().
void tst_QMatrix4x4::compareScaleAfterTranslate_data()
{
compareScale_data();
}
void tst_QMatrix4x4::compareScaleAfterTranslate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, scale);
float x = scale.x();
float y = scale.y();
float z = scale.z();
if (useQTransform) {
QTransform t;
t.translate(20, 34);
QBENCHMARK {
t.scale(x, y);
}
} else if (z == 1.0f) {
QMatrix4x4 m;
m.translate(20, 34);
QBENCHMARK {
m.scale(x, y);
}
} else {
QMatrix4x4 m;
m.translate(20, 34, 42);
QBENCHMARK {
m.scale(x, y, z);
}
}
}
// Compare the performance of QTransform::scale() to
// QMatrix4x4::scale() after priming the matrix with a rotate().
void tst_QMatrix4x4::compareScaleAfterRotate_data()
{
compareScale_data();
}
void tst_QMatrix4x4::compareScaleAfterRotate()
{
QFETCH(bool, useQTransform);
QFETCH(QVector3D, scale);
float x = scale.x();
float y = scale.y();
float z = scale.z();
if (useQTransform) {
QTransform t;
t.rotate(45.0f);
QBENCHMARK {
t.scale(x, y);
}
} else if (z == 1.0f) {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.scale(x, y);
}
} else {
QMatrix4x4 m;
m.rotate(45.0f, 0, 0, 1);
QBENCHMARK {
m.scale(x, y, z);
}
}
}
// Compare the performance of QTransform::rotate() to
// QMatrix4x4::rotate().
void tst_QMatrix4x4::compareRotate_data()
{
QTest::addColumn<bool>("useQTransform");
QTest::addColumn<float>("angle");
QTest::addColumn<QVector3D>("rotation");
QTest::addColumn<int>("axis");
QTest::newRow("QTransform::rotate(0, ZAxis)")
<< true << 0.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QMatrix4x4::rotate(0, ZAxis)")
<< false << 0.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QTransform::rotate(45, ZAxis)")
<< true << 45.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QMatrix4x4::rotate(45, ZAxis)")
<< false << 45.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QTransform::rotate(90, ZAxis)")
<< true << 90.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QMatrix4x4::rotate(90, ZAxis)")
<< false << 90.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
QTest::newRow("QTransform::rotate(0, YAxis)")
<< true << 0.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QMatrix4x4::rotate(0, YAxis)")
<< false << 0.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QTransform::rotate(45, YAxis)")
<< true << 45.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QMatrix4x4::rotate(45, YAxis)")
<< false << 45.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QTransform::rotate(90, YAxis)")
<< true << 90.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QMatrix4x4::rotate(90, YAxis)")
<< false << 90.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
QTest::newRow("QTransform::rotate(0, XAxis)")
<< true << 0.0f << QVector3D(0, 1, 0) << int(Qt::XAxis);
QTest::newRow("QMatrix4x4::rotate(0, XAxis)")
<< false << 0.0f << QVector3D(0, 1, 0) << int(Qt::XAxis);
QTest::newRow("QTransform::rotate(45, XAxis)")
<< true << 45.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
QTest::newRow("QMatrix4x4::rotate(45, XAxis)")
<< false << 45.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
QTest::newRow("QTransform::rotate(90, XAxis)")
<< true << 90.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
QTest::newRow("QMatrix4x4::rotate(90, XAxis)")
<< false << 90.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
}
void tst_QMatrix4x4::compareRotate()
{
QFETCH(bool, useQTransform);
QFETCH(float, angle);
QFETCH(QVector3D, rotation);
QFETCH(int, axis);
float x = rotation.x();
float y = rotation.y();
float z = rotation.z();
if (useQTransform) {
QTransform t;
QBENCHMARK {
t.rotate(angle, Qt::Axis(axis));
}
} else {
QMatrix4x4 m;
QBENCHMARK {
m.rotate(angle, x, y, z);
}
}
}
// Compare the performance of QTransform::rotate() to
// QMatrix4x4::rotate() after priming the matrix with a translate().
void tst_QMatrix4x4::compareRotateAfterTranslate_data()
{
compareRotate_data();
}
void tst_QMatrix4x4::compareRotateAfterTranslate()
{
QFETCH(bool, useQTransform);
QFETCH(float, angle);
QFETCH(QVector3D, rotation);
QFETCH(int, axis);
float x = rotation.x();
float y = rotation.y();
float z = rotation.z();
if (useQTransform) {
QTransform t;
t.translate(3, 4);
QBENCHMARK {
t.rotate(angle, Qt::Axis(axis));
}
} else {
QMatrix4x4 m;
m.translate(3, 4, 5);
QBENCHMARK {
m.rotate(angle, x, y, z);
}
}
}
// Compare the performance of QTransform::rotate() to
// QMatrix4x4::rotate() after priming the matrix with a scale().
void tst_QMatrix4x4::compareRotateAfterScale_data()
{
compareRotate_data();
}
void tst_QMatrix4x4::compareRotateAfterScale()
{
QFETCH(bool, useQTransform);
QFETCH(float, angle);
QFETCH(QVector3D, rotation);
QFETCH(int, axis);
float x = rotation.x();
float y = rotation.y();
float z = rotation.z();
if (useQTransform) {
QTransform t;
t.scale(3, 4);
QBENCHMARK {
t.rotate(angle, Qt::Axis(axis));
}
} else {
QMatrix4x4 m;
m.scale(3, 4, 5);
QBENCHMARK {
m.rotate(angle, x, y, z);
}
}
}
QTEST_MAIN(tst_QMatrix4x4)
#include "tst_qmatrix4x4.moc"