83a5694dc2
Qt copyrights are now in The Qt Company, so we could update the source code headers accordingly. In the same go we should also fix the links to point to qt.io. Outdated header.LGPL removed (use header.LGPL21 instead) Old header.LGPL3 renamed to header.LGPL3-COMM to match actual licensing combination. New header.LGPL-COMM taken in the use file which were using old header.LGPL3 (src/plugins/platforms/android/extract.cpp) Added new header.LGPL3 containing Commercial + LGPLv3 + GPLv2 license combination Change-Id: I6f49b819a8a20cc4f88b794a8f6726d975e8ffbe Reviewed-by: Matti Paaso <matti.paaso@theqtcompany.com>
932 lines
25 KiB
C++
932 lines
25 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2015 The Qt Company Ltd.
|
|
** Contact: http://www.qt.io/licensing/
|
|
**
|
|
** This file is part of the test suite of the Qt Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL21$
|
|
** Commercial License Usage
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
** accordance with the commercial license agreement provided with the
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
** a written agreement between you and The Qt Company. For licensing terms
|
|
** and conditions see http://www.qt.io/terms-conditions. For further
|
|
** information use the contact form at http://www.qt.io/contact-us.
|
|
**
|
|
** GNU Lesser General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
** General Public License version 2.1 or version 3 as published by the Free
|
|
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
|
|
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
|
|
** following information to ensure the GNU Lesser General Public License
|
|
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
|
|
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** As a special exception, The Qt Company gives you certain additional
|
|
** rights. These rights are described in The Qt Company LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
|
|
#include <QtTest/QtTest>
|
|
#include <QtCore/qmath.h>
|
|
#include <QtGui/qquaternion.h>
|
|
|
|
class tst_QQuaternion : public QObject
|
|
{
|
|
Q_OBJECT
|
|
public:
|
|
tst_QQuaternion() {}
|
|
~tst_QQuaternion() {}
|
|
|
|
private slots:
|
|
void create();
|
|
|
|
void length_data();
|
|
void length();
|
|
|
|
void normalized_data();
|
|
void normalized();
|
|
|
|
void normalize_data();
|
|
void normalize();
|
|
|
|
void inverted_data();
|
|
void inverted();
|
|
|
|
void compare();
|
|
|
|
void add_data();
|
|
void add();
|
|
|
|
void subtract_data();
|
|
void subtract();
|
|
|
|
void multiply_data();
|
|
void multiply();
|
|
|
|
void multiplyFactor_data();
|
|
void multiplyFactor();
|
|
|
|
void divide_data();
|
|
void divide();
|
|
|
|
void negate_data();
|
|
void negate();
|
|
|
|
void conjugate_data();
|
|
void conjugate();
|
|
|
|
void fromAxisAndAngle_data();
|
|
void fromAxisAndAngle();
|
|
|
|
void fromRotationMatrix_data();
|
|
void fromRotationMatrix();
|
|
|
|
void slerp_data();
|
|
void slerp();
|
|
|
|
void nlerp_data();
|
|
void nlerp();
|
|
|
|
void properties();
|
|
void metaTypes();
|
|
};
|
|
|
|
// Test the creation of QQuaternion objects in various ways:
|
|
// construct, copy, and modify.
|
|
void tst_QQuaternion::create()
|
|
{
|
|
QQuaternion identity;
|
|
QCOMPARE(identity.x(), 0.0f);
|
|
QCOMPARE(identity.y(), 0.0f);
|
|
QCOMPARE(identity.z(), 0.0f);
|
|
QCOMPARE(identity.scalar(), 1.0f);
|
|
QVERIFY(identity.isIdentity());
|
|
|
|
QQuaternion negativeZeroIdentity(1.0f, -0.0f, -0.0f, -0.0f);
|
|
QCOMPARE(negativeZeroIdentity.x(), -0.0f);
|
|
QCOMPARE(negativeZeroIdentity.y(), -0.0f);
|
|
QCOMPARE(negativeZeroIdentity.z(), -0.0f);
|
|
QCOMPARE(negativeZeroIdentity.scalar(), 1.0f);
|
|
QVERIFY(negativeZeroIdentity.isIdentity());
|
|
|
|
QQuaternion v1(34.0f, 1.0f, 2.5f, -89.25f);
|
|
QCOMPARE(v1.x(), 1.0f);
|
|
QCOMPARE(v1.y(), 2.5f);
|
|
QCOMPARE(v1.z(), -89.25f);
|
|
QCOMPARE(v1.scalar(), 34.0f);
|
|
QVERIFY(!v1.isNull());
|
|
|
|
QQuaternion v1i(34, 1, 2, -89);
|
|
QCOMPARE(v1i.x(), 1.0f);
|
|
QCOMPARE(v1i.y(), 2.0f);
|
|
QCOMPARE(v1i.z(), -89.0f);
|
|
QCOMPARE(v1i.scalar(), 34.0f);
|
|
QVERIFY(!v1i.isNull());
|
|
|
|
QQuaternion v2(v1);
|
|
QCOMPARE(v2.x(), 1.0f);
|
|
QCOMPARE(v2.y(), 2.5f);
|
|
QCOMPARE(v2.z(), -89.25f);
|
|
QCOMPARE(v2.scalar(), 34.0f);
|
|
QVERIFY(!v2.isNull());
|
|
|
|
QQuaternion v4;
|
|
QCOMPARE(v4.x(), 0.0f);
|
|
QCOMPARE(v4.y(), 0.0f);
|
|
QCOMPARE(v4.z(), 0.0f);
|
|
QCOMPARE(v4.scalar(), 1.0f);
|
|
QVERIFY(v4.isIdentity());
|
|
v4 = v1;
|
|
QCOMPARE(v4.x(), 1.0f);
|
|
QCOMPARE(v4.y(), 2.5f);
|
|
QCOMPARE(v4.z(), -89.25f);
|
|
QCOMPARE(v4.scalar(), 34.0f);
|
|
QVERIFY(!v4.isNull());
|
|
|
|
QQuaternion v9(34, QVector3D(1.0f, 2.5f, -89.25f));
|
|
QCOMPARE(v9.x(), 1.0f);
|
|
QCOMPARE(v9.y(), 2.5f);
|
|
QCOMPARE(v9.z(), -89.25f);
|
|
QCOMPARE(v9.scalar(), 34.0f);
|
|
QVERIFY(!v9.isNull());
|
|
|
|
v1.setX(3.0f);
|
|
QCOMPARE(v1.x(), 3.0f);
|
|
QCOMPARE(v1.y(), 2.5f);
|
|
QCOMPARE(v1.z(), -89.25f);
|
|
QCOMPARE(v1.scalar(), 34.0f);
|
|
QVERIFY(!v1.isNull());
|
|
|
|
v1.setY(10.5f);
|
|
QCOMPARE(v1.x(), 3.0f);
|
|
QCOMPARE(v1.y(), 10.5f);
|
|
QCOMPARE(v1.z(), -89.25f);
|
|
QCOMPARE(v1.scalar(), 34.0f);
|
|
QVERIFY(!v1.isNull());
|
|
|
|
v1.setZ(15.5f);
|
|
QCOMPARE(v1.x(), 3.0f);
|
|
QCOMPARE(v1.y(), 10.5f);
|
|
QCOMPARE(v1.z(), 15.5f);
|
|
QCOMPARE(v1.scalar(), 34.0f);
|
|
QVERIFY(!v1.isNull());
|
|
|
|
v1.setScalar(6.0f);
|
|
QCOMPARE(v1.x(), 3.0f);
|
|
QCOMPARE(v1.y(), 10.5f);
|
|
QCOMPARE(v1.z(), 15.5f);
|
|
QCOMPARE(v1.scalar(), 6.0f);
|
|
QVERIFY(!v1.isNull());
|
|
|
|
v1.setVector(2.0f, 6.5f, -1.25f);
|
|
QCOMPARE(v1.x(), 2.0f);
|
|
QCOMPARE(v1.y(), 6.5f);
|
|
QCOMPARE(v1.z(), -1.25f);
|
|
QCOMPARE(v1.scalar(), 6.0f);
|
|
QVERIFY(!v1.isNull());
|
|
QVERIFY(v1.vector() == QVector3D(2.0f, 6.5f, -1.25f));
|
|
|
|
v1.setVector(QVector3D(-2.0f, -6.5f, 1.25f));
|
|
QCOMPARE(v1.x(), -2.0f);
|
|
QCOMPARE(v1.y(), -6.5f);
|
|
QCOMPARE(v1.z(), 1.25f);
|
|
QCOMPARE(v1.scalar(), 6.0f);
|
|
QVERIFY(!v1.isNull());
|
|
QVERIFY(v1.vector() == QVector3D(-2.0f, -6.5f, 1.25f));
|
|
|
|
v1.setX(0.0f);
|
|
v1.setY(0.0f);
|
|
v1.setZ(0.0f);
|
|
v1.setScalar(0.0f);
|
|
QCOMPARE(v1.x(), 0.0f);
|
|
QCOMPARE(v1.y(), 0.0f);
|
|
QCOMPARE(v1.z(), 0.0f);
|
|
QCOMPARE(v1.scalar(), 0.0f);
|
|
QVERIFY(v1.isNull());
|
|
|
|
QVector4D v10 = v9.toVector4D();
|
|
QCOMPARE(v10.x(), 1.0f);
|
|
QCOMPARE(v10.y(), 2.5f);
|
|
QCOMPARE(v10.z(), -89.25f);
|
|
QCOMPARE(v10.w(), 34.0f);
|
|
}
|
|
|
|
// Test length computation for quaternions.
|
|
void tst_QQuaternion::length_data()
|
|
{
|
|
QTest::addColumn<float>("x");
|
|
QTest::addColumn<float>("y");
|
|
QTest::addColumn<float>("z");
|
|
QTest::addColumn<float>("w");
|
|
QTest::addColumn<float>("len");
|
|
|
|
QTest::newRow("null") << 0.0f << 0.0f << 0.0f << 0.0f << 0.0f;
|
|
QTest::newRow("1x") << 1.0f << 0.0f << 0.0f << 0.0f << 1.0f;
|
|
QTest::newRow("1y") << 0.0f << 1.0f << 0.0f << 0.0f << 1.0f;
|
|
QTest::newRow("1z") << 0.0f << 0.0f << 1.0f << 0.0f << 1.0f;
|
|
QTest::newRow("1w") << 0.0f << 0.0f << 0.0f << 1.0f << 1.0f;
|
|
QTest::newRow("-1x") << -1.0f << 0.0f << 0.0f << 0.0f << 1.0f;
|
|
QTest::newRow("-1y") << 0.0f << -1.0f << 0.0f << 0.0f << 1.0f;
|
|
QTest::newRow("-1z") << 0.0f << 0.0f << -1.0f << 0.0f << 1.0f;
|
|
QTest::newRow("-1w") << 0.0f << 0.0f << 0.0f << -1.0f << 1.0f;
|
|
QTest::newRow("two") << 2.0f << -2.0f << 2.0f << 2.0f << sqrtf(16.0f);
|
|
}
|
|
void tst_QQuaternion::length()
|
|
{
|
|
QFETCH(float, x);
|
|
QFETCH(float, y);
|
|
QFETCH(float, z);
|
|
QFETCH(float, w);
|
|
QFETCH(float, len);
|
|
|
|
QQuaternion v(w, x, y, z);
|
|
QCOMPARE(v.length(), len);
|
|
QCOMPARE(v.lengthSquared(), x * x + y * y + z * z + w * w);
|
|
}
|
|
|
|
// Test the unit vector conversion for quaternions.
|
|
void tst_QQuaternion::normalized_data()
|
|
{
|
|
// Use the same test data as the length test.
|
|
length_data();
|
|
}
|
|
void tst_QQuaternion::normalized()
|
|
{
|
|
QFETCH(float, x);
|
|
QFETCH(float, y);
|
|
QFETCH(float, z);
|
|
QFETCH(float, w);
|
|
QFETCH(float, len);
|
|
|
|
QQuaternion v(w, x, y, z);
|
|
QQuaternion u = v.normalized();
|
|
if (v.isNull())
|
|
QVERIFY(u.isNull());
|
|
else
|
|
QCOMPARE(u.length(), 1.0f);
|
|
QCOMPARE(u.x() * len, v.x());
|
|
QCOMPARE(u.y() * len, v.y());
|
|
QCOMPARE(u.z() * len, v.z());
|
|
QCOMPARE(u.scalar() * len, v.scalar());
|
|
}
|
|
|
|
// Test the unit vector conversion for quaternions.
|
|
void tst_QQuaternion::normalize_data()
|
|
{
|
|
// Use the same test data as the length test.
|
|
length_data();
|
|
}
|
|
void tst_QQuaternion::normalize()
|
|
{
|
|
QFETCH(float, x);
|
|
QFETCH(float, y);
|
|
QFETCH(float, z);
|
|
QFETCH(float, w);
|
|
|
|
QQuaternion v(w, x, y, z);
|
|
bool isNull = v.isNull();
|
|
v.normalize();
|
|
if (isNull)
|
|
QVERIFY(v.isNull());
|
|
else
|
|
QCOMPARE(v.length(), 1.0f);
|
|
}
|
|
|
|
void tst_QQuaternion::inverted_data()
|
|
{
|
|
// Use the same test data as the length test.
|
|
length_data();
|
|
}
|
|
void tst_QQuaternion::inverted()
|
|
{
|
|
QFETCH(float, x);
|
|
QFETCH(float, y);
|
|
QFETCH(float, z);
|
|
QFETCH(float, w);
|
|
QFETCH(float, len);
|
|
|
|
QQuaternion v(w, x, y, z);
|
|
QQuaternion u = v.inverted();
|
|
if (v.isNull()) {
|
|
QVERIFY(u.isNull());
|
|
} else {
|
|
len *= len;
|
|
QCOMPARE(-u.x() * len, v.x());
|
|
QCOMPARE(-u.y() * len, v.y());
|
|
QCOMPARE(-u.z() * len, v.z());
|
|
QCOMPARE(u.scalar() * len, v.scalar());
|
|
}
|
|
}
|
|
|
|
// Test the comparison operators for quaternions.
|
|
void tst_QQuaternion::compare()
|
|
{
|
|
QQuaternion v1(8, 1, 2, 4);
|
|
QQuaternion v2(8, 1, 2, 4);
|
|
QQuaternion v3(8, 3, 2, 4);
|
|
QQuaternion v4(8, 1, 3, 4);
|
|
QQuaternion v5(8, 1, 2, 3);
|
|
QQuaternion v6(3, 1, 2, 4);
|
|
|
|
QVERIFY(v1 == v2);
|
|
QVERIFY(v1 != v3);
|
|
QVERIFY(v1 != v4);
|
|
QVERIFY(v1 != v5);
|
|
QVERIFY(v1 != v6);
|
|
}
|
|
|
|
// Test addition for quaternions.
|
|
void tst_QQuaternion::add_data()
|
|
{
|
|
QTest::addColumn<float>("x1");
|
|
QTest::addColumn<float>("y1");
|
|
QTest::addColumn<float>("z1");
|
|
QTest::addColumn<float>("w1");
|
|
QTest::addColumn<float>("x2");
|
|
QTest::addColumn<float>("y2");
|
|
QTest::addColumn<float>("z2");
|
|
QTest::addColumn<float>("w2");
|
|
QTest::addColumn<float>("x3");
|
|
QTest::addColumn<float>("y3");
|
|
QTest::addColumn<float>("z3");
|
|
QTest::addColumn<float>("w3");
|
|
|
|
QTest::newRow("null")
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("xonly")
|
|
<< 1.0f << 0.0f << 0.0f << 0.0f
|
|
<< 2.0f << 0.0f << 0.0f << 0.0f
|
|
<< 3.0f << 0.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("yonly")
|
|
<< 0.0f << 1.0f << 0.0f << 0.0f
|
|
<< 0.0f << 2.0f << 0.0f << 0.0f
|
|
<< 0.0f << 3.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("zonly")
|
|
<< 0.0f << 0.0f << 1.0f << 0.0f
|
|
<< 0.0f << 0.0f << 2.0f << 0.0f
|
|
<< 0.0f << 0.0f << 3.0f << 0.0f;
|
|
|
|
QTest::newRow("wonly")
|
|
<< 0.0f << 0.0f << 0.0f << 1.0f
|
|
<< 0.0f << 0.0f << 0.0f << 2.0f
|
|
<< 0.0f << 0.0f << 0.0f << 3.0f;
|
|
|
|
QTest::newRow("all")
|
|
<< 1.0f << 2.0f << 3.0f << 8.0f
|
|
<< 4.0f << 5.0f << -6.0f << 9.0f
|
|
<< 5.0f << 7.0f << -3.0f << 17.0f;
|
|
}
|
|
void tst_QQuaternion::add()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, w2);
|
|
QFETCH(float, x3);
|
|
QFETCH(float, y3);
|
|
QFETCH(float, z3);
|
|
QFETCH(float, w3);
|
|
|
|
QQuaternion v1(w1, x1, y1, z1);
|
|
QQuaternion v2(w2, x2, y2, z2);
|
|
QQuaternion v3(w3, x3, y3, z3);
|
|
|
|
QVERIFY((v1 + v2) == v3);
|
|
|
|
QQuaternion v4(v1);
|
|
v4 += v2;
|
|
QVERIFY(v4 == v3);
|
|
|
|
QCOMPARE(v4.x(), v1.x() + v2.x());
|
|
QCOMPARE(v4.y(), v1.y() + v2.y());
|
|
QCOMPARE(v4.z(), v1.z() + v2.z());
|
|
QCOMPARE(v4.scalar(), v1.scalar() + v2.scalar());
|
|
}
|
|
|
|
// Test subtraction for quaternions.
|
|
void tst_QQuaternion::subtract_data()
|
|
{
|
|
// Use the same test data as the add test.
|
|
add_data();
|
|
}
|
|
void tst_QQuaternion::subtract()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, w2);
|
|
QFETCH(float, x3);
|
|
QFETCH(float, y3);
|
|
QFETCH(float, z3);
|
|
QFETCH(float, w3);
|
|
|
|
QQuaternion v1(w1, x1, y1, z1);
|
|
QQuaternion v2(w2, x2, y2, z2);
|
|
QQuaternion v3(w3, x3, y3, z3);
|
|
|
|
QVERIFY((v3 - v1) == v2);
|
|
QVERIFY((v3 - v2) == v1);
|
|
|
|
QQuaternion v4(v3);
|
|
v4 -= v1;
|
|
QVERIFY(v4 == v2);
|
|
|
|
QCOMPARE(v4.x(), v3.x() - v1.x());
|
|
QCOMPARE(v4.y(), v3.y() - v1.y());
|
|
QCOMPARE(v4.z(), v3.z() - v1.z());
|
|
QCOMPARE(v4.scalar(), v3.scalar() - v1.scalar());
|
|
|
|
QQuaternion v5(v3);
|
|
v5 -= v2;
|
|
QVERIFY(v5 == v1);
|
|
|
|
QCOMPARE(v5.x(), v3.x() - v2.x());
|
|
QCOMPARE(v5.y(), v3.y() - v2.y());
|
|
QCOMPARE(v5.z(), v3.z() - v2.z());
|
|
QCOMPARE(v5.scalar(), v3.scalar() - v2.scalar());
|
|
}
|
|
|
|
// Test quaternion multiplication.
|
|
void tst_QQuaternion::multiply_data()
|
|
{
|
|
QTest::addColumn<float>("x1");
|
|
QTest::addColumn<float>("y1");
|
|
QTest::addColumn<float>("z1");
|
|
QTest::addColumn<float>("w1");
|
|
QTest::addColumn<float>("x2");
|
|
QTest::addColumn<float>("y2");
|
|
QTest::addColumn<float>("z2");
|
|
QTest::addColumn<float>("w2");
|
|
|
|
QTest::newRow("null")
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("unitvec")
|
|
<< 1.0f << 0.0f << 0.0f << 1.0f
|
|
<< 0.0f << 1.0f << 0.0f << 1.0f;
|
|
|
|
QTest::newRow("complex")
|
|
<< 1.0f << 2.0f << 3.0f << 7.0f
|
|
<< 4.0f << 5.0f << 6.0f << 8.0f;
|
|
|
|
for (float w = -1.0f; w <= 1.0f; w += 0.5f)
|
|
for (float x = -1.0f; x <= 1.0f; x += 0.5f)
|
|
for (float y = -1.0f; y <= 1.0f; y += 0.5f)
|
|
for (float z = -1.0f; z <= 1.0f; z += 0.5f) {
|
|
QTest::newRow("exhaustive")
|
|
<< x << y << z << w
|
|
<< z << w << y << x;
|
|
}
|
|
}
|
|
void tst_QQuaternion::multiply()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, w2);
|
|
|
|
QQuaternion q1(w1, x1, y1, z1);
|
|
QQuaternion q2(w2, x2, y2, z2);
|
|
|
|
// Use the simple algorithm at:
|
|
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q53
|
|
// to calculate the answer we expect to get.
|
|
QVector3D v1(x1, y1, z1);
|
|
QVector3D v2(x2, y2, z2);
|
|
float scalar = w1 * w2 - QVector3D::dotProduct(v1, v2);
|
|
QVector3D vector = w1 * v2 + w2 * v1 + QVector3D::crossProduct(v1, v2);
|
|
QQuaternion result(scalar, vector);
|
|
|
|
QVERIFY((q1 * q2) == result);
|
|
}
|
|
|
|
// Test multiplication by a factor for quaternions.
|
|
void tst_QQuaternion::multiplyFactor_data()
|
|
{
|
|
QTest::addColumn<float>("x1");
|
|
QTest::addColumn<float>("y1");
|
|
QTest::addColumn<float>("z1");
|
|
QTest::addColumn<float>("w1");
|
|
QTest::addColumn<float>("factor");
|
|
QTest::addColumn<float>("x2");
|
|
QTest::addColumn<float>("y2");
|
|
QTest::addColumn<float>("z2");
|
|
QTest::addColumn<float>("w2");
|
|
|
|
QTest::newRow("null")
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f
|
|
<< 100.0f
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("xonly")
|
|
<< 1.0f << 0.0f << 0.0f << 0.0f
|
|
<< 2.0f
|
|
<< 2.0f << 0.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("yonly")
|
|
<< 0.0f << 1.0f << 0.0f << 0.0f
|
|
<< 2.0f
|
|
<< 0.0f << 2.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("zonly")
|
|
<< 0.0f << 0.0f << 1.0f << 0.0f
|
|
<< 2.0f
|
|
<< 0.0f << 0.0f << 2.0f << 0.0f;
|
|
|
|
QTest::newRow("wonly")
|
|
<< 0.0f << 0.0f << 0.0f << 1.0f
|
|
<< 2.0f
|
|
<< 0.0f << 0.0f << 0.0f << 2.0f;
|
|
|
|
QTest::newRow("all")
|
|
<< 1.0f << 2.0f << -3.0f << 4.0f
|
|
<< 2.0f
|
|
<< 2.0f << 4.0f << -6.0f << 8.0f;
|
|
|
|
QTest::newRow("allzero")
|
|
<< 1.0f << 2.0f << -3.0f << 4.0f
|
|
<< 0.0f
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f;
|
|
}
|
|
void tst_QQuaternion::multiplyFactor()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
QFETCH(float, factor);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, w2);
|
|
|
|
QQuaternion v1(w1, x1, y1, z1);
|
|
QQuaternion v2(w2, x2, y2, z2);
|
|
|
|
QVERIFY((v1 * factor) == v2);
|
|
QVERIFY((factor * v1) == v2);
|
|
|
|
QQuaternion v3(v1);
|
|
v3 *= factor;
|
|
QVERIFY(v3 == v2);
|
|
|
|
QCOMPARE(v3.x(), v1.x() * factor);
|
|
QCOMPARE(v3.y(), v1.y() * factor);
|
|
QCOMPARE(v3.z(), v1.z() * factor);
|
|
QCOMPARE(v3.scalar(), v1.scalar() * factor);
|
|
}
|
|
|
|
// Test division by a factor for quaternions.
|
|
void tst_QQuaternion::divide_data()
|
|
{
|
|
// Use the same test data as the multiply test.
|
|
multiplyFactor_data();
|
|
}
|
|
void tst_QQuaternion::divide()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
QFETCH(float, factor);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, w2);
|
|
|
|
QQuaternion v1(w1, x1, y1, z1);
|
|
QQuaternion v2(w2, x2, y2, z2);
|
|
|
|
if (factor == 0.0f)
|
|
return;
|
|
|
|
QVERIFY((v2 / factor) == v1);
|
|
|
|
QQuaternion v3(v2);
|
|
v3 /= factor;
|
|
QVERIFY(v3 == v1);
|
|
|
|
QCOMPARE(v3.x(), v2.x() / factor);
|
|
QCOMPARE(v3.y(), v2.y() / factor);
|
|
QCOMPARE(v3.z(), v2.z() / factor);
|
|
QCOMPARE(v3.scalar(), v2.scalar() / factor);
|
|
}
|
|
|
|
// Test negation for quaternions.
|
|
void tst_QQuaternion::negate_data()
|
|
{
|
|
// Use the same test data as the add test.
|
|
add_data();
|
|
}
|
|
void tst_QQuaternion::negate()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
|
|
QQuaternion v1(w1, x1, y1, z1);
|
|
QQuaternion v2(-w1, -x1, -y1, -z1);
|
|
|
|
QVERIFY(-v1 == v2);
|
|
}
|
|
|
|
// Test quaternion conjugate calculations.
|
|
void tst_QQuaternion::conjugate_data()
|
|
{
|
|
// Use the same test data as the add test.
|
|
add_data();
|
|
}
|
|
void tst_QQuaternion::conjugate()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, w1);
|
|
|
|
QQuaternion v1(w1, x1, y1, z1);
|
|
QQuaternion v2(w1, -x1, -y1, -z1);
|
|
|
|
QVERIFY(v1.conjugate() == v2);
|
|
}
|
|
|
|
// Test quaternion creation from an axis and an angle.
|
|
void tst_QQuaternion::fromAxisAndAngle_data()
|
|
{
|
|
QTest::addColumn<float>("x1");
|
|
QTest::addColumn<float>("y1");
|
|
QTest::addColumn<float>("z1");
|
|
QTest::addColumn<float>("angle");
|
|
|
|
QTest::newRow("null")
|
|
<< 0.0f << 0.0f << 0.0f << 0.0f;
|
|
|
|
QTest::newRow("xonly")
|
|
<< 1.0f << 0.0f << 0.0f << 90.0f;
|
|
|
|
QTest::newRow("yonly")
|
|
<< 0.0f << 1.0f << 0.0f << 180.0f;
|
|
|
|
QTest::newRow("zonly")
|
|
<< 0.0f << 0.0f << 1.0f << 270.0f;
|
|
|
|
QTest::newRow("complex")
|
|
<< 1.0f << 2.0f << -3.0f << 45.0f;
|
|
}
|
|
void tst_QQuaternion::fromAxisAndAngle()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, angle);
|
|
|
|
// Use a straight-forward implementation of the algorithm at:
|
|
// http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
|
// to calculate the answer we expect to get.
|
|
QVector3D vector = QVector3D(x1, y1, z1).normalized();
|
|
float sin_a = sinf((angle * M_PI / 180.0) / 2.0);
|
|
float cos_a = cosf((angle * M_PI / 180.0) / 2.0);
|
|
QQuaternion result(cos_a,
|
|
(vector.x() * sin_a),
|
|
(vector.y() * sin_a),
|
|
(vector.z() * sin_a));
|
|
result = result.normalized();
|
|
|
|
QQuaternion answer = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle);
|
|
QVERIFY(qFuzzyCompare(answer.x(), result.x()));
|
|
QVERIFY(qFuzzyCompare(answer.y(), result.y()));
|
|
QVERIFY(qFuzzyCompare(answer.z(), result.z()));
|
|
QVERIFY(qFuzzyCompare(answer.scalar(), result.scalar()));
|
|
|
|
answer = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle);
|
|
QVERIFY(qFuzzyCompare(answer.x(), result.x()));
|
|
QVERIFY(qFuzzyCompare(answer.y(), result.y()));
|
|
QVERIFY(qFuzzyCompare(answer.z(), result.z()));
|
|
QVERIFY(qFuzzyCompare(answer.scalar(), result.scalar()));
|
|
}
|
|
|
|
// Test quaternion convertion to and from rotation matrix.
|
|
void tst_QQuaternion::fromRotationMatrix_data()
|
|
{
|
|
fromAxisAndAngle_data();
|
|
}
|
|
void tst_QQuaternion::fromRotationMatrix()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, angle);
|
|
|
|
QQuaternion result = QQuaternion::fromAxisAndAngle(QVector3D(x1, y1, z1), angle);
|
|
QMatrix3x3 rot3x3 = result.toRotationMatrix();
|
|
QQuaternion answer = QQuaternion::fromRotationMatrix(rot3x3);
|
|
|
|
QVERIFY(qFuzzyCompare(answer, result) || qFuzzyCompare(-answer, result));
|
|
}
|
|
|
|
// Test spherical interpolation of quaternions.
|
|
void tst_QQuaternion::slerp_data()
|
|
{
|
|
QTest::addColumn<float>("x1");
|
|
QTest::addColumn<float>("y1");
|
|
QTest::addColumn<float>("z1");
|
|
QTest::addColumn<float>("angle1");
|
|
QTest::addColumn<float>("x2");
|
|
QTest::addColumn<float>("y2");
|
|
QTest::addColumn<float>("z2");
|
|
QTest::addColumn<float>("angle2");
|
|
QTest::addColumn<float>("t");
|
|
QTest::addColumn<float>("x3");
|
|
QTest::addColumn<float>("y3");
|
|
QTest::addColumn<float>("z3");
|
|
QTest::addColumn<float>("angle3");
|
|
|
|
QTest::newRow("first")
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f
|
|
<< 0.0f
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f;
|
|
QTest::newRow("first2")
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f
|
|
<< -0.5f
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f;
|
|
QTest::newRow("second")
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f
|
|
<< 1.0f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f;
|
|
QTest::newRow("second2")
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f
|
|
<< 1.5f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f;
|
|
QTest::newRow("middle")
|
|
<< 1.0f << 2.0f << -3.0f << 90.0f
|
|
<< 1.0f << 2.0f << -3.0f << 180.0f
|
|
<< 0.5f
|
|
<< 1.0f << 2.0f << -3.0f << 135.0f;
|
|
QTest::newRow("wide angle")
|
|
<< 1.0f << 2.0f << -3.0f << 0.0f
|
|
<< 1.0f << 2.0f << -3.0f << 270.0f
|
|
<< 0.5f
|
|
<< 1.0f << 2.0f << -3.0f << -45.0f;
|
|
}
|
|
void tst_QQuaternion::slerp()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, angle1);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, angle2);
|
|
QFETCH(float, t);
|
|
QFETCH(float, x3);
|
|
QFETCH(float, y3);
|
|
QFETCH(float, z3);
|
|
QFETCH(float, angle3);
|
|
|
|
QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1);
|
|
QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2);
|
|
QQuaternion q3 = QQuaternion::fromAxisAndAngle(x3, y3, z3, angle3);
|
|
|
|
QQuaternion result = QQuaternion::slerp(q1, q2, t);
|
|
|
|
QVERIFY(qFuzzyCompare(result.x(), q3.x()));
|
|
QVERIFY(qFuzzyCompare(result.y(), q3.y()));
|
|
QVERIFY(qFuzzyCompare(result.z(), q3.z()));
|
|
QVERIFY(qFuzzyCompare(result.scalar(), q3.scalar()));
|
|
}
|
|
|
|
// Test normalized linear interpolation of quaternions.
|
|
void tst_QQuaternion::nlerp_data()
|
|
{
|
|
slerp_data();
|
|
}
|
|
void tst_QQuaternion::nlerp()
|
|
{
|
|
QFETCH(float, x1);
|
|
QFETCH(float, y1);
|
|
QFETCH(float, z1);
|
|
QFETCH(float, angle1);
|
|
QFETCH(float, x2);
|
|
QFETCH(float, y2);
|
|
QFETCH(float, z2);
|
|
QFETCH(float, angle2);
|
|
QFETCH(float, t);
|
|
|
|
QQuaternion q1 = QQuaternion::fromAxisAndAngle(x1, y1, z1, angle1);
|
|
QQuaternion q2 = QQuaternion::fromAxisAndAngle(x2, y2, z2, angle2);
|
|
|
|
QQuaternion result = QQuaternion::nlerp(q1, q2, t);
|
|
|
|
float resultx, resulty, resultz, resultscalar;
|
|
if (t <= 0.0f) {
|
|
resultx = q1.x();
|
|
resulty = q1.y();
|
|
resultz = q1.z();
|
|
resultscalar = q1.scalar();
|
|
} else if (t >= 1.0f) {
|
|
resultx = q2.x();
|
|
resulty = q2.y();
|
|
resultz = q2.z();
|
|
resultscalar = q2.scalar();
|
|
} else if (qAbs(angle1 - angle2) <= 180.f) {
|
|
resultx = q1.x() * (1 - t) + q2.x() * t;
|
|
resulty = q1.y() * (1 - t) + q2.y() * t;
|
|
resultz = q1.z() * (1 - t) + q2.z() * t;
|
|
resultscalar = q1.scalar() * (1 - t) + q2.scalar() * t;
|
|
} else {
|
|
// Angle greater than 180 degrees: negate q2.
|
|
resultx = q1.x() * (1 - t) - q2.x() * t;
|
|
resulty = q1.y() * (1 - t) - q2.y() * t;
|
|
resultz = q1.z() * (1 - t) - q2.z() * t;
|
|
resultscalar = q1.scalar() * (1 - t) - q2.scalar() * t;
|
|
}
|
|
|
|
QQuaternion q3 = QQuaternion(resultscalar, resultx, resulty, resultz).normalized();
|
|
|
|
QVERIFY(qFuzzyCompare(result.x(), q3.x()));
|
|
QVERIFY(qFuzzyCompare(result.y(), q3.y()));
|
|
QVERIFY(qFuzzyCompare(result.z(), q3.z()));
|
|
QVERIFY(qFuzzyCompare(result.scalar(), q3.scalar()));
|
|
}
|
|
|
|
class tst_QQuaternionProperties : public QObject
|
|
{
|
|
Q_OBJECT
|
|
Q_PROPERTY(QQuaternion quaternion READ quaternion WRITE setQuaternion)
|
|
public:
|
|
tst_QQuaternionProperties(QObject *parent = 0) : QObject(parent) {}
|
|
|
|
QQuaternion quaternion() const { return q; }
|
|
void setQuaternion(const QQuaternion& value) { q = value; }
|
|
|
|
private:
|
|
QQuaternion q;
|
|
};
|
|
|
|
// Test getting and setting quaternion properties via the metaobject system.
|
|
void tst_QQuaternion::properties()
|
|
{
|
|
tst_QQuaternionProperties obj;
|
|
|
|
obj.setQuaternion(QQuaternion(6.0f, 7.0f, 8.0f, 9.0f));
|
|
|
|
QQuaternion q = qvariant_cast<QQuaternion>(obj.property("quaternion"));
|
|
QCOMPARE(q.scalar(), 6.0f);
|
|
QCOMPARE(q.x(), 7.0f);
|
|
QCOMPARE(q.y(), 8.0f);
|
|
QCOMPARE(q.z(), 9.0f);
|
|
|
|
obj.setProperty("quaternion",
|
|
QVariant::fromValue(QQuaternion(-6.0f, -7.0f, -8.0f, -9.0f)));
|
|
|
|
q = qvariant_cast<QQuaternion>(obj.property("quaternion"));
|
|
QCOMPARE(q.scalar(), -6.0f);
|
|
QCOMPARE(q.x(), -7.0f);
|
|
QCOMPARE(q.y(), -8.0f);
|
|
QCOMPARE(q.z(), -9.0f);
|
|
}
|
|
|
|
void tst_QQuaternion::metaTypes()
|
|
{
|
|
QVERIFY(QMetaType::type("QQuaternion") == QMetaType::QQuaternion);
|
|
|
|
QCOMPARE(QByteArray(QMetaType::typeName(QMetaType::QQuaternion)),
|
|
QByteArray("QQuaternion"));
|
|
|
|
QVERIFY(QMetaType::isRegistered(QMetaType::QQuaternion));
|
|
|
|
QVERIFY(qMetaTypeId<QQuaternion>() == QMetaType::QQuaternion);
|
|
}
|
|
|
|
QTEST_APPLESS_MAIN(tst_QQuaternion)
|
|
|
|
#include "tst_qquaternion.moc"
|