974c210835
- Renamed LICENSE.LGPL to LICENSE.LGPLv21 - Added LICENSE.LGPLv3 - Removed LICENSE.GPL Change-Id: Iec3406e3eb3f133be549092015cefe33d259a3f2 Reviewed-by: Iikka Eklund <iikka.eklund@digia.com>
497 lines
16 KiB
C++
497 lines
16 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies).
|
|
** Contact: http://www.qt-project.org/legal
|
|
**
|
|
** This file is part of the utils of the Qt Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL21$
|
|
** Commercial License Usage
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
** accordance with the commercial license agreement provided with the
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
** a written agreement between you and Digia. For licensing terms and
|
|
** conditions see http://qt.digia.com/licensing. For further information
|
|
** use the contact form at http://qt.digia.com/contact-us.
|
|
**
|
|
** GNU Lesser General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
** General Public License version 2.1 or version 3 as published by the Free
|
|
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
|
|
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
|
|
** following information to ensure the GNU Lesser General Public License
|
|
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
|
|
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** In addition, as a special exception, Digia gives you certain additional
|
|
** rights. These rights are described in the Digia Qt LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
#include "nfa.h"
|
|
#include <QSet>
|
|
#include <limits.h>
|
|
|
|
NFA NFA::createSingleInputNFA(InputType input)
|
|
{
|
|
NFA result;
|
|
result.initialize(2);
|
|
result.addTransition(result.initialState, input, result.finalState);
|
|
return result;
|
|
}
|
|
|
|
NFA NFA::createSymbolNFA(const QString &symbol)
|
|
{
|
|
NFA result = NFA::createSingleInputNFA(Epsilon);
|
|
result.states[result.finalState].symbol = symbol;
|
|
return result;
|
|
}
|
|
|
|
void NFA::initialize(int size)
|
|
{
|
|
states.resize(size);
|
|
states.fill(State());
|
|
initialState = 0;
|
|
finalState = size - 1;
|
|
}
|
|
|
|
void NFA::addTransition(int from, InputType input, int to)
|
|
{
|
|
assertValidState(from);
|
|
assertValidState(to);
|
|
|
|
states[from].transitions.insertMulti(input, to);
|
|
}
|
|
|
|
void NFA::copyFrom(const NFA &other, int baseState)
|
|
{
|
|
assertValidState(baseState);
|
|
assertValidState(baseState + other.states.count() - 1);
|
|
|
|
for (int i = 0; i < other.states.count(); ++i) {
|
|
State s = other.states.at(i);
|
|
|
|
for (TransitionMap::Iterator it = s.transitions.begin(),
|
|
end = s.transitions.end(); it != end; ++it)
|
|
*it += baseState;
|
|
|
|
states[baseState + i] = s;
|
|
}
|
|
}
|
|
|
|
void NFA::initializeFromPair(const NFA &a, const NFA &b,
|
|
int *initialA, int *finalA,
|
|
int *initialB, int *finalB)
|
|
{
|
|
initialize(a.states.count() + b.states.count() + 2);
|
|
|
|
int baseIdxA = 1;
|
|
int baseIdxB = 1 + a.states.count();
|
|
|
|
*initialA = a.initialState + baseIdxA;
|
|
*finalA = a.finalState + baseIdxA;
|
|
|
|
*initialB = b.initialState + baseIdxB;
|
|
*finalB = b.finalState + baseIdxB;
|
|
|
|
copyFrom(a, baseIdxA);
|
|
copyFrom(b, baseIdxB);
|
|
}
|
|
|
|
NFA NFA::createAlternatingNFA(const NFA &a, const NFA &b)
|
|
{
|
|
NFA result;
|
|
|
|
int newInitialA, newFinalA,
|
|
newInitialB, newFinalB;
|
|
|
|
result.initializeFromPair(a, b, &newInitialA, &newFinalA,
|
|
&newInitialB, &newFinalB);
|
|
|
|
result.addTransition(result.initialState, Epsilon, newInitialA);
|
|
result.addTransition(result.initialState, Epsilon, newInitialB);
|
|
|
|
result.addTransition(newFinalA, Epsilon, result.finalState);
|
|
result.addTransition(newFinalB, Epsilon, result.finalState);
|
|
|
|
return result;
|
|
}
|
|
|
|
NFA NFA::createConcatenatingNFA(const NFA &a, const NFA &b)
|
|
{
|
|
NFA result;
|
|
|
|
int initialA, finalA,
|
|
initialB, finalB;
|
|
|
|
result.initializeFromPair(a, b, &initialA, &finalA, &initialB, &finalB);
|
|
|
|
result.addTransition(result.initialState, Epsilon, initialA);
|
|
result.addTransition(finalA, Epsilon, initialB);
|
|
result.addTransition(finalB, Epsilon, result.finalState);
|
|
return result;
|
|
}
|
|
|
|
NFA NFA::createOptionalNFA(const NFA &a)
|
|
{
|
|
NFA result;
|
|
|
|
result.initialize(a.states.count() + 2);
|
|
|
|
int baseIdxA = 1;
|
|
int initialA = a.initialState + baseIdxA;
|
|
int finalA = a.finalState + baseIdxA;
|
|
|
|
result.copyFrom(a, baseIdxA);
|
|
|
|
result.addTransition(result.initialState, Epsilon, initialA);
|
|
result.addTransition(result.initialState, Epsilon, result.finalState);
|
|
|
|
result.addTransition(finalA, Epsilon, initialA);
|
|
result.addTransition(finalA, Epsilon, result.finalState);
|
|
|
|
return result;
|
|
}
|
|
|
|
NFA NFA::createStringNFA(const QByteArray &str)
|
|
{
|
|
NFA result;
|
|
foreach (char c, str) {
|
|
NFA ch = NFA::createSingleInputNFA(c);
|
|
if (result.isEmpty())
|
|
result = ch;
|
|
else
|
|
result = NFA::createConcatenatingNFA(result, ch);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
NFA NFA::createSetNFA(const QSet<InputType> &set)
|
|
{
|
|
NFA result;
|
|
result.initialize(set.count() + 2);
|
|
|
|
int state = 1;
|
|
for (QSet<InputType>::ConstIterator it = set.constBegin(), end = set.constEnd();
|
|
it != end; ++it, ++state) {
|
|
result.addTransition(result.initialState, Epsilon, state);
|
|
result.addTransition(state, *it, result.finalState);
|
|
}
|
|
|
|
/*
|
|
foreach (InputType input, set) {
|
|
NFA ch = NFA::createSingleInputNFA(input);
|
|
if (result.isEmpty())
|
|
result = ch;
|
|
else
|
|
result = NFA::createAlternatingNFA(result, ch);
|
|
}
|
|
*/
|
|
return result;
|
|
}
|
|
|
|
NFA NFA::createZeroOrOneNFA(const NFA &a)
|
|
{
|
|
NFA epsilonNFA = createSingleInputNFA(Epsilon);
|
|
return NFA::createAlternatingNFA(a, epsilonNFA);
|
|
}
|
|
|
|
NFA NFA::applyQuantity(const NFA &a, int minOccurrences, int maxOccurrences)
|
|
{
|
|
NFA result = a;
|
|
NFA epsilonNFA = createSingleInputNFA(Epsilon);
|
|
|
|
if (minOccurrences == 0) {
|
|
result = NFA::createAlternatingNFA(result, epsilonNFA);
|
|
} else {
|
|
minOccurrences--;
|
|
}
|
|
maxOccurrences--;
|
|
|
|
for (int i = 0; i < minOccurrences; ++i)
|
|
result = NFA::createConcatenatingNFA(result, a);
|
|
|
|
for (int i = minOccurrences; i < maxOccurrences; ++i)
|
|
result = NFA::createConcatenatingNFA(result, NFA::createAlternatingNFA(a, epsilonNFA));
|
|
|
|
return result;
|
|
}
|
|
|
|
void NFA::debug()
|
|
{
|
|
qDebug() << "NFA has" << states.count() << "states";
|
|
qDebug() << "initial state is" << initialState;
|
|
qDebug() << "final state is" << finalState;
|
|
|
|
for (int i = 0; i < states.count(); ++i) {
|
|
const State &s = states.at(i);
|
|
for (TransitionMap::ConstIterator it = s.transitions.constBegin(),
|
|
end = s.transitions.constEnd(); it != end; ++it)
|
|
qDebug() << "transition from state" << i << "to" << it.value() << "through"
|
|
<< (it.key() == Epsilon ? QString("Epsilon") : QString(char(it.key())));
|
|
if (!s.symbol.isEmpty())
|
|
qDebug() << "State" << i << "leads to symbol" << s.symbol;
|
|
}
|
|
}
|
|
|
|
// helper
|
|
typedef QSet<int> DFAState;
|
|
|
|
// that's a bad hash, but it's good enough for us
|
|
// and it allows us to use the nice QHash API :)
|
|
inline uint qHash(const DFAState &state)
|
|
{
|
|
uint val = 0;
|
|
foreach (int s, state)
|
|
val |= qHash(s);
|
|
return val;
|
|
}
|
|
|
|
DFA NFA::toDFA() const
|
|
{
|
|
DFA result;
|
|
result.reserve(states.count());
|
|
|
|
QHash<QString, int> symbolReferenceCounts;
|
|
{
|
|
QSet<int> symbolStates;
|
|
for (int i = 0; i < states.count(); ++i)
|
|
if (!states.at(i).symbol.isEmpty())
|
|
symbolStates.insert(i);
|
|
|
|
QHash<int, QString> epsilonStates;
|
|
for (int i = 0; i < states.count(); ++i) {
|
|
const State &s = states.at(i);
|
|
for (TransitionMap::ConstIterator transition = s.transitions.constBegin(), end = s.transitions.constEnd();
|
|
transition != end; ++transition)
|
|
if (transition.key() == Epsilon && symbolStates.contains(transition.value()))
|
|
epsilonStates.insert(i, states.at(transition.value()).symbol);
|
|
}
|
|
|
|
int lastCount;
|
|
do {
|
|
lastCount = epsilonStates.count();
|
|
for (int i = 0; i < states.count(); ++i) {
|
|
const State &s = states.at(i);
|
|
for (TransitionMap::ConstIterator transition = s.transitions.constBegin(), end = s.transitions.constEnd();
|
|
transition != end; ++transition)
|
|
if (transition.key() == Epsilon && epsilonStates.contains(transition.value()))
|
|
epsilonStates.insert(i, epsilonStates.value(transition.value()));
|
|
}
|
|
} while (lastCount != epsilonStates.count());
|
|
|
|
for (int i = 0; i < states.count(); ++i) {
|
|
const State &s = states.at(i);
|
|
for (TransitionMap::ConstIterator transition = s.transitions.constBegin(), end = s.transitions.constEnd();
|
|
transition != end; ++transition) {
|
|
if (transition.key() == Epsilon)
|
|
continue;
|
|
if (symbolStates.contains(transition.value())) {
|
|
const QString symbol = states.at(transition.value()).symbol;
|
|
symbolReferenceCounts[symbol]++;
|
|
} else if (epsilonStates.contains(transition.value())) {
|
|
const QString symbol = epsilonStates.value(transition.value());
|
|
symbolReferenceCounts[symbol]++;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
for (QHash<QString, int>::ConstIterator symIt = symbolReferenceCounts.constBegin(), symEnd = symbolReferenceCounts.constEnd();
|
|
symIt != symEnd; ++symIt)
|
|
qDebug() << "symbol" << symIt.key() << "is reached" << symIt.value() << "times";
|
|
*/
|
|
}
|
|
|
|
QSet<InputType> validInput;
|
|
foreach (const State &s, states)
|
|
for (TransitionMap::ConstIterator it = s.transitions.constBegin(),
|
|
end = s.transitions.constEnd(); it != end; ++it)
|
|
if (it.key() != Epsilon)
|
|
validInput.insert(it.key());
|
|
|
|
// A DFA state can consist of multiple NFA states.
|
|
// the dfaStateMap maps from these to the actual
|
|
// state index within the resulting DFA vector
|
|
QHash<DFAState, int> dfaStateMap;
|
|
QStack<DFAState> pendingDFAStates;
|
|
|
|
DFAState startState = epsilonClosure(QSet<int>() << initialState);
|
|
|
|
result.resize(1);
|
|
dfaStateMap.insert(startState, 0);
|
|
|
|
pendingDFAStates.push(startState);
|
|
|
|
while (!pendingDFAStates.isEmpty()) {
|
|
DFAState state = pendingDFAStates.pop();
|
|
// qDebug() << "processing" << state << "from the stack of pending states";
|
|
|
|
foreach (InputType input, validInput) {
|
|
|
|
QSet<int> reachableStates;
|
|
|
|
foreach (int nfaState, state) {
|
|
const TransitionMap &transitions = states.at(nfaState).transitions;
|
|
TransitionMap::ConstIterator it = transitions.find(input);
|
|
while (it != transitions.constEnd() && it.key() == input) {
|
|
reachableStates.insert(it.value());
|
|
++it;
|
|
}
|
|
}
|
|
|
|
if (reachableStates.isEmpty())
|
|
continue;
|
|
|
|
// qDebug() << "can reach" << reachableStates << "from input" << char(input);
|
|
|
|
QSet<int> closure = epsilonClosure(reachableStates);
|
|
|
|
// qDebug() << "closure is" << closure;
|
|
|
|
if (!dfaStateMap.contains(closure)) {
|
|
int dfaState = result.count();
|
|
result.append(State());
|
|
|
|
QString symbol;
|
|
int refCount = INT_MAX;
|
|
foreach (int nfaState, closure)
|
|
if (!states.at(nfaState).symbol.isEmpty()) {
|
|
// qDebug() << "closure also contains symbol" << states.at(nfaState).symbol;
|
|
QString candidate = states.at(nfaState).symbol;
|
|
int candidateRefCount =symbolReferenceCounts.value(candidate, INT_MAX);
|
|
if (candidateRefCount < refCount) {
|
|
refCount = candidateRefCount;
|
|
symbol = candidate;
|
|
}
|
|
}
|
|
if (!symbol.isEmpty())
|
|
result.last().symbol = symbol;
|
|
|
|
dfaStateMap.insert(closure, dfaState);
|
|
|
|
Q_ASSERT(!pendingDFAStates.contains(closure));
|
|
pendingDFAStates.prepend(closure);
|
|
}
|
|
|
|
result[dfaStateMap.value(state)].transitions.insert(input, dfaStateMap.value(closure));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
QSet<int> NFA::epsilonClosure(const QSet<int> &initialClosure) const
|
|
{
|
|
QSet<int> closure = initialClosure;
|
|
closure.reserve(closure.count() * 4);
|
|
|
|
QStack<int> stateStack;
|
|
stateStack.resize(closure.count());
|
|
qCopy(closure.constBegin(), closure.constEnd(), stateStack.begin());
|
|
|
|
while (!stateStack.isEmpty()) {
|
|
int t = stateStack.pop();
|
|
const TransitionMap &transitions = states.at(t).transitions;
|
|
TransitionMap::ConstIterator it = transitions.find(Epsilon);
|
|
while (it != transitions.constEnd() && it.key() == Epsilon) {
|
|
const int u = it.value();
|
|
if (!closure.contains(u)) {
|
|
closure.insert(u);
|
|
stateStack.push(u);
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
|
|
return closure;
|
|
}
|
|
|
|
void NFA::setTerminationSymbol(const QString &symbol)
|
|
{
|
|
states[finalState].symbol = symbol;
|
|
}
|
|
|
|
void DFA::debug() const
|
|
{
|
|
qDebug() << "DFA has" << count() << "states";
|
|
|
|
for (int i = 0; i < count(); ++i) {
|
|
const State &s = at(i);
|
|
if (s.transitions.isEmpty()) {
|
|
qDebug() << "State" << i << "has no transitions";
|
|
} else {
|
|
for (TransitionMap::ConstIterator it = s.transitions.constBegin(),
|
|
end = s.transitions.constEnd(); it != end; ++it)
|
|
qDebug() << "transition from state" << i << "to" << it.value() << "through"
|
|
<< (it.key() == Epsilon ? QString("Epsilon") : QString(char(it.key())));
|
|
}
|
|
if (!s.symbol.isEmpty())
|
|
qDebug() << "State" << i << "leads to symbol" << s.symbol;
|
|
}
|
|
|
|
}
|
|
|
|
DFA DFA::minimize() const
|
|
{
|
|
QVector<bool> inequivalentStates(count() * count());
|
|
inequivalentStates.fill(false);
|
|
|
|
for (int i = 0; i < count(); ++i)
|
|
for (int j = 0; j < i; ++j) {
|
|
if (i != j && at(i).symbol != at(j).symbol)
|
|
inequivalentStates[i * count() + j] = true;
|
|
}
|
|
|
|
bool done;
|
|
do {
|
|
done = true;
|
|
for (int i = 0; i < count(); ++i)
|
|
for (int j = 0; j < count(); ++j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
if (inequivalentStates[i * count() + j])
|
|
continue;
|
|
|
|
if (at(i).transitions.keys() != at(j).transitions.keys()) {
|
|
inequivalentStates[i * count() + j] = true;
|
|
done = false;
|
|
continue;
|
|
}
|
|
|
|
foreach (InputType a, at(i).transitions.keys()) {
|
|
int r = at(i).transitions.value(a, -1);
|
|
if (r == -1)
|
|
continue;
|
|
int s = at(j).transitions.value(a, -1);
|
|
if (s == -1)
|
|
continue;
|
|
|
|
if (inequivalentStates[r * count() + s]
|
|
|| r == s) {
|
|
inequivalentStates[i * count() + j] = true;
|
|
done = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (!done);
|
|
|
|
QHash<int, int> statesToEliminate;
|
|
for (int i = 0; i < count(); ++i)
|
|
for (int j = 0; j < i; ++j)
|
|
if (!inequivalentStates[i * count() + j]) {
|
|
statesToEliminate.insertMulti(i, j);
|
|
}
|
|
|
|
/*
|
|
qDebug() << "states to eliminiate:" << statesToEliminate.count();;
|
|
qDebug() << "merging" << statesToEliminate;
|
|
debug();
|
|
*/
|
|
|
|
return *this;
|
|
}
|