f9f395c28b
Updated version of LGPL and FDL licenseheaders. Apply release phase licenseheaders for all source files. Reviewed-by: Trust Me
379 lines
9.6 KiB
C++
379 lines
9.6 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
|
|
** All rights reserved.
|
|
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
**
|
|
** This file is part of the test suite of the Qt Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL$
|
|
** GNU Lesser General Public License Usage
|
|
** This file may be used under the terms of the GNU Lesser General Public
|
|
** License version 2.1 as published by the Free Software Foundation and
|
|
** appearing in the file LICENSE.LGPL included in the packaging of this
|
|
** file. Please review the following information to ensure the GNU Lesser
|
|
** General Public License version 2.1 requirements will be met:
|
|
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** In addition, as a special exception, Nokia gives you certain additional
|
|
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** GNU General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU General
|
|
** Public License version 3.0 as published by the Free Software Foundation
|
|
** and appearing in the file LICENSE.GPL included in the packaging of this
|
|
** file. Please review the following information to ensure the GNU General
|
|
** Public License version 3.0 requirements will be met:
|
|
** http://www.gnu.org/copyleft/gpl.html.
|
|
**
|
|
** Other Usage
|
|
** Alternatively, this file may be used in accordance with the terms and
|
|
** conditions contained in a signed written agreement between you and Nokia.
|
|
**
|
|
**
|
|
**
|
|
**
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
#include <QtTest/QtTest>
|
|
#include <QCoreApplication>
|
|
#include <QVector>
|
|
#include <qdebug.h>
|
|
#include <qpolygon.h>
|
|
#include <qmatrix.h>
|
|
|
|
#include "oldtessellator.h"
|
|
#include "testtessellator.h"
|
|
#include "utils.h"
|
|
#include "simple.h"
|
|
#include "arc.h"
|
|
|
|
#include "math.h"
|
|
|
|
//TESTED_CLASS=
|
|
//TESTED_FILES=
|
|
|
|
class tst_QTessellator : public QObject
|
|
{
|
|
Q_OBJECT
|
|
|
|
public:
|
|
tst_QTessellator() {
|
|
}
|
|
|
|
private slots:
|
|
void testStandardSet();
|
|
void testRandom();
|
|
void testArc();
|
|
void testRects();
|
|
void testConvexRects();
|
|
void testConvex();
|
|
};
|
|
|
|
|
|
QPointF creatPoint()
|
|
{
|
|
qreal x = int(20.0 * (rand() / (RAND_MAX + 1.0)));
|
|
qreal y = int(20.0 * (rand() / (RAND_MAX + 1.0)));
|
|
return QPointF(x, y);
|
|
}
|
|
|
|
bool test(const QPointF *pg, int pgSize, bool winding, tessellate_function tessellate = test_tesselate_polygon, qreal maxDiff = 0.005)
|
|
{
|
|
QVector<XTrapezoid> traps;
|
|
qreal area1 = 0;
|
|
qreal area2 = 0;
|
|
|
|
old_tesselate_polygon(&traps, pg, pgSize, winding);
|
|
area1 = compute_area_for_x(traps);
|
|
|
|
traps.clear();
|
|
|
|
tessellate(&traps, pg, pgSize, winding);
|
|
area2 = compute_area_for_x(traps);
|
|
|
|
bool result = (qAbs(area2 - area1) < maxDiff);
|
|
if (!result && area1)
|
|
result = (qAbs(area1 - area2)/area1 < maxDiff);
|
|
|
|
if (!result)
|
|
qDebug() << area1 << area2;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void simplifyTestFailure(QVector<QPointF> failure, bool winding)
|
|
{
|
|
int i = 1;
|
|
while (i < failure.size() - 1) {
|
|
QVector<QPointF> t = failure;
|
|
t.remove(i);
|
|
if (test(t.data(), t.size(), winding)) {
|
|
++i;
|
|
continue;
|
|
}
|
|
failure = t;
|
|
i = 1;
|
|
}
|
|
|
|
for (int x = 0; x < failure.size(); ++x) {
|
|
fprintf(stderr, "%lf,%lf, ", failure[x].x(), failure[x].y());
|
|
}
|
|
fprintf(stderr, "\n\n");
|
|
}
|
|
|
|
void tst_QTessellator::testStandardSet()
|
|
{
|
|
QVector<FullData> sampleSet;
|
|
sampleSet.append(simpleData());
|
|
|
|
foreach(FullData data, sampleSet) {
|
|
for (int i = 0; i < data.size(); ++i) {
|
|
if (!test(data[i].data(), data[i].size(), false)) {
|
|
simplifyTestFailure(data[i], false);
|
|
QCOMPARE(true, false);
|
|
}
|
|
if (!test(data[i].data(), data[i].size(), true)) {
|
|
simplifyTestFailure(data[i], true);
|
|
QCOMPARE(true, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void fillRandomVec(QVector<QPointF> &vec)
|
|
{
|
|
int size = vec.size(); --size;
|
|
for (int i = 0; i < size; ++i) {
|
|
vec[i] = creatPoint();
|
|
}
|
|
vec[size] = vec[0];
|
|
}
|
|
|
|
void tst_QTessellator::testRandom()
|
|
{
|
|
int failures = 0;
|
|
for (int i = 5; i < 12; ++i) {
|
|
QVector<QPointF> vec(i);
|
|
#ifdef QT_ARCH_ARM
|
|
int k = 200;
|
|
#else
|
|
int k = 5000;
|
|
#endif
|
|
while (--k) {
|
|
fillRandomVec(vec);
|
|
if (!test(vec.data(), vec.size(), false)) {
|
|
simplifyTestFailure(vec, false);
|
|
++failures;
|
|
}
|
|
if (!test(vec.data(), vec.size(), true)) {
|
|
simplifyTestFailure(vec, true);
|
|
++failures;
|
|
}
|
|
}
|
|
}
|
|
QVERIFY(failures == 0);
|
|
}
|
|
|
|
|
|
// we need a higher threshold for failure here than in the above tests, as this basically draws
|
|
// a very thin outline, where the discretization in the new tesselator shows
|
|
bool test_arc(const QPolygonF &poly, bool winding)
|
|
{
|
|
QVector<XTrapezoid> traps;
|
|
qreal area1 = 0;
|
|
qreal area2 = 0;
|
|
|
|
old_tesselate_polygon(&traps, poly.data(), poly.size(), winding);
|
|
area1 = compute_area_for_x(traps);
|
|
|
|
traps.clear();
|
|
|
|
test_tesselate_polygon(&traps, poly.data(), poly.size(), winding);
|
|
area2 = compute_area_for_x(traps);
|
|
|
|
bool result = (area2 - area1 < .02);
|
|
if (!result && area1)
|
|
result = (qAbs(area1 - area2)/area1 < .02);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
void tst_QTessellator::testArc()
|
|
{
|
|
FullData arc = arcData();
|
|
|
|
QMatrix mat;
|
|
#ifdef QT_ARCH_ARM
|
|
const int stop = 5;
|
|
#else
|
|
const int stop = 1000;
|
|
#endif
|
|
for (int i = 0; i < stop; ++i) {
|
|
mat.rotate(qreal(.01));
|
|
mat.scale(qreal(.99), qreal(.99));
|
|
QPolygonF poly = arc.at(0);
|
|
QPolygonF vec = poly * mat;
|
|
QVERIFY(test_arc(vec, true));
|
|
QVERIFY(test_arc(vec, false));
|
|
}
|
|
}
|
|
|
|
static bool isConvex(const QVector<QPointF> &v)
|
|
{
|
|
int nPoints = v.size() - 1;
|
|
|
|
qreal lastCross = 0;
|
|
for (int i = 0; i < nPoints; ++i) {
|
|
QPointF a = v[i];
|
|
QPointF b = v[(i + 1) % nPoints];
|
|
|
|
QPointF d1 = b - a;
|
|
|
|
for (int j = 0; j < nPoints; ++j) {
|
|
if (j == i || j == i + 1)
|
|
continue;
|
|
|
|
QPointF p = v[j];
|
|
QPointF d2 = p - a;
|
|
|
|
qreal cross = d1.x() * d2.y() - d1.y() * d2.x();
|
|
|
|
if (!qFuzzyCompare(cross + 1, 1)
|
|
&& !qFuzzyCompare(cross + 1, 1)
|
|
&& (lastCross > 0) != (cross > 0))
|
|
return false;
|
|
|
|
lastCross = cross;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void fillRectVec(QVector<QPointF> &v)
|
|
{
|
|
int numRects = v.size() / 5;
|
|
|
|
int first = 0;
|
|
v[first++] = QPointF(0, 0);
|
|
v[first++] = QPointF(10, 0);
|
|
v[first++] = QPointF(10, 10);
|
|
v[first++] = QPointF(0, 10);
|
|
v[first++] = QPointF(0, 0);
|
|
|
|
v[first++] = QPointF(0, 0);
|
|
v[first++] = QPointF(2, 2);
|
|
v[first++] = QPointF(4, 0);
|
|
v[first++] = QPointF(2, -2);
|
|
v[first++] = QPointF(0, 0);
|
|
|
|
v[first++] = QPointF(0, 0);
|
|
v[first++] = QPointF(4, 4);
|
|
v[first++] = QPointF(6, 2);
|
|
v[first++] = QPointF(2, -2);
|
|
v[first++] = QPointF(0, 0);
|
|
|
|
for (int i = first / 5; i < numRects; ++i) {
|
|
QPointF a = creatPoint();
|
|
QPointF b = creatPoint();
|
|
|
|
QPointF delta = a - b;
|
|
QPointF perp(delta.y(), -delta.x());
|
|
|
|
perp *= ((int)(20.0 * rand() / (RAND_MAX + 1.0))) / 20.0;
|
|
|
|
int j = 5 * i;
|
|
v[j++] = a + perp;
|
|
v[j++] = a - perp;
|
|
v[j++] = b - perp;
|
|
v[j++] = b + perp;
|
|
v[j++] = a + perp;
|
|
}
|
|
}
|
|
|
|
#ifdef QT_ARCH_ARM
|
|
const int numRects = 500;
|
|
#else
|
|
const int numRects = 5000;
|
|
#endif
|
|
|
|
void tst_QTessellator::testConvexRects()
|
|
{
|
|
return;
|
|
int failures = 0;
|
|
QVector<QPointF> vec(numRects * 5);
|
|
fillRectVec(vec);
|
|
for (int rect = 0; rect < numRects; ++rect) {
|
|
QVector<QPointF> v(5);
|
|
for (int i = 0; i < 5; ++i)
|
|
v[i] = vec[5 * rect + i];
|
|
if (!test(v.data(), v.size(), false, test_tessellate_polygon_convex)) {
|
|
simplifyTestFailure(v, false);
|
|
++failures;
|
|
}
|
|
if (!test(v.data(), v.size(), true, test_tessellate_polygon_convex)) {
|
|
simplifyTestFailure(v, true);
|
|
++failures;
|
|
}
|
|
}
|
|
QVERIFY(failures == 0);
|
|
}
|
|
|
|
void tst_QTessellator::testConvex()
|
|
{
|
|
int failures = 0;
|
|
for (int i = 4; i < 10; ++i) {
|
|
QVector<QPointF> vec(i);
|
|
int k = 5000;
|
|
while (k--) {
|
|
fillRandomVec(vec);
|
|
if (!isConvex(vec))
|
|
continue;
|
|
if (!test(vec.data(), vec.size(), false, test_tessellate_polygon_convex)) {
|
|
simplifyTestFailure(vec, false);
|
|
++failures;
|
|
}
|
|
if (!test(vec.data(), vec.size(), true, test_tessellate_polygon_convex)) {
|
|
simplifyTestFailure(vec, true);
|
|
++failures;
|
|
}
|
|
}
|
|
}
|
|
QVERIFY(failures == 0);
|
|
}
|
|
|
|
|
|
void tst_QTessellator::testRects()
|
|
{
|
|
int failures = 0;
|
|
QVector<QPointF> vec(numRects * 5);
|
|
fillRectVec(vec);
|
|
for (int rect = 0; rect < numRects; ++rect) {
|
|
QVector<QPointF> v(5);
|
|
for (int i = 0; i < 5; ++i)
|
|
v[i] = vec[5 * rect + i];
|
|
if (!test(v.data(), v.size(), false, test_tessellate_polygon_rect, qreal(0.05))) {
|
|
simplifyTestFailure(v, false);
|
|
++failures;
|
|
}
|
|
if (!test(v.data(), v.size(), true, test_tessellate_polygon_rect, qreal(0.05))) {
|
|
simplifyTestFailure(v, true);
|
|
++failures;
|
|
}
|
|
}
|
|
QVERIFY(failures == 0);
|
|
}
|
|
|
|
|
|
QTEST_MAIN(tst_QTessellator)
|
|
#include "tst_tessellator.moc"
|