48e0c4df23
Change-Id: Ic804938fc352291d011800d21e549c10acac66fb Reviewed-by: Lars Knoll <lars.knoll@digia.com>
673 lines
17 KiB
C++
673 lines
17 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies).
|
|
** Contact: http://www.qt-project.org/legal
|
|
**
|
|
** This file is part of the QtOpenGL module of the Qt Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL$
|
|
** Commercial License Usage
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
** accordance with the commercial license agreement provided with the
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
** a written agreement between you and Digia. For licensing terms and
|
|
** conditions see http://qt.digia.com/licensing. For further information
|
|
** use the contact form at http://qt.digia.com/contact-us.
|
|
**
|
|
** GNU Lesser General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
** General Public License version 2.1 as published by the Free Software
|
|
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
** packaging of this file. Please review the following information to
|
|
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** In addition, as a special exception, Digia gives you certain additional
|
|
** rights. These rights are described in the Digia Qt LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** GNU General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU
|
|
** General Public License version 3.0 as published by the Free Software
|
|
** Foundation and appearing in the file LICENSE.GPL included in the
|
|
** packaging of this file. Please review the following information to
|
|
** ensure the GNU General Public License version 3.0 requirements will be
|
|
** met: http://www.gnu.org/copyleft/gpl.html.
|
|
**
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
|
|
#include <QtTest/QtTest>
|
|
#include <QtGui/qmatrix4x4.h>
|
|
|
|
class tst_QMatrix4x4 : public QObject
|
|
{
|
|
Q_OBJECT
|
|
public:
|
|
tst_QMatrix4x4() {}
|
|
~tst_QMatrix4x4() {}
|
|
|
|
private slots:
|
|
void multiply_data();
|
|
void multiply();
|
|
|
|
void multiplyInPlace_data();
|
|
void multiplyInPlace();
|
|
|
|
void multiplyDirect_data();
|
|
void multiplyDirect();
|
|
|
|
void mapVector3D_data();
|
|
void mapVector3D();
|
|
|
|
void mapVector2D_data();
|
|
void mapVector2D();
|
|
|
|
void mapVectorDirect_data();
|
|
void mapVectorDirect();
|
|
|
|
void compareTranslate_data();
|
|
void compareTranslate();
|
|
|
|
void compareTranslateAfterScale_data();
|
|
void compareTranslateAfterScale();
|
|
|
|
void compareTranslateAfterRotate_data();
|
|
void compareTranslateAfterRotate();
|
|
|
|
void compareScale_data();
|
|
void compareScale();
|
|
|
|
void compareScaleAfterTranslate_data();
|
|
void compareScaleAfterTranslate();
|
|
|
|
void compareScaleAfterRotate_data();
|
|
void compareScaleAfterRotate();
|
|
|
|
void compareRotate_data();
|
|
void compareRotate();
|
|
|
|
void compareRotateAfterTranslate_data();
|
|
void compareRotateAfterTranslate();
|
|
|
|
void compareRotateAfterScale_data();
|
|
void compareRotateAfterScale();
|
|
};
|
|
|
|
static float const generalValues[16] =
|
|
{1.0f, 2.0f, 3.0f, 4.0f,
|
|
5.0f, 6.0f, 7.0f, 8.0f,
|
|
9.0f, 10.0f, 11.0f, 12.0f,
|
|
13.0f, 14.0f, 15.0f, 16.0f};
|
|
|
|
void tst_QMatrix4x4::multiply_data()
|
|
{
|
|
QTest::addColumn<QMatrix4x4>("m1");
|
|
QTest::addColumn<QMatrix4x4>("m2");
|
|
|
|
QTest::newRow("identity * identity")
|
|
<< QMatrix4x4() << QMatrix4x4();
|
|
QTest::newRow("identity * general")
|
|
<< QMatrix4x4() << QMatrix4x4(generalValues);
|
|
QTest::newRow("general * identity")
|
|
<< QMatrix4x4(generalValues) << QMatrix4x4();
|
|
QTest::newRow("general * general")
|
|
<< QMatrix4x4(generalValues) << QMatrix4x4(generalValues);
|
|
}
|
|
|
|
QMatrix4x4 mresult;
|
|
|
|
void tst_QMatrix4x4::multiply()
|
|
{
|
|
QFETCH(QMatrix4x4, m1);
|
|
QFETCH(QMatrix4x4, m2);
|
|
|
|
QMatrix4x4 m3;
|
|
|
|
QBENCHMARK {
|
|
m3 = m1 * m2;
|
|
}
|
|
|
|
// Force the result to be stored so the compiler doesn't
|
|
// optimize away the contents of the benchmark loop.
|
|
mresult = m3;
|
|
}
|
|
|
|
void tst_QMatrix4x4::multiplyInPlace_data()
|
|
{
|
|
multiply_data();
|
|
}
|
|
|
|
void tst_QMatrix4x4::multiplyInPlace()
|
|
{
|
|
QFETCH(QMatrix4x4, m1);
|
|
QFETCH(QMatrix4x4, m2);
|
|
|
|
QMatrix4x4 m3;
|
|
|
|
QBENCHMARK {
|
|
m3 = m1;
|
|
m3 *= m2;
|
|
}
|
|
|
|
// Force the result to be stored so the compiler doesn't
|
|
// optimize away the contents of the benchmark loop.
|
|
mresult = m3;
|
|
}
|
|
|
|
// Use a direct naive multiplication algorithm. This is used
|
|
// to compare against the optimized routines to see if they are
|
|
// actually faster than the naive implementation.
|
|
void tst_QMatrix4x4::multiplyDirect_data()
|
|
{
|
|
multiply_data();
|
|
}
|
|
void tst_QMatrix4x4::multiplyDirect()
|
|
{
|
|
QFETCH(QMatrix4x4, m1);
|
|
QFETCH(QMatrix4x4, m2);
|
|
|
|
QMatrix4x4 m3;
|
|
|
|
const float *m1data = m1.constData();
|
|
const float *m2data = m2.constData();
|
|
float *m3data = m3.data();
|
|
|
|
QBENCHMARK {
|
|
for (int row = 0; row < 4; ++row) {
|
|
for (int col = 0; col < 4; ++col) {
|
|
m3data[col * 4 + row] = 0.0f;
|
|
for (int j = 0; j < 4; ++j) {
|
|
m3data[col * 4 + row] +=
|
|
m1data[j * 4 + row] * m2data[col * 4 + j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
QVector3D vresult;
|
|
|
|
void tst_QMatrix4x4::mapVector3D_data()
|
|
{
|
|
QTest::addColumn<QMatrix4x4>("m1");
|
|
|
|
QTest::newRow("identity") << QMatrix4x4();
|
|
QTest::newRow("general") << QMatrix4x4(generalValues);
|
|
|
|
QMatrix4x4 t1;
|
|
t1.translate(-100.5f, 64.0f, 75.25f);
|
|
QTest::newRow("translate3D") << t1;
|
|
|
|
QMatrix4x4 t2;
|
|
t2.translate(-100.5f, 64.0f);
|
|
QTest::newRow("translate2D") << t2;
|
|
|
|
QMatrix4x4 s1;
|
|
s1.scale(-100.5f, 64.0f, 75.25f);
|
|
QTest::newRow("scale3D") << s1;
|
|
|
|
QMatrix4x4 s2;
|
|
s2.scale(-100.5f, 64.0f);
|
|
QTest::newRow("scale2D") << s2;
|
|
}
|
|
void tst_QMatrix4x4::mapVector3D()
|
|
{
|
|
QFETCH(QMatrix4x4, m1);
|
|
|
|
QVector3D v(10.5f, -2.0f, 3.0f);
|
|
QVector3D result;
|
|
|
|
m1.optimize();
|
|
|
|
QBENCHMARK {
|
|
result = m1 * v;
|
|
}
|
|
|
|
// Force the result to be stored so the compiler doesn't
|
|
// optimize away the contents of the benchmark loop.
|
|
vresult = result;
|
|
}
|
|
|
|
QPointF vresult2;
|
|
|
|
void tst_QMatrix4x4::mapVector2D_data()
|
|
{
|
|
mapVector3D_data();
|
|
}
|
|
void tst_QMatrix4x4::mapVector2D()
|
|
{
|
|
QFETCH(QMatrix4x4, m1);
|
|
|
|
QPointF v(10.5f, -2.0f);
|
|
QPointF result;
|
|
|
|
m1.optimize();
|
|
|
|
QBENCHMARK {
|
|
result = m1 * v;
|
|
}
|
|
|
|
// Force the result to be stored so the compiler doesn't
|
|
// optimize away the contents of the benchmark loop.
|
|
vresult2 = result;
|
|
}
|
|
|
|
// Use a direct naive multiplication algorithm. This is used
|
|
// to compare against the optimized routines to see if they are
|
|
// actually faster than the naive implementation.
|
|
void tst_QMatrix4x4::mapVectorDirect_data()
|
|
{
|
|
mapVector3D_data();
|
|
}
|
|
void tst_QMatrix4x4::mapVectorDirect()
|
|
{
|
|
QFETCH(QMatrix4x4, m1);
|
|
|
|
const float *m1data = m1.constData();
|
|
float v[4] = {10.5f, -2.0f, 3.0f, 1.0f};
|
|
float result[4];
|
|
|
|
QBENCHMARK {
|
|
for (int row = 0; row < 4; ++row) {
|
|
result[row] = 0.0f;
|
|
for (int col = 0; col < 4; ++col) {
|
|
result[row] += m1data[col * 4 + row] * v[col];
|
|
}
|
|
}
|
|
result[0] /= result[3];
|
|
result[1] /= result[3];
|
|
result[2] /= result[3];
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::translate() to
|
|
// QMatrix4x4::translate().
|
|
void tst_QMatrix4x4::compareTranslate_data()
|
|
{
|
|
QTest::addColumn<bool>("useQTransform");
|
|
QTest::addColumn<QVector3D>("translation");
|
|
|
|
QTest::newRow("QTransform::translate(0, 0, 0)")
|
|
<< true << QVector3D(0, 0, 0);
|
|
QTest::newRow("QMatrix4x4::translate(0, 0, 0)")
|
|
<< false << QVector3D(0, 0, 0);
|
|
|
|
QTest::newRow("QTransform::translate(1, 2, 0)")
|
|
<< true << QVector3D(1, 2, 0);
|
|
QTest::newRow("QMatrix4x4::translate(1, 2, 0)")
|
|
<< false << QVector3D(1, 2, 0);
|
|
|
|
QTest::newRow("QTransform::translate(1, 2, 4)")
|
|
<< true << QVector3D(1, 2, 4);
|
|
QTest::newRow("QMatrix4x4::translate(1, 2, 4)")
|
|
<< false << QVector3D(1, 2, 4);
|
|
}
|
|
void tst_QMatrix4x4::compareTranslate()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(QVector3D, translation);
|
|
|
|
float x = translation.x();
|
|
float y = translation.y();
|
|
float z = translation.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
QBENCHMARK {
|
|
t.translate(x, y);
|
|
}
|
|
} else if (z == 0.0f) {
|
|
QMatrix4x4 m;
|
|
QBENCHMARK {
|
|
m.translate(x, y);
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
QBENCHMARK {
|
|
m.translate(x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::translate() to
|
|
// QMatrix4x4::translate() after priming the matrix with a scale().
|
|
void tst_QMatrix4x4::compareTranslateAfterScale_data()
|
|
{
|
|
compareTranslate_data();
|
|
}
|
|
void tst_QMatrix4x4::compareTranslateAfterScale()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(QVector3D, translation);
|
|
|
|
float x = translation.x();
|
|
float y = translation.y();
|
|
float z = translation.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
t.scale(3, 4);
|
|
QBENCHMARK {
|
|
t.translate(x, y);
|
|
}
|
|
} else if (z == 0.0f) {
|
|
QMatrix4x4 m;
|
|
m.scale(3, 4);
|
|
QBENCHMARK {
|
|
m.translate(x, y);
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
m.scale(3, 4, 5);
|
|
QBENCHMARK {
|
|
m.translate(x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::translate() to
|
|
// QMatrix4x4::translate() after priming the matrix with a rotate().
|
|
void tst_QMatrix4x4::compareTranslateAfterRotate_data()
|
|
{
|
|
compareTranslate_data();
|
|
}
|
|
void tst_QMatrix4x4::compareTranslateAfterRotate()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(QVector3D, translation);
|
|
|
|
float x = translation.x();
|
|
float y = translation.y();
|
|
float z = translation.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
t.rotate(45.0f);
|
|
QBENCHMARK {
|
|
t.translate(x, y);
|
|
}
|
|
} else if (z == 0.0f) {
|
|
QMatrix4x4 m;
|
|
m.rotate(45.0f, 0, 0, 1);
|
|
QBENCHMARK {
|
|
m.translate(x, y);
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
m.rotate(45.0f, 0, 0, 1);
|
|
QBENCHMARK {
|
|
m.translate(x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::scale() to
|
|
// QMatrix4x4::scale().
|
|
void tst_QMatrix4x4::compareScale_data()
|
|
{
|
|
QTest::addColumn<bool>("useQTransform");
|
|
QTest::addColumn<QVector3D>("scale");
|
|
|
|
QTest::newRow("QTransform::scale(1, 1, 1)")
|
|
<< true << QVector3D(1, 1, 1);
|
|
QTest::newRow("QMatrix4x4::scale(1, 1, 1)")
|
|
<< false << QVector3D(1, 1, 1);
|
|
|
|
QTest::newRow("QTransform::scale(3, 6, 1)")
|
|
<< true << QVector3D(3, 6, 1);
|
|
QTest::newRow("QMatrix4x4::scale(3, 6, 1)")
|
|
<< false << QVector3D(3, 6, 1);
|
|
|
|
QTest::newRow("QTransform::scale(3, 6, 4)")
|
|
<< true << QVector3D(3, 6, 4);
|
|
QTest::newRow("QMatrix4x4::scale(3, 6, 4)")
|
|
<< false << QVector3D(3, 6, 4);
|
|
}
|
|
void tst_QMatrix4x4::compareScale()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(QVector3D, scale);
|
|
|
|
float x = scale.x();
|
|
float y = scale.y();
|
|
float z = scale.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
QBENCHMARK {
|
|
t.scale(x, y);
|
|
}
|
|
} else if (z == 1.0f) {
|
|
QMatrix4x4 m;
|
|
QBENCHMARK {
|
|
m.scale(x, y);
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
QBENCHMARK {
|
|
m.scale(x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::scale() to
|
|
// QMatrix4x4::scale() after priming the matrix with a translate().
|
|
void tst_QMatrix4x4::compareScaleAfterTranslate_data()
|
|
{
|
|
compareScale_data();
|
|
}
|
|
void tst_QMatrix4x4::compareScaleAfterTranslate()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(QVector3D, scale);
|
|
|
|
float x = scale.x();
|
|
float y = scale.y();
|
|
float z = scale.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
t.translate(20, 34);
|
|
QBENCHMARK {
|
|
t.scale(x, y);
|
|
}
|
|
} else if (z == 1.0f) {
|
|
QMatrix4x4 m;
|
|
m.translate(20, 34);
|
|
QBENCHMARK {
|
|
m.scale(x, y);
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
m.translate(20, 34, 42);
|
|
QBENCHMARK {
|
|
m.scale(x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::scale() to
|
|
// QMatrix4x4::scale() after priming the matrix with a rotate().
|
|
void tst_QMatrix4x4::compareScaleAfterRotate_data()
|
|
{
|
|
compareScale_data();
|
|
}
|
|
void tst_QMatrix4x4::compareScaleAfterRotate()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(QVector3D, scale);
|
|
|
|
float x = scale.x();
|
|
float y = scale.y();
|
|
float z = scale.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
t.rotate(45.0f);
|
|
QBENCHMARK {
|
|
t.scale(x, y);
|
|
}
|
|
} else if (z == 1.0f) {
|
|
QMatrix4x4 m;
|
|
m.rotate(45.0f, 0, 0, 1);
|
|
QBENCHMARK {
|
|
m.scale(x, y);
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
m.rotate(45.0f, 0, 0, 1);
|
|
QBENCHMARK {
|
|
m.scale(x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::rotate() to
|
|
// QMatrix4x4::rotate().
|
|
void tst_QMatrix4x4::compareRotate_data()
|
|
{
|
|
QTest::addColumn<bool>("useQTransform");
|
|
QTest::addColumn<float>("angle");
|
|
QTest::addColumn<QVector3D>("rotation");
|
|
QTest::addColumn<int>("axis");
|
|
|
|
QTest::newRow("QTransform::rotate(0, ZAxis)")
|
|
<< true << 0.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(0, ZAxis)")
|
|
<< false << 0.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(45, ZAxis)")
|
|
<< true << 45.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(45, ZAxis)")
|
|
<< false << 45.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(90, ZAxis)")
|
|
<< true << 90.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(90, ZAxis)")
|
|
<< false << 90.0f << QVector3D(0, 0, 1) << int(Qt::ZAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(0, YAxis)")
|
|
<< true << 0.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(0, YAxis)")
|
|
<< false << 0.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(45, YAxis)")
|
|
<< true << 45.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(45, YAxis)")
|
|
<< false << 45.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(90, YAxis)")
|
|
<< true << 90.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(90, YAxis)")
|
|
<< false << 90.0f << QVector3D(0, 1, 0) << int(Qt::YAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(0, XAxis)")
|
|
<< true << 0.0f << QVector3D(0, 1, 0) << int(Qt::XAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(0, XAxis)")
|
|
<< false << 0.0f << QVector3D(0, 1, 0) << int(Qt::XAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(45, XAxis)")
|
|
<< true << 45.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(45, XAxis)")
|
|
<< false << 45.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
|
|
|
|
QTest::newRow("QTransform::rotate(90, XAxis)")
|
|
<< true << 90.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
|
|
QTest::newRow("QMatrix4x4::rotate(90, XAxis)")
|
|
<< false << 90.0f << QVector3D(1, 0, 0) << int(Qt::XAxis);
|
|
}
|
|
void tst_QMatrix4x4::compareRotate()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(float, angle);
|
|
QFETCH(QVector3D, rotation);
|
|
QFETCH(int, axis);
|
|
|
|
float x = rotation.x();
|
|
float y = rotation.y();
|
|
float z = rotation.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
QBENCHMARK {
|
|
t.rotate(angle, Qt::Axis(axis));
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
QBENCHMARK {
|
|
m.rotate(angle, x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::rotate() to
|
|
// QMatrix4x4::rotate() after priming the matrix with a translate().
|
|
void tst_QMatrix4x4::compareRotateAfterTranslate_data()
|
|
{
|
|
compareRotate_data();
|
|
}
|
|
void tst_QMatrix4x4::compareRotateAfterTranslate()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(float, angle);
|
|
QFETCH(QVector3D, rotation);
|
|
QFETCH(int, axis);
|
|
|
|
float x = rotation.x();
|
|
float y = rotation.y();
|
|
float z = rotation.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
t.translate(3, 4);
|
|
QBENCHMARK {
|
|
t.rotate(angle, Qt::Axis(axis));
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
m.translate(3, 4, 5);
|
|
QBENCHMARK {
|
|
m.rotate(angle, x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the performance of QTransform::rotate() to
|
|
// QMatrix4x4::rotate() after priming the matrix with a scale().
|
|
void tst_QMatrix4x4::compareRotateAfterScale_data()
|
|
{
|
|
compareRotate_data();
|
|
}
|
|
void tst_QMatrix4x4::compareRotateAfterScale()
|
|
{
|
|
QFETCH(bool, useQTransform);
|
|
QFETCH(float, angle);
|
|
QFETCH(QVector3D, rotation);
|
|
QFETCH(int, axis);
|
|
|
|
float x = rotation.x();
|
|
float y = rotation.y();
|
|
float z = rotation.z();
|
|
|
|
if (useQTransform) {
|
|
QTransform t;
|
|
t.scale(3, 4);
|
|
QBENCHMARK {
|
|
t.rotate(angle, Qt::Axis(axis));
|
|
}
|
|
} else {
|
|
QMatrix4x4 m;
|
|
m.scale(3, 4, 5);
|
|
QBENCHMARK {
|
|
m.rotate(angle, x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
QTEST_MAIN(tst_QMatrix4x4)
|
|
|
|
#include "tst_qmatrix4x4.moc"
|