qt5base-lts/cmake
Alexandru Croitor bf315c5526 CMake: Make build system of installed Qt more relocatable
Aka handle CMAKE_INSTALL_PREFIX in a more relocatable way.

The following story inspired this change.

If a user wants to build a Qt repo into a different install prefix
than the usual Qt one, this will fail configuration because we
look for various things like syncqt, qdoc, etc relative to
CMAKE_INSTALL_PREFIX, which will now point to a different location
where none of the above tools are located.

The intent for such a use case is to support building Qt packages with
Conan, which sets a random install prefix when configuring a repo.

The idea is to derive the qt prefix dynamically from the
QtBuildInternals package location. Essentially it's a reverse relative
path from the QtBuildInternalsConfig.cmake file to the install prefix
that was specified when initially configuring qtbase.

Once the dynamic prefix is computed (so we know where the possibly
relocated Qt is), we can find tools like syncqt and qdoc.

This is an initial attempt to support a use case like that.

More design work will probably needed in case if tools / libs need to
be found in a location different than the Qt install prefix (so
support for multiple install prefixes / search paths).

An example of such a case would be when building qtdeclarative and
qtquickcontrols2 as Conan packages in one go. Most likely the
qmltyperegistrar tool will be located in the random install prefix
set by Conan, so building qtquickcontrols2 might fail due to not
finding the tool in the original Qt install prefix.

As to the implementation details, the change does the following:
- Dynamically computes and sets the
  QT_BUILD_INTERNALS_RELOCATABLE_INSTALL_PREFIX variable when
  find_package()'ing QtBuildInternals. It's an absolute path
  pointing to where the relocated Qt is.

- When building qtbase this variable is not yet available (due
  to QtBuildInternalsExtra not existing), in that case we set
  the variable to the absolute path of CMAKE_INSTALL_PREFIX
  (but only for the initial qtbase configuration).

- Remove QT_BUILD_INTERNALS_ORIGINAL_INSTALL_PREFIX which was used
  for standalone tests purposes. It's not needed now that we compute
  the location of the Qt prefix dynamically.

- The Unixy qt-cmake and qt-cmake-private shell scripts now
  use a relative path to find the toolchain file we created.

- The toolchain file also dynamically computes the location of the Qt
  packages, and adds them to CMAKE_PREFIX_PATH.

- A lot of existing CMAKE_INSTALL_PREFIX uses are replaced with
  QT_BUILD_INTERNALS_RELOCATABLE_INSTALL_PREFIX. This includes finding
  tool locations, mkspecs dir, path environment setup for tools, etc.

- Some places still use CMAKE_PREFIX_PATH in the following cases
  - When determining paths while configuring qtbase (valid cases)
  - When I wasn't sure what the behavior should be, so I left them
    as-is (an example is documentation generation, do we want to
    install it into the random Conan prefix, or into the main prefix?
    Currently it installs in the random prefix).

Note that relocating a Qt installation does not work for non-prefix /
non-installed builds, due to hardcoded paths to include directories
and libraries in generated FooTargets.cmake files.

Task-number: QTBUG-83999
Change-Id: I87d6558729db93121b1715771034b03ce3295923
Reviewed-by: Joerg Bornemann <joerg.bornemann@qt.io>
2020-05-07 15:41:16 +02:00
..
3rdparty CMake: Use NAME_MISMATCHED in find_package_handle_standard_args of ECM 2020-05-01 19:11:25 +02:00
macos cmake: Add default Info.plist for macOS with some important keys 2020-03-13 15:23:56 +01:00
QtBuildInternals CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
tests
FindATSPI2.cmake CMake: Fix detection of AT-SPI-2 on second run 2019-09-16 14:47:51 +00:00
FindCups.cmake
FindDB2.cmake
FindDirectFB.cmake Add CMake support for directfb plug-in 2019-09-30 11:31:54 +00:00
Finddouble-conversion.cmake
FindGLESv2.cmake cmake: Remove APPLE prefix from platform names 2020-03-16 17:57:56 +01:00
FindGSSAPI.cmake Regenerate files after dev -> wip/cmake merge 2019-10-14 19:01:19 +00:00
FindGTK3.cmake
FindLibproxy.cmake
FindLibsystemd.cmake Fix libsystemd find module name 2019-09-27 14:30:43 +00:00
FindLibudev.cmake
FindMtdev.cmake Fix typo for Mtdev pkgconfig target 2020-02-11 09:20:14 +00:00
FindMySQL.cmake
FindOracle.cmake
FindPPS.cmake
FindSlog2.cmake CMake: Namespace all our IMPORTED targets 2020-04-29 23:08:32 +02:00
FindTslib.cmake
FindWrapAtomic.cmake CMake: Namespace all our IMPORTED targets 2020-04-29 23:08:32 +02:00
FindWrapDBus1.cmake Safeguard against multiple definition of dbus-1 target 2020-02-06 12:21:49 +00:00
FindWrapDoubleConversion.cmake CMake: Remove old 3rdparty mechanism for double conversion 2020-03-10 07:33:07 +01:00
FindWrapFreetype.cmake CMake: Handle conditions in third party find modules correctly 2020-03-05 16:08:14 +01:00
FindWrapHarfbuzz.cmake CMake: Handle conditions in third party find modules correctly 2020-03-05 16:08:14 +01:00
FindWrapOpenSSL.cmake CMake: Handle finding of OpenSSL headers correctly 2020-04-08 22:03:24 +02:00
FindWrapOpenSSLHeaders.cmake CMake: Handle finding of OpenSSL headers correctly 2020-04-08 22:03:24 +02:00
FindWrapPCRE2.cmake CMake: Handle conditions in third party find modules correctly 2020-03-05 16:08:14 +01:00
FindWrapPNG.cmake CMake: Handle conditions in third party find modules correctly 2020-03-05 16:08:14 +01:00
FindWrapRt.cmake CMake: Namespace all our IMPORTED targets 2020-04-29 23:08:32 +02:00
FindWrapSystemFreetype.cmake CMake: Allow building bundled 3rd party libraries in qtbase 2020-02-25 15:43:16 +01:00
FindWrapSystemHarfbuzz.cmake CMake: Allow building bundled 3rd party libraries in qtbase 2020-02-25 15:43:16 +01:00
FindWrapSystemPCRE2.cmake CMake: Allow building bundled 3rd party libraries in qtbase 2020-02-25 15:43:16 +01:00
FindWrapSystemPNG.cmake CMake: Allow building bundled 3rd party libraries in qtbase 2020-02-25 15:43:16 +01:00
FindXKB_COMMON_X11.cmake
FindXRender.cmake Fix some find modules not setting _FOUND variable 2019-09-27 14:30:23 +00:00
FindZSTD.cmake
ModuleDescription.json.in Write out a module description file 2019-10-21 11:28:55 +00:00
Qt3rdPartyLibraryConfig.cmake.in Add support for qt_helper_lib() 2020-02-12 08:43:29 +00:00
qt.toolchain.cmake.in CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtAutoDetect.cmake CMake: Handle automatic rpath embedding correctly 2020-04-17 15:59:25 +02:00
QtBaseCMakeTesting.cmake
QtBaseConfigureTests.cmake CMake: Port most of the configure summary support 2020-03-09 23:08:57 +01:00
QtBaseGlobalTargets.cmake CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtBuild.cmake CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtBuildInformation.cmake CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtBuildInternalsExtra.cmake.in CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtCompilerFlags.cmake CMake: Allow disabling warnings similar to CONFIG += warn_off 2020-02-25 15:43:15 +01:00
QtCompilerOptimization.cmake cmake: Remove APPLE prefix from platform names 2020-03-16 17:57:56 +01:00
QtConfig.cmake.in CMake: Fix pkgconfig calls when cross-compiling 2020-03-26 12:46:16 +01:00
QtFeature.cmake CMake: Fix handling of negated feature config values 2020-04-21 09:01:27 +02:00
QtFileConfigure.txt.in CMake: Introduce qt_configure_file 2020-03-23 09:54:56 +01:00
QtFindWrapConfigExtra.cmake.in CMake: Handle conditions in third party find modules correctly 2020-03-05 16:08:14 +01:00
QtFindWrapHelper.cmake CMake: Handle conditions in third party find modules correctly 2020-03-05 16:08:14 +01:00
QtFinishPrlFile.cmake CMake: Generate qmake .prl files 2020-04-17 20:42:10 +02:00
QtInternalTargets.cmake CMake: Limit warnings_are_errors flags to C++ and Objective-C++ 2020-05-01 19:11:37 +02:00
QtModuleConfig.cmake.in Refactor Metatypes dependency propagation 2020-02-10 15:07:34 +00:00
QtModuleDependencies.cmake.in Always append extra cmake modules to CMAKE_MODULE_PATH in Qt6Config 2019-10-01 12:05:59 +00:00
QtModuleToolsConfig.cmake.in CMake: Fix creation of versionless targets for tools 2019-12-06 11:11:16 +00:00
QtModuleToolsDependencies.cmake.in Provide a way to specify extra tool package dependencies 2019-11-26 10:58:56 +00:00
QtModuleToolsVersionlessTargets.cmake.in CMake: Fix creation of versionless targets for tools 2019-12-06 11:11:16 +00:00
QtPlatformAndroid.cmake CMake: Fix wrong arm64 architecture 2020-04-27 12:21:29 +02:00
QtPlatformSupport.cmake cmake: Remove APPLE prefix from platform names 2020-03-16 17:57:56 +01:00
QtPluginConfig.cmake.in Implement qtbase fixes for superbuilds 2020-01-08 10:42:21 +00:00
QtPluginDependencies.cmake.in Always try to find dependencies for plugins 2019-10-14 15:02:52 +00:00
QtPlugins.cmake.in Fix qt_import_plugins compatibility with Qt 5 2020-01-27 11:59:51 +00:00
QtPostProcess.cmake CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtProperties.cmake Rename / prefix all our private API functions with qt_ 2019-11-14 09:05:33 +00:00
QtSeparateDebugInfo.cmake CMake: Make use of CMAKE_CURRENT_FUNCTION_LIST_DIR 2020-04-17 23:10:08 +02:00
QtSeparateDebugInfo.Info.plist.in CMake: Port the 'separate_debug_info' feature 2020-03-06 13:38:37 +01:00
QtSetup.cmake CMake: Make build system of installed Qt more relocatable 2020-05-07 15:41:16 +02:00
QtStandaloneTestsConfig.cmake.in Make standalone tests build via top level repo project 2019-11-08 15:42:32 +00:00
QtToolsConfig.cmake.in
README.md Fix typo in readme 2020-05-04 07:01:55 +02:00

Status

Port is still on-going. Most of qtbase and qtsvg is ported. Other repositories are ported, but not under CI control yet. Some libraries, tests and examples are still missing.

Note: You need CMake 3.16.0 or later for most platforms (due to new AUTOMOC json feature). You need CMake 3.17.0 to build Qt for iOS with the simulator_and_device feature. You need CMake 3.17.0 + Ninja to build Qt in debug_and_release mode on Windows / Linux. You need CMake 3.18.0 + Ninja to build Qt on macOS in debug_and_release mode when using frameworks.

Intro

The CMake update offers an opportunity to revisit some topics that came up during the last few years.

  • The Qt build system does not support building host tools during a cross-compilation run. You need to build a Qt for your host machine first and then use the platform tools from that version. The decision to do this was reached independent of cmake: This does save resources on build machines as the host tools will only get built once.

  • For now Qt still ships and builds bundled 3rd party code, due to time constraints on getting all the necessary pieces together in order to remove the bundled code (changes are necessary not only in the build system but in other parts of the SDK like the Qt Installer).

  • There is less need for bootstrapping. Only moc and rcc (plus the lesser known tracegen and qfloat16-tables) are linking against the bootstrap Qt library. Everything else can link against the full QtCore. This will include qmake. Qmake is supported as a build system for applications using Qt going forward and will not go away anytime soon.

  • We keep the qmake-based Qt build system working so that we do not interfere too much with ongoing development.

Building against homebrew on macOS

You may use brew to install dependencies needed to build QtBase.

  • Install homebrew: /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
  • Build Qt dependencies: brew install pcre2 harfbuzz freetype
  • Install cmake: brew install cmake
  • When running cmake in qtbase, pass -DCMAKE_PREFIX_PATH=/usr/local

Building

The basic way of building with cmake is as follows:

    cd {build directory}
    cmake -DCMAKE_INSTALL_PREFIX=/path/where/to/install {path to source directory}
    cmake --build .
    cmake --install .

You need one build directory per Qt module. The build directory can be a sub-directory inside the module qtbase/build or an independent directory qtbase_build. The installation prefix is chosen when running cmake by passing -DCMAKE_INSTALL_PREFIX. To build more than one Qt module, make sure to pass the same install prefix.

cmake --build and cmake --install are simple wrappers around the basic build tool that CMake generated a build system for. It works with any supported build backend supported by cmake, but you can also use the backend build tool directly, e.g. by running make.

CMake has a ninja backend that works quite well and is noticeably faster (and more featureful) than make, so you may want to use that:

    cd {build directory}
    cmake -GNinja -DCMAKE_INSTALL_PREFIX=/path/where/to/install {path to source directory}
    cmake --build .
    cmake --install .

You can look into the generated build.ninja file if you're curious and you can also build targets directly, such as ninja lib/libQt6Core.so.

Make sure to remove CMakeCache.txt if you forgot to set the CMAKE_INSTALL_PREFIX on the first configuration, otherwise a second re-configuration will not pick up the new install prefix.

You can use cmake-gui {path to build directory} or ccmake {path to build directory} to configure the values of individual cmake variables or Qt features. After changing a value, you need to choose the configure step (usually several times:-/), followed by the generate step (to generate makefiles/ninja files).

Developer Build

When working on Qt itself, it can be tedious to wait for the install step. In that case you want to use the developer build option, to get as many auto tests enabled and no longer be required to make install:

    cd {build directory}
    cmake -GNinja -DFEATURE_developer_build=ON {path to source directory}
    cmake --build .
    # do NOT make install

Specifying configure.json features on the command line

QMake defines most features in configure.json files, like -developer-build or -no-opengl.

In CMake land, we currently generate configure.cmake files from the configure.json files into the source directory next to them using the helper script path_to_qtbase_source/util/cmake/configurejson2cmake.py. They are checked into the repository. If the feature in configure.json has the name "dlopen", you can specify whether to enable or disable that feature in CMake with a -D flag on the CMake command line. So for example -DFEATURE_dlopen=ON or -DFEATURE_sql_mysql=OFF. At the moment, if you change a FEATURE flag's value, you have to remove the CMakeCache.txt file and reconfigure with CMake. And even then you might stumble on some issues when reusing an existing build, because of an automoc bug in upstream CMake.

Building with CCache

You can pass -DQT_USE_CCACHE=ON to make the build system look for ccache in your PATH and prepend it to all C/C++/Objective-C compiler calls. At the moment this is only supported for the Ninja and the Makefile generators.

Cross Compiling

Compiling for a target architecture that's different than the host requires one build of Qt for the host. This "host build" is needed because the process of building Qt involves the compilation of intermediate code generator tools, that in turn are called to produce source code that needs to be compiled into the final libraries. These tools are built using Qt itself and they need to run on the machine you're building on, regardless of the architecure you are targeting.

Build Qt regularly for your host system and install it into a directory of your choice using the CMAKE_INSTALL_PREFIX variable. You are free to disable the build of tests and examples by passing -DBUILD_EXAMPLES=OFF and -DBUILD_TESTING=OFF.

With this installation of Qt in place, which contains all tools needed, we can proceed to create a new build of Qt that is cross-compiled to the target architecture of choice. You may proceed by setting up your environment. The CMake wiki has further information how to do that at

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/CrossCompiling

Yocto based device SDKs come with an environment setup script that needs to be sourced in your shell and takes care of setting up environment variables and a cmake alias with a toolchain file, so that you can call cmake as you always do.

In order to make sure that Qt picks up the code generator tools from the host build, you need to pass an extra parameter to cmake:

    -DQT_HOST_PATH=/path/to/your/host_build

The specified path needs to point to a directory that contains an installed host build of Qt.

Cross Compiling for Android

In order to cross-compile Qt to Android, you need a host build (see instructions above) and an Android build. In addition, it is necessary to install the Android NDK.

The environment for Android can be set up using the following steps:

  • Set the ANDROID_NDK_HOME environment variable to the path where you have installed the Android NDK.
  • Set the ANDROID_SDK_HOME environment variable to the path where you have installed the Android SDK.

When running cmake in qtbase, pass -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK_HOME/build/cmake/android.toolchain.cmake -DQT_HOST_PATH=/path/to/your/host/build -DANDROID_SDK_ROOT=$ANDROID_SDK_HOME -DCMAKE_INSTALL_PREFIX=$INSTALL_PATH

If you don't supply the configuration argument -DANDROID_ABI=..., it will default to armeabi-v7a. To target other architectures, use one of the following values:

  • arm64: -DANDROID_ABI=arm64-v8
  • x86: -DANDROID_ABI=x86
  • x86_64: -DANDROID_ABI=x86_64

By default we set the android API level to 21. Should you need to change this supply the following configuration argument to the above CMake call: -DANDROID_NATIVE_API_LEVEL=${API_LEVEL}

Cross compiling for iOS

In order to cross-compile Qt to iOS, you need a host macOS build.

When running cmake in qtbase, pass -DCMAKE_SYSTEM_NAME=iOS -DQT_HOST_PATH=/path/to/your/host/build -DCMAKE_INSTALL_PREFIX=$INSTALL_PATH

If you don't supply the configuration argument -DQT_UIKIT_SDK=..., it will default to iphonesimulator. To target another SDK / device type, use one of the following values:

  • iphonesimulator: -DQT_UIKIT_SDK=iphonesimulator
  • iphoneos: -DQT_UIKIT_SDK=iphoneos
  • simulator_and_device: -DQT_FORCE_SIMULATOR_AND_DEVICE=ON -DQT_UIKIT_SDK=

Depending on what value you pass to -DQT_UIKIT_SDK= a list of target architectures is chosen by default:

  • iphonesimulator: x86_64
  • iphoneos: arm64
  • simulator_and_device: arm64;x86_64

You can try choosing a different list of architectures by passing -DCMAKE_OSX_ARCHITECTURES=x86_64;i386. Note that if you choose different architectures compared to the default ones, the build might fail. Only do it if you know what you are doing.

simulator_and_device special considerations

To do a simulator_and_device build, an unreleased version of CMake is required (3.17.0).

Debugging CMake files

CMake allows specifying the --trace and --trace-expand options, which work like qmake -d -d: As the cmake code is evaluated, the values of parameters and variables is shown. This can be a lot of output, so you may want to redirect it to a file using the --trace-redirect=log.txt option.

Porting Help

We have some python scripts to help with the conversion from qmake to cmake. These scripts can be found in utils/cmake.

configurejson2cmake.py

This script converts all configure.json in the Qt repository to configure.cmake files for use with CMake. We want to generate configure.cmake files for the foreseeable future, so if you need to tweak the generated configure.cmake files, please tweak the generation script instead.

configurejson2cmake.py is run like this: util/cmake/configurejson2cmake.py . in the top-level source directory of a Qt repository.

pro2cmake.py

pro2cmake.py generates a skeleton CMakeLists.txt file from a .pro-file. You will need to polish the resulting CMakeLists.txt file, but e.g. the list of files, etc. should be extracted for you.

pro2cmake.py is run like this: path_to_qtbase_source/util/cmake/pro2cmake.py some.pro.

run_pro2cmake.py

`` A small helper script to run pro2cmake.py on all .pro-files in a directory. Very useful to e.g. convert all the unit tests for a Qt module over to cmake;-)

run_pro2cmake.py is run like this: path_to_qtbase_source/util/cmake/run_pro2cmake.py some_dir.

vcpkg support

The initial port used vcpkg to provide 3rd party packages that Qt requires.

At the moment the Qt CI does not use vcpkg anymore, and instead builds bundled 3rd party sources if no relevant system package is found.

While the supporting code for building with vcpkg is still there, it is not tested at this time.

How to convert certain constructs

qmake CMake
qtHaveModule(foo) if(TARGET Qt::foo)
qtConfig(foo) if (QT_FEATURE_foo)