qt5base-lts/examples/vulkan/shared/trianglerenderer.cpp
Lucie Gérard 05fc3aef53 Use SPDX license identifiers
Replace the current license disclaimer in files by
a SPDX-License-Identifier.
Files that have to be modified by hand are modified.
License files are organized under LICENSES directory.

Task-number: QTBUG-67283
Change-Id: Id880c92784c40f3bbde861c0d93f58151c18b9f1
Reviewed-by: Qt CI Bot <qt_ci_bot@qt-project.org>
Reviewed-by: Lars Knoll <lars.knoll@qt.io>
Reviewed-by: Jörg Bornemann <joerg.bornemann@qt.io>
2022-05-16 16:37:38 +02:00

467 lines
17 KiB
C++

// Copyright (C) 2017 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause
#include "trianglerenderer.h"
#include <QVulkanFunctions>
#include <QFile>
// Note that the vertex data and the projection matrix assume OpenGL. With
// Vulkan Y is negated in clip space and the near/far plane is at 0/1 instead
// of -1/1. These will be corrected for by an extra transformation when
// calculating the modelview-projection matrix.
static float vertexData[] = { // Y up, front = CCW
0.0f, 0.5f, 1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.0f, 0.0f, 1.0f
};
static const int UNIFORM_DATA_SIZE = 16 * sizeof(float);
static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign)
{
return (v + byteAlign - 1) & ~(byteAlign - 1);
}
TriangleRenderer::TriangleRenderer(QVulkanWindow *w, bool msaa)
: m_window(w)
{
if (msaa) {
const QList<int> counts = w->supportedSampleCounts();
qDebug() << "Supported sample counts:" << counts;
for (int s = 16; s >= 4; s /= 2) {
if (counts.contains(s)) {
qDebug("Requesting sample count %d", s);
m_window->setSampleCount(s);
break;
}
}
}
}
VkShaderModule TriangleRenderer::createShader(const QString &name)
{
QFile file(name);
if (!file.open(QIODevice::ReadOnly)) {
qWarning("Failed to read shader %s", qPrintable(name));
return VK_NULL_HANDLE;
}
QByteArray blob = file.readAll();
file.close();
VkShaderModuleCreateInfo shaderInfo;
memset(&shaderInfo, 0, sizeof(shaderInfo));
shaderInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
shaderInfo.codeSize = blob.size();
shaderInfo.pCode = reinterpret_cast<const uint32_t *>(blob.constData());
VkShaderModule shaderModule;
VkResult err = m_devFuncs->vkCreateShaderModule(m_window->device(), &shaderInfo, nullptr, &shaderModule);
if (err != VK_SUCCESS) {
qWarning("Failed to create shader module: %d", err);
return VK_NULL_HANDLE;
}
return shaderModule;
}
void TriangleRenderer::initResources()
{
qDebug("initResources");
VkDevice dev = m_window->device();
m_devFuncs = m_window->vulkanInstance()->deviceFunctions(dev);
// Prepare the vertex and uniform data. The vertex data will never
// change so one buffer is sufficient regardless of the value of
// QVulkanWindow::CONCURRENT_FRAME_COUNT. Uniform data is changing per
// frame however so active frames have to have a dedicated copy.
// Use just one memory allocation and one buffer. We will then specify the
// appropriate offsets for uniform buffers in the VkDescriptorBufferInfo.
// Have to watch out for
// VkPhysicalDeviceLimits::minUniformBufferOffsetAlignment, though.
// The uniform buffer is not strictly required in this example, we could
// have used push constants as well since our single matrix (64 bytes) fits
// into the spec mandated minimum limit of 128 bytes. However, once that
// limit is not sufficient, the per-frame buffers, as shown below, will
// become necessary.
const int concurrentFrameCount = m_window->concurrentFrameCount();
const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits;
const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment;
qDebug("uniform buffer offset alignment is %u", (uint) uniAlign);
VkBufferCreateInfo bufInfo;
memset(&bufInfo, 0, sizeof(bufInfo));
bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
// Our internal layout is vertex, uniform, uniform, ... with each uniform buffer start offset aligned to uniAlign.
const VkDeviceSize vertexAllocSize = aligned(sizeof(vertexData), uniAlign);
const VkDeviceSize uniformAllocSize = aligned(UNIFORM_DATA_SIZE, uniAlign);
bufInfo.size = vertexAllocSize + concurrentFrameCount * uniformAllocSize;
bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_buf);
if (err != VK_SUCCESS)
qFatal("Failed to create buffer: %d", err);
VkMemoryRequirements memReq;
m_devFuncs->vkGetBufferMemoryRequirements(dev, m_buf, &memReq);
VkMemoryAllocateInfo memAllocInfo = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
nullptr,
memReq.size,
m_window->hostVisibleMemoryIndex()
};
err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem);
if (err != VK_SUCCESS)
qFatal("Failed to allocate memory: %d", err);
err = m_devFuncs->vkBindBufferMemory(dev, m_buf, m_bufMem, 0);
if (err != VK_SUCCESS)
qFatal("Failed to bind buffer memory: %d", err);
quint8 *p;
err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, memReq.size, 0, reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
memcpy(p, vertexData, sizeof(vertexData));
QMatrix4x4 ident;
memset(m_uniformBufInfo, 0, sizeof(m_uniformBufInfo));
for (int i = 0; i < concurrentFrameCount; ++i) {
const VkDeviceSize offset = vertexAllocSize + i * uniformAllocSize;
memcpy(p + offset, ident.constData(), 16 * sizeof(float));
m_uniformBufInfo[i].buffer = m_buf;
m_uniformBufInfo[i].offset = offset;
m_uniformBufInfo[i].range = uniformAllocSize;
}
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
VkVertexInputBindingDescription vertexBindingDesc = {
0, // binding
5 * sizeof(float),
VK_VERTEX_INPUT_RATE_VERTEX
};
VkVertexInputAttributeDescription vertexAttrDesc[] = {
{ // position
0, // location
0, // binding
VK_FORMAT_R32G32_SFLOAT,
0
},
{ // color
1,
0,
VK_FORMAT_R32G32B32_SFLOAT,
2 * sizeof(float)
}
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo;
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.pNext = nullptr;
vertexInputInfo.flags = 0;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc;
vertexInputInfo.vertexAttributeDescriptionCount = 2;
vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc;
// Set up descriptor set and its layout.
VkDescriptorPoolSize descPoolSizes = { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, uint32_t(concurrentFrameCount) };
VkDescriptorPoolCreateInfo descPoolInfo;
memset(&descPoolInfo, 0, sizeof(descPoolInfo));
descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descPoolInfo.maxSets = concurrentFrameCount;
descPoolInfo.poolSizeCount = 1;
descPoolInfo.pPoolSizes = &descPoolSizes;
err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_descPool);
if (err != VK_SUCCESS)
qFatal("Failed to create descriptor pool: %d", err);
VkDescriptorSetLayoutBinding layoutBinding = {
0, // binding
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
VK_SHADER_STAGE_VERTEX_BIT,
nullptr
};
VkDescriptorSetLayoutCreateInfo descLayoutInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
nullptr,
0,
1,
&layoutBinding
};
err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_descSetLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create descriptor set layout: %d", err);
for (int i = 0; i < concurrentFrameCount; ++i) {
VkDescriptorSetAllocateInfo descSetAllocInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
nullptr,
m_descPool,
1,
&m_descSetLayout
};
err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_descSet[i]);
if (err != VK_SUCCESS)
qFatal("Failed to allocate descriptor set: %d", err);
VkWriteDescriptorSet descWrite;
memset(&descWrite, 0, sizeof(descWrite));
descWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descWrite.dstSet = m_descSet[i];
descWrite.descriptorCount = 1;
descWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descWrite.pBufferInfo = &m_uniformBufInfo[i];
m_devFuncs->vkUpdateDescriptorSets(dev, 1, &descWrite, 0, nullptr);
}
// Pipeline cache
VkPipelineCacheCreateInfo pipelineCacheInfo;
memset(&pipelineCacheInfo, 0, sizeof(pipelineCacheInfo));
pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline cache: %d", err);
// Pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutInfo;
memset(&pipelineLayoutInfo, 0, sizeof(pipelineLayoutInfo));
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = &m_descSetLayout;
err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_pipelineLayout);
if (err != VK_SUCCESS)
qFatal("Failed to create pipeline layout: %d", err);
// Shaders
VkShaderModule vertShaderModule = createShader(QStringLiteral(":/color_vert.spv"));
VkShaderModule fragShaderModule = createShader(QStringLiteral(":/color_frag.spv"));
// Graphics pipeline
VkGraphicsPipelineCreateInfo pipelineInfo;
memset(&pipelineInfo, 0, sizeof(pipelineInfo));
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
VkPipelineShaderStageCreateInfo shaderStages[2] = {
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_VERTEX_BIT,
vertShaderModule,
"main",
nullptr
},
{
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
nullptr,
0,
VK_SHADER_STAGE_FRAGMENT_BIT,
fragShaderModule,
"main",
nullptr
}
};
pipelineInfo.stageCount = 2;
pipelineInfo.pStages = shaderStages;
pipelineInfo.pVertexInputState = &vertexInputInfo;
VkPipelineInputAssemblyStateCreateInfo ia;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
pipelineInfo.pInputAssemblyState = &ia;
// The viewport and scissor will be set dynamically via vkCmdSetViewport/Scissor.
// This way the pipeline does not need to be touched when resizing the window.
VkPipelineViewportStateCreateInfo vp;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
vp.scissorCount = 1;
pipelineInfo.pViewportState = &vp;
VkPipelineRasterizationStateCreateInfo rs;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_NONE; // we want the back face as well
rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rs.lineWidth = 1.0f;
pipelineInfo.pRasterizationState = &rs;
VkPipelineMultisampleStateCreateInfo ms;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
// Enable multisampling.
ms.rasterizationSamples = m_window->sampleCountFlagBits();
pipelineInfo.pMultisampleState = &ms;
VkPipelineDepthStencilStateCreateInfo ds;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
pipelineInfo.pDepthStencilState = &ds;
VkPipelineColorBlendStateCreateInfo cb;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
// no blend, write out all of rgba
VkPipelineColorBlendAttachmentState att;
memset(&att, 0, sizeof(att));
att.colorWriteMask = 0xF;
cb.attachmentCount = 1;
cb.pAttachments = &att;
pipelineInfo.pColorBlendState = &cb;
VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dyn;
memset(&dyn, 0, sizeof(dyn));
dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState);
dyn.pDynamicStates = dynEnable;
pipelineInfo.pDynamicState = &dyn;
pipelineInfo.layout = m_pipelineLayout;
pipelineInfo.renderPass = m_window->defaultRenderPass();
err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_pipeline);
if (err != VK_SUCCESS)
qFatal("Failed to create graphics pipeline: %d", err);
if (vertShaderModule)
m_devFuncs->vkDestroyShaderModule(dev, vertShaderModule, nullptr);
if (fragShaderModule)
m_devFuncs->vkDestroyShaderModule(dev, fragShaderModule, nullptr);
}
void TriangleRenderer::initSwapChainResources()
{
qDebug("initSwapChainResources");
// Projection matrix
m_proj = m_window->clipCorrectionMatrix(); // adjust for Vulkan-OpenGL clip space differences
const QSize sz = m_window->swapChainImageSize();
m_proj.perspective(45.0f, sz.width() / (float) sz.height(), 0.01f, 100.0f);
m_proj.translate(0, 0, -4);
}
void TriangleRenderer::releaseSwapChainResources()
{
qDebug("releaseSwapChainResources");
}
void TriangleRenderer::releaseResources()
{
qDebug("releaseResources");
VkDevice dev = m_window->device();
if (m_pipeline) {
m_devFuncs->vkDestroyPipeline(dev, m_pipeline, nullptr);
m_pipeline = VK_NULL_HANDLE;
}
if (m_pipelineLayout) {
m_devFuncs->vkDestroyPipelineLayout(dev, m_pipelineLayout, nullptr);
m_pipelineLayout = VK_NULL_HANDLE;
}
if (m_pipelineCache) {
m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr);
m_pipelineCache = VK_NULL_HANDLE;
}
if (m_descSetLayout) {
m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_descSetLayout, nullptr);
m_descSetLayout = VK_NULL_HANDLE;
}
if (m_descPool) {
m_devFuncs->vkDestroyDescriptorPool(dev, m_descPool, nullptr);
m_descPool = VK_NULL_HANDLE;
}
if (m_buf) {
m_devFuncs->vkDestroyBuffer(dev, m_buf, nullptr);
m_buf = VK_NULL_HANDLE;
}
if (m_bufMem) {
m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr);
m_bufMem = VK_NULL_HANDLE;
}
}
void TriangleRenderer::startNextFrame()
{
VkDevice dev = m_window->device();
VkCommandBuffer cb = m_window->currentCommandBuffer();
const QSize sz = m_window->swapChainImageSize();
VkClearColorValue clearColor = {{ 0, 0, 0, 1 }};
VkClearDepthStencilValue clearDS = { 1, 0 };
VkClearValue clearValues[3];
memset(clearValues, 0, sizeof(clearValues));
clearValues[0].color = clearValues[2].color = clearColor;
clearValues[1].depthStencil = clearDS;
VkRenderPassBeginInfo rpBeginInfo;
memset(&rpBeginInfo, 0, sizeof(rpBeginInfo));
rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpBeginInfo.renderPass = m_window->defaultRenderPass();
rpBeginInfo.framebuffer = m_window->currentFramebuffer();
rpBeginInfo.renderArea.extent.width = sz.width();
rpBeginInfo.renderArea.extent.height = sz.height();
rpBeginInfo.clearValueCount = m_window->sampleCountFlagBits() > VK_SAMPLE_COUNT_1_BIT ? 3 : 2;
rpBeginInfo.pClearValues = clearValues;
VkCommandBuffer cmdBuf = m_window->currentCommandBuffer();
m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
quint8 *p;
VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem, m_uniformBufInfo[m_window->currentFrame()].offset,
UNIFORM_DATA_SIZE, 0, reinterpret_cast<void **>(&p));
if (err != VK_SUCCESS)
qFatal("Failed to map memory: %d", err);
QMatrix4x4 m = m_proj;
m.rotate(m_rotation, 0, 1, 0);
memcpy(p, m.constData(), 16 * sizeof(float));
m_devFuncs->vkUnmapMemory(dev, m_bufMem);
// Not exactly a real animation system, just advance on every frame for now.
m_rotation += 1.0f;
m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline);
m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1,
&m_descSet[m_window->currentFrame()], 0, nullptr);
VkDeviceSize vbOffset = 0;
m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_buf, &vbOffset);
VkViewport viewport;
viewport.x = viewport.y = 0;
viewport.width = sz.width();
viewport.height = sz.height();
viewport.minDepth = 0;
viewport.maxDepth = 1;
m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport);
VkRect2D scissor;
scissor.offset.x = scissor.offset.y = 0;
scissor.extent.width = viewport.width;
scissor.extent.height = viewport.height;
m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor);
m_devFuncs->vkCmdDraw(cb, 3, 1, 0, 0);
m_devFuncs->vkCmdEndRenderPass(cmdBuf);
m_window->frameReady();
m_window->requestUpdate(); // render continuously, throttled by the presentation rate
}