scuffed-code/icu4c/source/common/unicode/utext.h

1263 lines
45 KiB
C
Raw Normal View History

/*
*******************************************************************************
*
* Copyright (C) 2004-2005, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: utext.h
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2004oct06
* created by: Markus W. Scherer
*/
#ifndef __UTEXT_H__
#define __UTEXT_H__
/**
* \file
* \brief C API: Abstract Unicode Text API
*
* Text Access API provides a means to allow text that is stored in alternative
* formats to work with ICU services. ICU normally operates on text that is
* stored utf-16 format, in (UChar *) arrays for the C APIs or as type
* UnicodeString for C++ APIs.
*
* ICU Text Access allows other formats, such as utf-8 or non-contiguous
* utf-16 strings, to be placed a UText wrapper and then passed to ICU services.
*
* There are three general classes of usage for UText:
*
* Application Level Use. This is the simplest usage - applications would
* use one of the utext_open() functions on their input text, and pass
* the rsulting UText to the desired ICU service.
*
* Second is usage in ICU Services, such as break iteration, that will need to
* operate on input presented to them as a UText. These implemenations
* will need to use the iteration and related UText functions to gain
* access to the acutal text.
*
* The third class of UText users are "text providers." These are the
* UText implementations for the various text storage formats. An application
* or system with a unique text storage format can implement a set of
* UText provider functions for that format, which will then allow other
* ICU services to operate on that format.
*
*
* <em>Iterating over text</em>
*
* Here is sample code for a forward iteration over the contents of a UText
*
* \code
* UChar32 c;
* UText *ut = whatever();
*
* for (c=utext_next32From(ut, 0); c!=U_SENTINEL; c=utext_next32(ut)) {
* // do whatever the codepoint c here.
* }
* \endcode
*
* And here is similar code to iterate in the revese direction, from the end
* of the text towards the beginning.
*
* \code
* UChar32 c;
* UText *ut = whatever();
* int textLength = utext_length(ut);
* for (c=utext_previous32From(ut, textLength); c!=U_SENTINEL; c=utext_previous32(ut)) {
* // do whatever the codepoint c here.
* }
* \endcode
*
* <em>Characters and Indexing</em>
*
* Indexing into text by UText functions is nearly always in terms of the native
* indexing of the underlying text storage. The storage format could be utf-8
* or utf-32, for example. When coding to the UText access API, no assumptions
* can be made regarding the size of characters, or how far an index
* may move when iterating between characters.
*
* All indices supplied to UText functions are pinned to the length of the
* text. An out-of-bounds index is not considered to be an error, but is
* adjusted to be in the range 0 <= index <= length of input text.
*
*
* When an index position is returned from a UText function, it will be
* a native index to the underlying text. In the case of multi-unit characers,
* tt will always refer to the first position, never to the interior. This
* is essentially the same thing as saying that a returned index will always
* point to a boundary between characters.
*
* When a native index is supplied to a UText function, all indices that
* refer to any part of a multi-unit character representation are considered
* to be equivalent. In the case of multi-unit characers, an incoming index
* will be logically normalized to refer to the start of the character.
*
* It is possible to test whether a native index is on a code point boundary
* by doing a utext_setIndex() followed by a utext_getIndex().
* If the index returns unchanged, it was on a code point boundary. If
* an adjusted index is returned, the original index referred to the
* interior of a character.
*
*/
#include "unicode/utypes.h"
#ifdef XP_CPLUSPLUS
#include "unicode/rep.h"
#include "unicode/unistr.h"
#endif
#ifndef U_HIDE_DRAFT_API
U_CDECL_BEGIN
struct UText;
typedef struct UText UText; /**< C typedef for struct UText. @draft ICU 3.4 */
struct UTextChunk;
typedef struct UTextChunk UTextChunk; /**< C typedef for struct UTextChunk. @draft ICU 3.4 */
/***************************************************************************************
*
* C Functions for creating UText wrappers around various kinds of text strings.
*
****************************************************************************************/
/**
* utext_close Close function for UText instances.
* Cleans up, releases any resources being held by an
* open UText.
* <p/>
* If the UText was originally allocated by one of the utext_open functions,
* the storage associated with the utext will also be freed.
* If the UText storage originated with the application, as it would with
* a local or static instance, the storage will not be deleted.
*
* An open UText can be reset to refer to new string by using one of the utext_open()
* functions without first closing the UText.
*
* @param ut The UText to be closed.
* @return NULL if the UText struct was deleted by the close. If the UText struct
* was orginally provided by the caller to the open function, it is
* returned by this function, and may be safely used again in
* a subsequent utext_open.
*
* @draft ICU 3.4
*/
U_DRAFT UText * U_EXPORT2
utext_close(UText *ut);
/**
* Open a read-only UText implementation for UTF-8 strings.
*
* \htmlonly
* Any invalid utf-8 in the input will be handled in this way:
* a sequence of bytes that has the form of a trunctated, but otherwise valid,
* utf-8 sequence will be replaced by a single unicode replacement character, \uFFFD.
* Any other illegal bytes will each be replaced by a \uFFFD.
* \endhtmlonly
*
* @param ut Pointer to a UText struct. If NULL, a new UText will be created.
* If non-NULL, must refer to an initialized UText struct, which will then
* be reset to reference the specified UTF-8 string.
* @param s A utf-8 string
* @param length The length of the utf-8 string in bytes, or -1 if the string is
* zero terminated.
* @param status Errors are returned here.
* @return A pointer to the UText. If a pre-allocated UText was provided, it
* will always be used and returned.
* @draft ICU 3.4
*/
U_DRAFT UText * U_EXPORT2
utext_openUTF8(UText *ut, const uint8_t *s, int32_t length, UErrorCode *status);
/**
* Open a read-only UText for UChar * string.
*
* @param ut Pointer to a UText struct. If NULL, a new UText will be created.
* If non-NULL, must refer to an initialized UText struct, which will then
* be reset to reference the specified UChar string.
* @param s A UChar (UTF-16) string
* @param length The number of UChars in the input string, or -1 if the string is
* zero terminated.
* @param status Errors are returned here.
* @return A pointer to the UText. If a pre-allocated UText was provided, it
* will always be used and returned.
* @draft ICU 3.4
*/
U_DRAFT UText * U_EXPORT2
utext_openUChars(UText *ut, const UChar *s, int32_t length, UErrorCode *status);
#ifdef XP_CPLUSPLUS
/**
* Open a writable UText for a non-const UnicodeString.
*
* @param t Pointer to a UText struct. If NULL, a new UText will be created.
* If non-NULL, must refer to an initialized UText struct, which will then
* be reset to reference the specified input string.
* @param s A UnicodeString.
* @param status Errors are returned here.
* @return Pointer to the UText. If a UText was supplied as input, this
* will always be used and returned.
* @draft ICU 3.4
*/
U_DRAFT UText * U_EXPORT2
utext_openUnicodeString(UText *t, UnicodeString *s, UErrorCode *status);
/**
* Open a UText for a const UnicodeString. The resulting UText will not be writable.
*
* @param t Pointer to a UText struct. If NULL, a new UText will be created.
* If non-NULL, must refer to an initialized UText struct, which will then
* be reset to reference the specified input string.
* @param s A UnicodeString to be wrapped.
* @param status Errors are returned here.
* @return Pointer to the UText. If a UText was supplied as input, this
* will always be used and returned.
* @draft ICU 3.4
*/
U_DRAFT UText * U_EXPORT2
utext_openConstUnicodeString(UText *t, const UnicodeString *s, UErrorCode *status);
/**
* Open a writable UText implementation for an ICU Replaceable object.
* @param t Pointer to a UText struct. If NULL, a new UText will be created.
* If non-NULL, must refer to an already existing UText, which will then
* be reset to reference the specified replaceable text.
* @param rep A Replaceable text object.
* @param status Errors are returned here.
* @return Pointer to the UText. If a UText was supplied as input, this
* will always be used and returned.
* @see Replaceable
* @draft ICU 3.4
*/
U_DRAFT UText * U_EXPORT2
utext_openReplaceable(UText *t, Replaceable *rep, UErrorCode *status);
#endif
/**
* clone a UText. Much like opening a UText where the source text is itself
* another UText.
*
* A deep clone will copy both the UText data structures and the underlying text.
* The original and cloned UText will operate completely independently; modifications
* made to the text in one will not effect the other. Text providers are not
* required to support deep clones. The user of clone() must check the status return
* and be prepared to handle failures.
*
* A shallow clone replicates only the UText data structures; it does not make
* a copy of the underlying text. Shallow clones can be used as an efficent way to
* have multiple iterators active in a single text string that is not being
* modified.
*
* A shallow clone operation will not fail, barring truly exceptional conditions such
* as memory allocation failures.
*
* @param dest A UText struct to be filled in with the result of the clone operation,
* or NULL if the clone function should heap-allocate a new UText struct.
* @param src The UText to be cloned.
* @param deep TRUE to request a deep clone, FALSE for a shallow clone.
* @param status Errors are returned here. For deep clones, U_UNSUPPORTED_ERROR
* will be returned if the text provider is unable to clone the
* original text.
* @return The newly created clone, or NULL if the clone operation failed.
*/
U_DRAFT UText * U_EXPORT2
utext_clone(UText *dest, const UText *src, UBool deep, UErrorCode *status);
/*****************************************************************************
*
* C Functions to work with the text represeted by a UText wrapper
*
*****************************************************************************/
/**
* Get the length of the text. Depending on the characteristics
* of the underlying text represenation, this may be expensive.
* @see utext_isLengthExpensive()
*
*
* @param ut the text to be accessed.
* @return the length of the text, expressed in native units.
*
* @draft ICU 3.4
*/
U_DRAFT int32_t U_EXPORT2
utext_length(UText *ut);
/**
* Return TRUE if calculating the length of the text could be expensive.
* Finding the length of NUL terminated strings is considered to be expensive.
*
* Note that the value of this function may change
* as the result of other operations on a UText.
* Once the length of a string has been discovered, it will no longer
* be expensive to report it.
*
* @param ut the text to be accessed.
* @return TRUE if determining the lenght of the text could be time consuming.
* @draft ICU 3.4
*/
U_DRAFT UBool U_EXPORT2
utext_isLengthExpensive(const UText *ut);
/**
* Returns the code point at the requested index,
* or U_SENTINEL (-1) if it is out of bounds.
*
* If the specified index points to the interior of a multi-unit
* character - one of the trail bytes of a utf-8 sequence, for example -
* the complete code point will be returned.
*
* The iteration position will be set to the start of the returned code point.
*
* This function is roughly equivalent to the the sequence
* utext_setIndex(index);
* utext_current32();
* (There is a difference if the index is out of bounds by being less than zero)
*
* @param ut the text to be accessed
* @param nativeIndex the native index of the character to be accessed. If the index points
* to other than the first unit of a multi-unit character, it will be adjusted
* to the start of the character.
* @return the code point at the specified index.
* @draft ICU 3.4
*/
U_DRAFT UChar32 U_EXPORT2
utext_char32At(UText *ut, int32_t nativeIndex);
/**
*
* Get the code point at the current iteration position,
* or U_SENTINEL (-1) if the iteration has reached the end of
* the input text.
*
* @param ut the text to be accessed.
* @return the Unicode code point at the current iterator position.
* @draft ICU 3.4
*/
U_DRAFT UChar32 U_EXPORT2
utext_current32(UText *ut);
/**
* Get the code point at the current iteration position of the UText, and
* advance the position to the first index following the character.
* Returns U_SENTINEL (-1) if the position is at the end of the
* text.
*
* An inline macro version of this function, UTEXT_NEXT32(),
* is available for performance critical use.
*
* @param ut the text to be accessed.
* @return the Unicode code point at the iteration position.
* @see UTEXT_NEXT32
* @draft ICU 3.4
*/
U_DRAFT UChar32 U_EXPORT2
utext_next32(UText *ut);
/**
* Move the iterator position to the character (code point) whose
* index precedes the current position, and return that character.
* This is a pre-decrement operation.
* Returns U_SENTINEL (-1) if the position is at the start of the text.
*
* An inline macro version of this function, UTEXT_PREVIOUS32(),
* is available for performance critical use.
*
* @param ut the text to be accessed.
* @return the previous UChar32 code point, or U_SENTINEL (-1)
* if the iteration has reached the start of the text.
* @see UTEXT_PREVIOUS32
* @draft ICU 3.4
*/
U_DRAFT UChar32 U_EXPORT2
utext_previous32(UText *ut);
/**
* Set the iteration index, access the text for forward iteration,
* and return the code point starting at or before that index.
* Leave the iteration index at the start of the following code point.
*
* This function is the most efficient and convenient way to
* begin a forward iteration.
*
* @param ut the text to be accessed.
* @param nativeIndex Iteration index, in the native units of the text provider.
* @return Code point which starts at or before index,
* or U_SENTINEL (-1) if it is out of bounds.
* @draft ICU 3.4
*/
U_DRAFT UChar32 U_EXPORT2
utext_next32From(UText *ut, int32_t nativeIndex);
/**
* Set the iteration index, and return the code point preceding the
* one specified by the initial index. Leave the iteration position
* at the start of the returned code point.
*
* This function is the most efficient and convenient way to
* begin a backwards iteration.
*
* @param ut the text to be accessed.
* @param nativeIndex Iteration index in the native units of the thext provider.
* @return Code point preceding the one at the initial index,
* or U_SENTINEL (-1) if it is out of bounds.
*
* @draft ICU 3.4
*/
U_DRAFT UChar32 U_EXPORT2
utext_previous32From(UText *ut, int32_t nativeIndex);
/**
* Get the current iterator position, which can range from 0 to
* the length of the text.
* The position is a native index into the input text, in whatever format it
* may have, and may not always correspond to a UChar (UTF-16) index
* into the text. The returned position will always be aligned to a
* code point boundary
*
* @param ut the text to be accessed.
* @return the current index position, in the native units of the text provider.
* @draft ICU 3.4
*/
U_DRAFT int32_t U_EXPORT2
utext_getIndex(UText *ut);
/**
* Set the current iteration position to the nearest code point
* boundary at or preceding the specified index.
* The index is in the native units of the original input text.
* If the index is out of range, it will be trimmed to be within
* the range of the input text.
* <p/>
* It will usually be more efficient to begin an iteration
* using the functions utext_next32From() or utext_previous32From()
* rather than setIndex().
* <p/>
* Moving the index position to an adjacent character is best done
* with utext_next32(), utext_previous32() or utext_moveIndex().
* Attempting to do direct arithmetic on the index position is
* complicated by the fact that the size (in native units) of a
* character depends on the underlying representation of the character
* (utf-8, utf-16, utf-32, arbitrary codepage), and is not
* easily knowable.
*
* @param ut the text to be accessed.
* @param nativeIndex the native unit index of the new iteration position.
* @draft ICU 3.4
*/
U_DRAFT void U_EXPORT2
utext_setIndex(UText *ut, int32_t nativeIndex);
/**
* Move the iterator postion by delta code points. The number of code points
* is a signed number; a negative delta will move the iterator backwards,
* towards the start of the text.
* <p/>
* The index is moved by <code>delta</code> code points
* forward or backward, but no further backward than to 0 and
* no further forward than to length().
* The resulting index value will be in between 0 and length(), inclusive.
* <p/>
* Because the index is kept in the native units of the text provider, the
* actual numeric amount by which the index moves depends on the
* underlying text storage representation of the text provider.
*
* @param ut the text to be accessed.
* @param delta the signed number of code points to move the iteration position.
* @return TRUE if the position could be moved the requested number of positions while
* staying within the range [0 - text length].
* @draft ICU 3.4
*/
U_DRAFT UBool U_EXPORT2
utext_moveIndex(UText *ut, int32_t delta);
/**
*
* Extract text from a UText into a UChar buffer. The range of text to be extracted
* is specified in the native indices of the UText provider. These may not necessarily
* be utf-16 indices.
* <p/>
* The size (number of 16 bit UChars) in the data to be extracted is returned. The
* full number of UChars is returned, even when the extracted text is truncated
* because the specified buffer size is too small.
*
* The extracted string will (if you are a user) / must (if you are a text provider)
* be NUL-terminated if there is sufficient space in the destination buffer. This
* terminating NUL is not included in the returned length.
*
* @param ut the UText from which to extract data.
* @param nativeStart the native index of the first character to extract.
* @param nativeLimit the native string index of the position following the last
* character to extract. If the specified limit is greater than the length
* of the text, the limit will be trimmed back to the text length.
* @param dest the UChar (utf-16) buffer into which the extracted text is placed
* @param destCapacity The size, in UChars, of the destination buffer. May be zero
* for precomputing the required size.
* @param status receives any error status.
* U_BUFFER_OVERFLOW_ERROR: the extracted text was truncated because the
* buffer was too small. Returns number of UChars for preflighting.
* @return Number of UChars in the data to be extracted. Does not include a trailing NUL.
*
* @draft ICU 3.4
*/
U_DRAFT int32_t U_EXPORT2
utext_extract(UText *ut,
int32_t nativeStart, int32_t nativeLimit,
UChar *dest, int32_t destCapacity,
UErrorCode *status);
/************************************************************************************
*
* #define inline versions of selected performance-critical text access functions
* Caution: do not use auto increment++ or decrement-- expressions
* as parameters to these macros.
*
* For most use, where there is no extreme performance constraint, the
* normal, non-inline functions are a better choice. The resulting code
* will be smaller, and, if the need ever arises, easier to debug.
*
* These are implemented as #defines rather than real functions
* because there is no fully portable way to do inline functions in plain C.
*
************************************************************************************/
/**
* inline version of utext_next32(), for performance-critical situations.
*
* Get the code point at the current iteration position of the UText, and
* advance the position to the first index following the character.
* Returns U_SENTINEL (-1) if the position is at the end of the
* text.
*
* @draft ICU 3.4
*/
#define UTEXT_NEXT32(ut) \
((ut)->chunk.offset < (ut)->chunk.length && ((ut)->chunk.contents)[(ut)->chunk.offset]<0xd800 ? \
((ut)->chunk.contents)[((ut)->chunk.offset)++] : utext_next32(ut))
/**
* inline version of utext_previous32(), for performance-critical situations.
*
* Move the iterator position to the character (code point) whose
* index precedes the current position, and return that character.
* This is a pre-decrement operation.
* Returns U_SENTINEL (-1) if the position is at the start of the text.
*
* @draft ICU 3.4
*/
#define UTEXT_PREVIOUS32(ut) \
((ut)->chunk.offset > 0 && \
(ut)->chunk.contents[(ut)->chunk.offset-1] < 0xd800 ? \
(ut)->chunk.contents[--((ut)->chunk.offset)] : utext_previous32(ut))
/************************************************************************************
*
* Functions related to writing or modifying the text.
* These will work only with modifiable UTexts. Attemting to
* modify a read-only UText will return an error status.
*
************************************************************************************/
/**
* Return TRUE if the text can be written with utext_replace() or
* utext_copy(). For the text to be writable, the text provider must
* be of a type that supports writing.
*
* @param ut the UText to be tested.
* @return TRUE if the text is modifiable.
* @draft ICU 3.4
*
*/
U_DRAFT UBool U_EXPORT2
utext_isWriteble(const UText *ut);
/**
* Test whether there is meta data associated with the text.
* @see Replaceable::hasMetaData()
*
* @param ut The UText to be tested
* @return TRUE if the underlying text includes meta data.
* @draft ICU 3.4
*/
U_DRAFT UBool U_EXPORT2
utext_hasMetaData(const UText *ut);
/**
* Replace a range of the original text with a replacement text.
*
* Leaves the current iteration position at the position following the
* newly inserted replacement text.
*
* This function is only available on UText types that support writing,
* that is, ones where utext_isWritable() returns TRUE.
*
* When using this function, there should be only a single UText opened onto the
* underlying native text string. Behavior after a replace operation
* on a UText is undefined for any other additional UTexts that refer to the
* modified string.
*
* @param ut the UText representing the text to be operated on.
* @param nativeStart the native index of the start of the region to be replaced
* @param nativeLimit the native index of the character following the region to be replaced.
* @param replacementText pointer to the replacement text
* @param replacementLength length of the replacement text, or -1 if the text is NUL terminated.
* @param status receives any error status. Possible errors include
* U_NO_WRITE_PERMISSION
*
* @return The signed number of (native) storage units by which
* the length of the text expanded or contracted.
*
* @draft ICU 3.4
*/
U_DRAFT int32_t U_EXPORT2
utext_replace(UText *ut,
int32_t nativeStart, int32_t nativeLimit,
const UChar *replacementText, int32_t replacementLength,
UErrorCode *status);
/**
*
* Copy or move a substring from one position to another within the text,
* while retaining any metadata associated with the text.
* This function is used to duplicate or reorder substrings.
* The destination index must not overlap the source range.
*
* The text to be copied or moved is inserted at destIndex;
* it does not replace or overwrite any existing text.
*
* This function is only available on UText types that support writing,
* that is, ones where utext_isWritable() returns TRUE.
*
* When using this function, there should be only a single UText opened onto the
* underlying native text string. Behavior after a copy operation
* on a UText is undefined in any other additional UTexts that refer to the
* modified string.
*
* @param ut The UText representing the text to be operated on.
* @param nativeStart The native index of the start of the region to be copied or moved
* @param nativeLimit The native index of the character following the region to be replaced.
* @param destIndex The native destination index to which the source substring is copied or moved.
* @param move If TRUE, then the substring is moved, not copied/duplicated.
* @param status receives any error status. Possible errors include U_NO_WRITE_PERMISSION
*
* @draft ICU 3.4
*/
U_DRAFT void U_EXPORT2
utext_copy(UText *ut,
int32_t nativeStart, int32_t nativeLimit,
int32_t destIndex,
UBool move,
UErrorCode *status);
/****************************************************************************************
*
* The following items are required by text providers implementations -
* by packages that are writing UText wrappers for additional types of text strings.
* These declarations are not needed by applications that use already existing
* UText functions for wrapping strings or accessing text data that has been
* wrapped in a UText.
*
*****************************************************************************************/
/**
* Descriptor of a chunk, or segment of text in UChar format.
*
* UText provider implementations surface their text in the form of UTextChunks.
*
* If the native form of the text if utf-16, a chunk will typically refer back to the
* original native text storage. If the native format is something else, chunks
* will typically refer to a buffer maintained by the provider that contains
* some amount input that has been converted to utf-16 (UChar) form.
*
* @draft ICU 3.4
*/
struct UTextChunk {
/** Pointer to contents of text chunk. UChar format. */
const UChar *contents;
/** Index within the contents of the current iteration position. */
int32_t offset;
/** Number of UChars in the chunk. */
int32_t length;
/** (Native) text index corresponding to the start of the chunk. */
int32_t nativeStart;
/** (Native) text index corresponding to the end of the chunk (contents+length). */
int32_t nativeLimit;
/** If TRUE, then non-UTF-16 indexes are used in this chunk. */
UBool nonUTF16Indexes;
/** Unused. */
UBool padding1, padding2, padding3;
/** Contains sizeof(UTextChunk) and allows the future addition of fields. */
int32_t sizeOfStruct;
};
/**
* UText provider properties (bit field indexes).
*
* @see UText
* @draft ICU 3.4
*/
enum {
/**
* The provider works with non-UTF-16 ("native") text indexes.
* For example, byte indexes into UTF-8 text or UTF-32 indexes into UTF-32 text.
* @draft ICU 3.4
*/
UTEXT_PROVIDER_NON_UTF16_INDEXES = 0,
/**
* It is potentially time consuming for the provider to determine the length of the text.
* @draft ICU 3.4
*/
UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE = 1,
/**
* Text chunks remain valid and usable until the text object is modified or
* deleted, not just until the next time the access() function is called
* (which is the default).
* @draft ICU 3.4
*/
UTEXT_PROVIDER_STABLE_CHUNKS = 2,
/**
* The provider supports modifying the text via the replace() and copy()
* functions.
* @see Replaceable
* @draft ICU 3.4
*/
UTEXT_PROVIDER_WRITABLE = 3,
/**
* There is meta data associated with the text.
* @see Replaceable::hasMetaData()
* @draft ICU 3.4
*/
UTEXT_PROVIDER_HAS_META_DATA = 4
};
/**
* Function type declaration for UText.clone().
*
* clone a UText. Much like opening a UText where the source text is itself
* another UText.
*
* A deep clone will copy both the UText data structures and the underlying text.
* The original and cloned UText will operate completely independently; modifications
* made to the text in one will not effect the other. Text providers are not
* required to support deep clones. The user of clone() must check the status return
* and be prepared to handle failures.
*
* A shallow clone replicates only the UText data structures; it does not make
* a copy of the underlying text. Shallow clones can be used as an efficent way to
* have multiple iterators active in a single text string that is not being
* modified.
*
* A shallow clone operation must not fail except for truly exceptional conditions such
* as memory allocation failures.
*
* @param dest A UText struct to be filled in with the result of the clone operation,
* or NULL if the clone function should heap-allocate a new UText struct.
* @param src The UText to be cloned.
* @param deep TRUE to request a deep clone, FALSE for a shallow clone.
* @param status Errors are returned here. For deep clones, U_UNSUPPORTED_ERROR
* should be returned if the text provider is unable to clone the
* original text.
* @return The newly created clone, or NULL if the clone operation failed.
*
* @draft ICU 3.4
*/
typedef UText * U_CALLCONV
UTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status);
/**
* Function type declaration for UText.length().
*
* @param ut the UText to get the length of.
* @return the length, in the native units of the original text string.
* @see UText
* @draft ICU 3.4
*/
typedef int32_t U_CALLCONV
UTextNativeLength(UText *ut);
/**
* Function type declaration for UText.access(). Get the description of the text chunk
* containing the text at a requested native index. The UText's iteration
* position will be left at the requested index. If the index is out
* of bounds, the iteration position will be left at the start or end
* of the string, as appropriate.
*
* @param ut the UText being accessed.
* @param nativeIndex Requested index of the text to be accessed.
* @param forward If TRUE, then the returned chunk must contain text
* starting from the index, so that start<=index<limit.
* If FALSE, then the returned chunk must contain text
* before the index, so that start<index<=limit.
* @return True if the requested index could be accessed. The chunk
* will contain the requested text.
* False value if a chunk cannot be accessed
* (the requested index is out of bounds).
*
* @see UText
* @draft ICU 3.4
*/
typedef UBool U_CALLCONV
UTextAccess(UText *ut, int32_t nativeIndex, UBool forward, UTextChunk *chunk);
/**
* Function type declaration for UText.extract().
*
* Extract text from a UText into a UChar buffer. The range of text to be extracted
* is specified in the native indices of the UText provider. These may not necessarily
* be utf-16 indices.
* <p/>
* The size (number of 16 bit UChars) in the data to be extracted is returned. The
* full amount is returned, even when the specified buffer size is smaller.
*
* The extracted string will (if you are a user) / must (if you are a text provider)
* be NUL-terminated if there is sufficient space in the destination buffer.
*
* @param ut the UText from which to extract data.
* @param nativeStart the native index of the first characer to extract.
* @param nativeLimit the native string index of the position following the last
* character to extract.
* @param dest the UChar (utf-16) buffer into which the extracted text is placed
* @param destCapacity The size, in UChars, of the destination buffer. May be zero
* for precomputing the required size.
* @param status receives any error status.
* If U_BUFFER_OVERFLOW_ERROR: Returns number of UChars for
* preflighting.
* @return Number of UChars in the data. Does not include a trailing NUL.
*
* @draft ICU 3.4
*/
typedef int32_t U_CALLCONV
UTextExtract(UText *ut,
int32_t nativeStart, int32_t nativeLimit,
UChar *dest, int32_t destCapacity,
UErrorCode *status);
/**
* Function type declaration for UText.replace().
*
* Replace a range of the original text with a replacement text.
*
* Leaves the current iteration position at the position following the
* newly inserted replacement text.
*
* This function need only be implemented on UText types that support writing.
*
* When using this function, there should be only a single UText opened onto the
* underlying native text string. The function is responsible for updating the
* text chunk within the UText to reflect the updated iteration position,
* taking into account any changes to the underlying string's structure caused
* by the replace operation.
*
* @param ut the UText representing the text to be operated on.
* @param nativeStart the index of the start of the region to be replaced
* @param nativeLimit the index of the character following the region to be replaced.
* @param replacementText pointer to the replacement text
* @param replacmentLength length of the replacement text in UChars, or -1 if the text is NUL terminated.
* @param status receives any error status. Possible errors include
* U_NO_WRITE_PERMISSION
*
* @return The signed number of (native) storage units by which
* the length of the text expanded or contracted.
*
* @draft ICU 3.4
*/
typedef int32_t U_CALLCONV
UTextReplace(UText *t,
int32_t nativeStart, int32_t nativeLimit,
const UChar *replacementText, int32_t replacmentLength,
UErrorCode *pErrorCode);
/**
* Function type declaration for UText.copy().
*
* Copy or move a substring from one position to another within the text,
* while retaining any metadata associated with the text.
* This function is used to duplicate or reorder substrings.
* The destination index must not overlap the source range.
*
* The text to be copied or moved is inserted at destIndex;
* it does not replace or overwrite any existing text.
*
* This function need only be implemeted for UText types that support writing.
*
* When using this function, there should be only a single UText opened onto the
* underlying native text string. The function is responsible for updating the
* text chunk within the UText to reflect the updated iteration position,
* taking into account any changes to the underlying string's structure caused
* by the replace operation.
*
* @param ut The UText representing the text to be operated on.
* @param nativeStart The index of the start of the region to be copied or moved
* @param nativeLimit The index of the character following the region to be replaced.
* @param nativeDest The destination index to which the source substring is copied or moved.
* @param move If TRUE, then the substring is moved, not copied/duplicated.
* @param status receives any error status. Possible errors include U_NO_WRITE_PERMISSION
*
* @draft ICU 3.4
*/
typedef void U_CALLCONV
UTextCopy(UText *t,
int32_t nativeStart, int32_t nativeLimit,
int32_t nativeDest,
UBool move,
UErrorCode *pErrorCode);
/**
* Function type declaration for UText.mapOffsetToNative().
* Map from a UChar offset within the current text chunk within the UText to
* the corresponding native index in the orginal source text.
*
* This is required only for text providers that do not use native utf-16 indexes.
*
* TODO: specify behavior with out-of-bounds offset? Shouldn't ever occur.
*
* @param ut the UText.
* @param offset UTF-16 offset within text chunk
* 0<=offset<=chunk->length.
* @return Absolute (native) index corresponding to the specified chunk offset.
* The returned native index should always be to a code point boundary.
*
* @draft ICU 3.4
*/
typedef int32_t U_CALLCONV
UTextMapOffsetToNative(UText *ut, int32_t offset);
/**
* Function type declaration for UText.mapIndexToUTF16().
* Map from a native index to a UChar offset within a text chunk
*
* This function is required only for text providers that do not use native utf-16 indexes.
*
* @param ut The UText containing the text chunk.
* @param nativeIndex Absolute (native) text index, chunk->start<=index<=chunk->limit.
* @return Chunk-relative UTF-16 offset corresponding to the specified native
* index.
*
* TODO: specify behavior with out-of-bounds index? Shouldn't ever occur.
* @draft ICU 3.4
*/
typedef int32_t U_CALLCONV
UTextMapIndexToUTF16(UText *ut, int32_t nativeIndex);
/**
* Function type declaration for UText.utextClose().
*
* A Text Provider close function is only required for provider types that make
* allocations in their open function (or other functions) that must be
* cleaned when the UText is closed.
*
* The allocation of the UText struct itself and any "extra" storage
* associated with the UText is handled by the common UText implementation
* and does not require provider specific cleanup in a close function.
*
* Most UText provider implementations do not need to implement this function.
*
* @param ut A UText object to be closed.
*
* @draft ICU 3.4
*/
typedef void U_CALLCONV
UTextClose(UText *ut);
/**
* UText struct. Provides the interface between the generic UText access code
* and the UText provider code that works on specific kinds of
* text (utf-8, noncontiugous utf-16, whatever.)
*
* Applications that are using predefined types of text providers
* to pass text data to ICU services will have no need to view the
* internals of the UText structs that they open.
*
* @draft ICU 3.4
*/
struct UText {
/**
* (protected) Pointer to string or wrapped object or similar.
* Not used by caller.
* @draft ICU 3.4
*/
const void *context;
/**
* (protected) Pointer fields available for use by the text provider.
* Not used by UText common code.
* @draft ICU 3.4
*/
const void *p, *q, *r;
/**
* (protected) Pointer to additional space requested by the
* text provider during the utext_open operation.
* @draft ICU 3.4
*/
void *pExtra;
/**
* (protected) Size in bytes of the extra space (pExtra).
* @draft ICU 3.4
*/
int32_t extraSize;
/**
* (private) Flags for managing the allocation and freeing of
* memory associated with this UText.
* @internal
*/
int32_t flags;
/**
* (private) Magic. Try to detect when we are handed junk.
* @internal
*/
uint32_t magic;
/**
* (public) sizeOfStruct=sizeof(UText)
* Allows possible backward compatible extension.
*
* @draft ICU 3.4
*/
int32_t sizeOfStruct;
/**
* (protected) Integer fields for use by text provider.
* Not used by caller.
* @draft ICU 3.4
*/
int32_t a, b, c;
/**
* Text provider properties. This set of flags is maintainted by the
* text provider implementation.
* @draft ICU 3.4
*/
int32_t providerProperties;
/** desciptor for the text chunk that includes or is adjacent to
* the current iteration position.
* @draft ICU 3.4
*/
UTextChunk chunk;
/**
* (public) Function pointer for UTextClone
*
* @see UTextClone
* @draft ICU 3.4
*/
UTextClone *clone;
/**
* (public) function pointer for UTextLength
* May be expensive to compute!
*
* @see UTextLength
* @draft ICU 3.4
*/
UTextNativeLength *length;
/**
* (public) Function pointer for UTextAccess.
*
* @see UTextAccess
* @draft ICU 3.4
*/
UTextAccess *access;
/**
* (public) Function pointer for UTextExtract.
*
* @see UTextExtract
* @draft ICU 3.4
*/
UTextExtract *extract;
/**
* (public) Function pointer for UTextReplace.
*
* @see UTextReplace
* @draft ICU 3.4
*/
UTextReplace *replace;
/**
* (public) Function pointer for UTextCopy.
*
* @see UTextCopy
* @draft ICU 3.4
*/
UTextCopy *copy;
/**
* (public) Function pointer for UTextMapOffsetToNative.
*
* @see UTextMapOffsetToNative
* @draft ICU 3.4
*/
UTextMapOffsetToNative *mapOffsetToNative;
/**
* (public) Function pointer for UTextMapIndexToUTF16.
*
* @see UTextMapIndexToUTF16
* @draft ICU 3.4
*/
UTextMapIndexToUTF16 *mapIndexToUTF16;
/**
* (public) Function pointer for UTextClose.
*
* @see UTextClose
* @draft ICU 3.4
*/
UTextClose *close;
};
/**
* Common function for use by Text Provider implementations to allocate and/or initialize
* a new UText struct. To be called in the implementation of utext_open() functions.
* If the suppliec utxt parameter is null, a new UText struct will be allocated on the heap.
* If the supplied UText is already open, the provider's clsoe function will be called
* so that the struct can be reused by the open that is in progress.
*
* @param utxt pointer to a UText struct to be re-used, or null if a new UText
* should be allocated.
* @param extraSpace The amount of additional space to be allocated as part
* of this UText, for use by types of providers that require
* additional storage.
* @param status Errors are returned here.
* @return pointer to the UText, allocated if necessary, with extra space set up if requested.
*/
U_DRAFT UText * U_EXPORT2
UTextSetup(UText *utxt, int32_t extraSpace, UErrorCode *status);
/**
* @internal
*/
enum {
UTEXT_MAGIC = 0x345ad82c
};
/**
* Initializer for a UTextChunk
* @internal
*/
#define UTEXT_CHUNK_INIT { \
NULL, /* contents */ \
0, /* offset */ \
0, /* length */ \
0, /* start */ \
0, /* limit */ \
FALSE, /* nonUTF16idx */ \
FALSE, FALSE, FALSE, /* padding1,2,3 */ \
sizeof(UTextChunk) \
}
/**
* Initializer for the first part of a UText struct, the part that is
* in common for all types of text providers.
*
* @internal
*/
#define UTEXT_INITIALZIER_HEAD \
NULL, /* context */ \
NULL, NULL, NULL, /* p, q, r */ \
NULL, /* pExtra */ \
0, /* extraSize */ \
0, /* flags */ \
UTEXT_MAGIC, /* magic */ \
sizeof(UText), /* sizeOfStruct */ \
0, 0, 0, /* a, b, c */ \
0, /* providerProps */ \
UTEXT_CHUNK_INIT /* UTextChunk */
/**
* initializer to be used with local (stack) instances of a UText
* struct. UText structs must be initialized before passing
* them to one of the utext_open functions.
*
* @draft ICU 3.4
*/
#define UTEXT_INITIALIZER { \
UTEXT_INITIALZIER_HEAD, \
NULL, /* clone () */ \
NULL, /* length () */ \
NULL, /* access () */ \
NULL, /* extract () */ \
NULL, /* replace () */ \
NULL, /* copy () */ \
NULL, NULL, /* map * 2 () */ \
NULL /* close () */ \
}
U_CDECL_END
#endif /* U_HIDE_DRAFT_API */
#endif