scuffed-code/icu4c/source/common/uset.c

455 lines
12 KiB
C
Raw Normal View History

/*
*******************************************************************************
*
* Copyright (C) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uset.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002mar07
* created by: Markus W. Scherer
*
* Poor man's C version of UnicodeSet, with only basic functions.
* The main data structure, the array of range limits, is
* the same as in UnicodeSet, except that the HIGH value is not stored.
*
* There are functions to efficiently serialize a USet into an array of uint16_t
* and functions to use such a serialized form efficiently without
* instantiating a new USet.
*
* If we needed more of UnicodeSet's functionality, then we should
* move UnicodeSet from the i18n to the common library and
* use it directly.
* The only part of this code that would still be useful is the serialization
* and the functions that use the serialized form directly.
*/
#include "unicode/utypes.h"
#include "cmemory.h"
#include "uset.h"
#define USET_STATIC_CAPACITY 12
#define USET_GROW_DELTA 20
struct USet {
UChar32 *array;
int32_t length, capacity;
UChar32 staticBuffer[USET_STATIC_CAPACITY];
};
U_CAPI USet * U_EXPORT2
uset_open(UChar32 start, UChar32 limit) {
USet *set;
set=(USet *)uprv_malloc(sizeof(USet));
if(set!=NULL) {
/* initialize to an empty set */
set->array=set->staticBuffer;
set->length=0;
set->capacity=USET_STATIC_CAPACITY;
/* set initial range */
if(start<=0) {
start=0; /* UChar32 may be signed! */
}
if(limit>0x110000) {
limit=0x110000;
}
if(start<limit) {
set->array[0]=start;
if(limit<0x110000) {
set->array[1]=limit;
set->length=2;
} else {
set->length=1;
}
}
}
return set;
}
U_CAPI void U_EXPORT2
uset_close(USet *set) {
if(set!=NULL) {
if(set->array!=set->staticBuffer) {
uprv_free(set->array);
}
uprv_free(set);
}
}
static U_INLINE int32_t
findChar(const UChar32 *array, int32_t length, UChar32 c) {
int32_t i;
/* check the last range limit first for more efficient appending */
if(length>0) {
if(c>=array[length-1]) {
return length;
}
/* do not check the last range limit again in the loop below */
--length;
}
for(i=0; i<length && c>=array[i]; ++i) {}
return i;
}
static UBool
addRemove(USet *set, UChar32 c, int32_t doRemove) {
int32_t i, length, more;
if(set==NULL || (uint32_t)c>0x10ffff) {
return FALSE;
}
length=set->length;
i=findChar(set->array, length, c);
if((i&1)^doRemove) {
/* c is already in the set */
return TRUE;
}
/* how many more array items do we need? */
if(i<length && (c+1)==set->array[i]) {
/* c is just before the following range, extend that in-place by one */
set->array[i]=c;
if(i>0) {
--i;
if(c==set->array[i]) {
/* the previous range collapsed, remove it */
set->length=length-=2;
if(i<length) {
uprv_memmove(set->array+i, set->array+i+2, (length-i)*4);
}
}
}
return TRUE;
} else if(i>0 && c==set->array[i-1]) {
/* c is just after the previous range, extend that in-place by one */
if(++c<=0x10ffff) {
set->array[i-1]=c;
if(i<length && c==set->array[i]) {
/* the following range collapsed, remove it */
--i;
set->length=length-=2;
if(i<length) {
uprv_memmove(set->array+i, set->array+i+2, (length-i)*4);
}
}
} else {
/* extend the previous range (had limit 0x10ffff) to the end of Unicode */
set->length=i-1;
}
return TRUE;
} else if(i==length && c==0x10ffff) {
/* insert one range limit c */
more=1;
} else {
/* insert two range limits c, c+1 */
more=2;
}
/* insert <more> range limits */
if(length+more>set->capacity) {
/* reallocate */
int32_t newCapacity=set->capacity+set->capacity/2+USET_GROW_DELTA;
UChar32 *newArray=(UChar32 *)uprv_malloc(newCapacity*4);
if(newArray==NULL) {
return FALSE;
}
set->capacity=newCapacity;
uprv_memcpy(newArray, set->array, length*4);
if(set->array!=set->staticBuffer) {
uprv_free(set->array);
}
set->array=newArray;
}
if(i<length) {
uprv_memmove(set->array+i+more, set->array+i, (length-i)*4);
}
set->array[i]=c;
if(more==2) {
set->array[i+1]=c+1;
}
set->length+=more;
return TRUE;
}
U_CAPI UBool U_EXPORT2
uset_add(USet *set, UChar32 c) {
return addRemove(set, c, 0);
}
U_CAPI void U_EXPORT2
uset_remove(USet *set, UChar32 c) {
addRemove(set, c, 1);
}
U_CAPI UBool U_EXPORT2
uset_isEmpty(const USet *set) {
return set==NULL || set->length<=0;
}
U_CAPI UBool U_EXPORT2
uset_contains(const USet *set, UChar32 c) {
int32_t i;
if(set==NULL || (uint32_t)c>0x10ffff) {
return FALSE;
}
i=findChar(set->array, set->length, c);
return (UBool)(i&1);
}
U_CAPI int32_t U_EXPORT2
uset_countRanges(const USet *set) {
if(set==NULL) {
return 0;
} else {
return (set->length+1)/2;
}
}
U_CAPI UBool U_EXPORT2
uset_getRange(const USet *set, int32_t rangeIndex,
UChar32 *pStart, UChar32 *pLimit) {
if(set==NULL || rangeIndex<0) {
return FALSE;
}
rangeIndex*=2;
if(rangeIndex<set->length) {
*pStart=set->array[rangeIndex++];
if(rangeIndex<set->length) {
*pLimit=set->array[rangeIndex];
} else {
*pLimit=0x110000;
}
return TRUE;
} else {
return FALSE;
}
}
/*
* Serialize a USet into 16-bit units.
* Store BMP code points as themselves with one 16-bit unit each.
*
* Important: the code points in the array are in ascending order,
* therefore all BMP code points precede all supplementary code points.
*
* Store each supplementary code point in 2 16-bit units,
* simply with higher-then-lower 16-bit halfs.
*
* Precede the entire list with the length.
* If there are supplementary code points, then set bit 15 in the length
* and add the bmpLength between it and the array.
*
* In other words:
* - all BMP: (length=bmpLength) BMP, .., BMP
* - some supplementary: (length|0x8000) (bmpLength<length) BMP, .., BMP, supp-high, supp-low, ..
*/
U_CAPI int32_t U_EXPORT2
uset_serialize(const USet *set, uint16_t *dest, int32_t destCapacity, UErrorCode *pErrorCode) {
int32_t bmpLength, length, destLength;
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if(set==NULL || destCapacity<0 || (destCapacity>0 && dest==NULL)) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* count necessary 16-bit units */
length=set->length;
if(length==0) {
/* empty set */
if(destCapacity>0) {
*dest=0;
}
return 1;
}
/* now length>0 */
if(set->array[length-1]<=0xffff) {
/* all BMP */
bmpLength=length;
} else if(set->array[0]>=0x10000) {
/* all supplementary */
bmpLength=0;
length*=2;
} else {
/* some BMP, some supplementary */
for(bmpLength=0; bmpLength<length && set->array[bmpLength]<=0xffff; ++bmpLength) {}
length=bmpLength+2*(length-bmpLength);
}
/* length: number of 16-bit array units */
if(length>0x7fff) {
/* there are only 15 bits for the length in the first serialized word */
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
/*
* total serialized length:
* number of 16-bit array units (length) +
* 1 length unit (always) +
* 1 bmpLength unit (if there are supplementary values)
*/
destLength=length+1+(length>bmpLength);
if(destLength<=destCapacity) {
const UChar32 *p;
int32_t i;
*dest=(uint16_t)length;
if(length>bmpLength) {
*dest|=0x8000;
*++dest=(uint16_t)bmpLength;
}
++dest;
/* write the BMP part of the array */
p=set->array;
for(i=0; i<bmpLength; ++i) {
*dest++=(uint16_t)*p++;
}
/* write the supplementary part of the array */
for(; i<length; i+=2) {
*dest++=(uint16_t)(*p>>16);
*dest++=(uint16_t)*p++;
}
} else {
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
}
return destLength;
}
U_CAPI UBool U_EXPORT2
uset_getSerializedSet(USerializedSet *fillSet, const uint16_t *src, int32_t srcCapacity) {
int32_t length;
if(fillSet==NULL) {
return FALSE;
}
if(src==NULL || srcCapacity<=0) {
fillSet->length=fillSet->bmpLength=0;
return FALSE;
}
length=*src++;
if(length&0x8000) {
/* there are supplementary values */
length&=0x7fff;
if(srcCapacity<(2+length)) {
fillSet->length=fillSet->bmpLength=0;
return FALSE;
}
fillSet->bmpLength=*src++;
} else {
/* only BMP values */
if(srcCapacity<(1+length)) {
fillSet->length=fillSet->bmpLength=0;
return FALSE;
}
fillSet->bmpLength=length;
}
fillSet->array=src;
fillSet->length=length;
return TRUE;
}
U_CAPI UBool U_EXPORT2
uset_serializedContains(const USerializedSet *set, UChar32 c) {
const uint16_t *array;
if(set==NULL || (uint32_t)c>0x10ffff) {
return FALSE;
}
array=set->array;
if(c<=0xffff) {
/* find c in the BMP part */
int32_t i, bmpLength=set->bmpLength;
for(i=0; i<bmpLength && (uint16_t)c>=array[i]; ++i) {}
return (UBool)(i&1);
} else {
/* find c in the supplementary part */
int32_t i, length=set->length;
uint16_t high=(uint16_t)(c>>16), low=(uint16_t)c;
for(i=set->bmpLength;
i<length && (high>array[i] || (high==array[i] && low>=array[i+1]));
i+=2) {}
/* count pairs of 16-bit units even per BMP and check if the number of pairs is odd */
return (UBool)(((i+set->bmpLength)&2)!=0);
}
}
U_CAPI int32_t U_EXPORT2
uset_countSerializedRanges(const USerializedSet *set) {
if(set==NULL) {
return 0;
}
return (set->bmpLength+(set->length-set->bmpLength)/2+1)/2;
}
U_CAPI UBool U_EXPORT2
uset_getSerializedRange(const USerializedSet *set, int32_t rangeIndex,
UChar32 *pStart, UChar32 *pLimit) {
const uint16_t *array;
int32_t bmpLength, length;
if(set==NULL || rangeIndex<0 || pStart==NULL || pLimit==NULL) {
return FALSE;
}
array=set->array;
length=set->length;
bmpLength=set->bmpLength;
rangeIndex*=2; /* address start/limit pairs */
if(rangeIndex<bmpLength) {
*pStart=array[rangeIndex++];
if(rangeIndex<bmpLength) {
*pLimit=array[rangeIndex];
} else if(rangeIndex<length) {
*pLimit=(((int32_t)array[rangeIndex])<<16)|array[rangeIndex+1];
} else {
*pLimit=0x110000;
}
return TRUE;
} else {
rangeIndex-=bmpLength;
rangeIndex*=2; /* address pairs of pairs of units */
length-=bmpLength;
if(rangeIndex<length) {
array+=bmpLength;
*pStart=(((int32_t)array[rangeIndex])<<16)|array[rangeIndex+1];
rangeIndex+=2;
if(rangeIndex<length) {
*pLimit=(((int32_t)array[rangeIndex])<<16)|array[rangeIndex+1];
} else {
*pLimit=0x110000;
}
return TRUE;
} else {
return FALSE;
}
}
}