scuffed-code/icu4c/source/test/intltest/utxttest.cpp

327 lines
8.7 KiB
C++
Raw Normal View History

/********************************************************************
* COPYRIGHT:
* Copyright (c) 2005, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/************************************************************************
* Tests for the UText and UTextIterator text abstraction classses
*
************************************************************************/
#include "unicode/utypes.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unicode/utext.h>
#include <unicode/utf8.h>
#include <unicode/ustring.h>
#include "utxttest.h"
UBool gFailed = FALSE;
#define TEST_ASSERT(x) \
{if ((x)==FALSE) {errln("Test failure in file %s at line %d\n", __FILE__, __LINE__);\
gFailed = TRUE;\
}}
#define TEST_SUCCESS(status) \
{if (U_FAILURE(status)) {errln("Test failure in file %s at line %d. Error = \"%s\"\n", \
__FILE__, __LINE__, u_errorName(status)); \
gFailed = TRUE;\
}}
UTextTest::UTextTest() {
}
UTextTest::~UTextTest() {
}
void
UTextTest::runIndexedTest(int32_t index, UBool exec,
const char* &name, char* /*par*/) {
switch (index) {
case 0: name = "TextTest";
if(exec) TextTest(); break;
default: name = ""; break;
}
}
void UTextTest::TextTest() {
TestString("abcd\\U00010001xyz");
}
//
// mapping between native indexes and code points.
// native indexes could be utf-8, utf-16, utf32, or some code page.
// The general purpose UText test funciton takes an array of these as
// expected contents of the text being accessed.
//
void UTextTest::TestString(const UnicodeString &s) {
int i;
int j;
UChar32 c;
int cpCount = 0;
UErrorCode status = U_ZERO_ERROR;
UnicodeString sa = s.unescape();
//
// Build up the mapping between code points and UTF-16 code unit indexes.
//
m * cpMap = new m[sa.length() + 1];
j = 0;
for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
c = sa.char32At(i);
cpMap[j].nativeIdx = i;
cpMap[j].cp = c;
j++;
cpCount++;
}
cpMap[j].nativeIdx = i; // position following the last char in utf-16 string.
// UChar * test, null term
// UChar * test, with length
// const UChar * test, null term
// const UChar * test, length
// UnicodeString test
UText *ut;
ut = utext_openUnicodeString(NULL, &sa, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, cpMap);
utext_close(ut);
//
// UTF-8 test
//
// Convert the test string from UnicodeString to (char *) in utf-8 format
int u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
char *u8String = new char[u8Len + 1];
sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
// Build up the map of code point indices in the utf-8 string
m * u8Map = new m[sa.length() + 1];
i = 0; // native utf-8 index
for (j=0; j<cpCount ; j++) { // code point number
u8Map[j].nativeIdx = i;
U8_NEXT(u8String, i, u8Len, c)
u8Map[j].cp = c;
}
u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string.
// Do the test itself
status = U_ZERO_ERROR;
ut = utext_openUTF8(NULL, (uint8_t *)u8String, -1, &status);
TEST_SUCCESS(status);
TestAccess(sa, ut, cpCount, u8Map);
utext_close(ut);
// UTF-32 test
// Code Page test
// Replaceable test
}
void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
UErrorCode status = U_ZERO_ERROR;
//
// Check the length from the UText
//
int expectedLen = cpMap[cpCount].nativeIdx;
int utlen = ut->length(ut);
TEST_ASSERT(expectedLen == utlen);
//
// Iterate forwards, verify that we get the correct code points
// at the correct native offsets.
//
UTextIterator it(ut);
int i = 0;
int index;
int expectedIndex = 0;
int foundIndex = 0;
UChar32 expectedC;
UChar32 foundC;
int32_t len;
UTextIterator uti(ut);
for (i=0; i<cpCount; i++) {
expectedIndex = cpMap[i].nativeIdx;
foundIndex = uti.getIndex();
TEST_ASSERT(expectedIndex == foundIndex);
expectedC = cpMap[i].cp;
foundC = uti.next32();
TEST_ASSERT(expectedC == foundC);
if (gFailed) {
return;
}
}
foundC = uti.next32();
TEST_ASSERT(foundC == U_SENTINEL);
//
// Forward iteration (above) should have left index at the
// end of the input, which should == length().
//
len = uti.length();
foundIndex = uti.getIndex();
TEST_ASSERT(len == foundIndex);
//
// Iterate backwards over entire test string
//
len = uti.getIndex();
uti.setIndex(len);
for (i=cpCount-1; i>=0; i--) {
expectedC = cpMap[i].cp;
expectedIndex = cpMap[i].nativeIdx;
foundC = uti.previous32();
foundIndex = uti.getIndex();
TEST_ASSERT(expectedIndex == foundIndex);
TEST_ASSERT(expectedC == foundC);
if (gFailed) {
return;
}
}
//
// Backwards iteration, above, should have left our iterator
// position at zero, and continued backwards iterationshould fail.
//
foundIndex = uti.getIndex();
TEST_ASSERT(foundIndex == 0);
foundC = uti.previous32();
TEST_ASSERT(foundC == U_SENTINEL);
foundIndex = uti.getIndex();
TEST_ASSERT(foundIndex == 0);
if (gFailed) {
return;
}
//
// next32From(), prevous32From(), Iterate in a somewhat random order.
//
int cpIndex = 0;
for (i=0; i<cpCount; i++) {
cpIndex = (cpIndex + 9973) % cpCount;
index = cpMap[cpIndex].nativeIdx;
expectedC = cpMap[cpIndex].cp;
foundC = uti.next32From(index);
TEST_ASSERT(expectedC == foundC);
TEST_ASSERT(expectedIndex == foundIndex);
if (gFailed) {
return;
}
}
cpIndex = 0;
for (i=0; i<cpCount; i++) {
cpIndex = (cpIndex + 9973) % cpCount;
index = cpMap[cpIndex+1].nativeIdx;
expectedC = cpMap[cpIndex].cp;
foundC = uti.previous32From(index);
TEST_ASSERT(expectedC == foundC);
TEST_ASSERT(expectedIndex == foundIndex);
if (gFailed) {
return;
}
}
//
// moveIndex(int32_t delta);
//
// Walk through frontwards, incrementing by one
uti.setIndex(0);
for (i=1; i<=cpCount; i++) {
uti.moveIndex(1);
index = uti.getIndex();
expectedIndex = cpMap[i].nativeIdx;
TEST_ASSERT(expectedIndex == index);
}
// Walk through frontwards, incrementing by two
uti.setIndex(0);
for (i=2; i<cpCount; i+=2) {
uti.moveIndex(2);
index = uti.getIndex();
expectedIndex = cpMap[i].nativeIdx;
TEST_ASSERT(expectedIndex == index);
}
// walk through the string backwards, decrementing by one.
i = cpMap[cpCount].nativeIdx;
uti.setIndex(i);
for (i=cpCount; i>=0; i--) {
expectedIndex = cpMap[i].nativeIdx;
index = uti.getIndex();
TEST_ASSERT(expectedIndex == index);
uti.moveIndex(-1);
}
// walk through backwards, decrementing by three
i = cpMap[cpCount].nativeIdx;
uti.setIndex(i);
for (i=cpCount; i>=0; i-=3) {
expectedIndex = cpMap[i].nativeIdx;
index = uti.getIndex();
TEST_ASSERT(expectedIndex == index);
uti.moveIndex(-3);
}
//
// Extract
//
int bufSize = us.length() + 10;
UChar *buf = new UChar[bufSize];
status = U_ZERO_ERROR;
expectedLen = us.length();
len = ut->extract(ut, 0, utlen, buf, bufSize, &status);
TEST_SUCCESS(status);
TEST_ASSERT(len == expectedLen);
int compareResult = us.compare(buf, -1);
TEST_ASSERT(compareResult == 0);
status = U_ZERO_ERROR;
len = ut->extract(ut, 0, utlen, NULL, 0, &status);
TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR)
TEST_ASSERT(len == expectedLen);
status = U_ZERO_ERROR;
u_memset(buf, 0x5555, bufSize);
len = ut->extract(ut, 0, utlen, buf, 1, &status);
if (us.length() == 0) {
TEST_SUCCESS(status);
TEST_ASSERT(buf[0] == 0);
} else {
TEST_ASSERT(buf[0] == us.charAt(0));
TEST_ASSERT(buf[1] == 0x5555);
if (us.length() == 1) {
TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
} else {
TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
}
}
delete buf;
}