scuffed-code/icu4c/source/i18n/collationfastlatinbuilder.cpp

735 lines
28 KiB
C++
Raw Normal View History

/*
*******************************************************************************
* Copyright (C) 2013-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* collationfastlatinbuilder.cpp
*
* created on: 2013aug09
* created by: Markus W. Scherer
*/
#define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2
#if DEBUG_COLLATION_FAST_LATIN_BUILDER
#include <stdio.h>
#include <string>
#endif
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/ucol.h"
#include "unicode/ucharstrie.h"
#include "unicode/unistr.h"
#include "unicode/uobject.h"
#include "unicode/uscript.h"
#include "cmemory.h"
#include "collation.h"
#include "collationdata.h"
#include "collationfastlatin.h"
#include "collationfastlatinbuilder.h"
#include "uassert.h"
#include "uvectr64.h"
U_NAMESPACE_BEGIN
struct CollationData;
namespace {
/**
* Compare two signed int64_t values as if they were unsigned.
*/
int32_t
compareInt64AsUnsigned(int64_t a, int64_t b) {
if((uint64_t)a < (uint64_t)b) {
return -1;
} else if((uint64_t)a > (uint64_t)b) {
return 1;
} else {
return 0;
}
}
// TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp
/**
* Like Java Collections.binarySearch(List, String, Comparator).
*
* @return the index>=0 where the item was found,
* or the index<0 for inserting the string at ~index in sorted order
*/
int32_t
binarySearch(const int64_t list[], int32_t limit, int64_t ce) {
if (limit == 0) { return ~0; }
int32_t start = 0;
for (;;) {
int32_t i = (start + limit) / 2;
int32_t cmp = compareInt64AsUnsigned(ce, list[i]);
if (cmp == 0) {
return i;
} else if (cmp < 0) {
if (i == start) {
return ~start; // insert ce before i
}
limit = i;
} else {
if (i == start) {
return ~(start + 1); // insert ce after i
}
start = i;
}
}
}
} // namespace
CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode)
: ce0(0), ce1(0),
contractionCEs(errorCode), uniqueCEs(errorCode),
miniCEs(NULL),
firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0),
firstShortPrimary(0), shortPrimaryOverflow(FALSE),
headerLength(0) {
}
CollationFastLatinBuilder::~CollationFastLatinBuilder() {
uprv_free(miniCEs);
}
UBool
CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
if(!result.isEmpty()) { // This builder is not reusable.
errorCode = U_INVALID_STATE_ERROR;
return FALSE;
}
if(!loadGroups(data, errorCode)) { return FALSE; }
// Fast handling of digits.
firstShortPrimary = firstDigitPrimary;
getCEs(data, errorCode);
if(!encodeUniqueCEs(errorCode)) { return FALSE; }
if(shortPrimaryOverflow) {
// Give digits long mini primaries,
// so that there are more short primaries for letters.
firstShortPrimary = firstLatinPrimary;
resetCEs();
getCEs(data, errorCode);
if(!encodeUniqueCEs(errorCode)) { return FALSE; }
}
// Note: If we still have a short-primary overflow but not a long-primary overflow,
// then we could calculate how many more long primaries would fit,
// and set the firstShortPrimary to that many after the current firstShortPrimary,
// and try again.
// However, this might only benefit the en_US_POSIX tailoring,
// and it is simpler to suppress building fast Latin data for it in genrb,
// or by returning FALSE here if shortPrimaryOverflow.
UBool ok = !shortPrimaryOverflow &&
encodeCharCEs(errorCode) && encodeContractions(errorCode);
contractionCEs.removeAllElements(); // might reduce heap memory usage
uniqueCEs.removeAllElements();
return ok;
}
UBool
CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
result.append(0); // reserved for version & headerLength
// The first few reordering groups should be special groups
// (space, punct, ..., digit) followed by Latn, then Grek and other scripts.
for(int32_t i = 0;;) {
if(i >= data.scriptsLength) {
// no Latn script
errorCode = U_INTERNAL_PROGRAM_ERROR;
return FALSE;
}
uint32_t head = data.scripts[i];
uint32_t lastByte = head & 0xff; // last primary byte in the group
int32_t group = data.scripts[i + 2];
if(group == UCOL_REORDER_CODE_DIGIT) {
firstDigitPrimary = (head & 0xff00) << 16;
headerLength = result.length();
uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength;
result.setCharAt(0, (UChar)r0);
} else if(group == USCRIPT_LATIN) {
if(firstDigitPrimary == 0) {
// no digit group
errorCode = U_INTERNAL_PROGRAM_ERROR;
return FALSE;
}
firstLatinPrimary = (head & 0xff00) << 16;
lastLatinPrimary = (lastByte << 24) | 0xffffff;
break;
} else if(firstDigitPrimary == 0) {
// a group below digits
if(lastByte > 0x7f) {
// We only use 7 bits for the last byte of a below-digits group.
// This does not warrant an errorCode, but we do not build a fast Latin table.
return FALSE;
}
result.append((UChar)lastByte);
}
i = i + 2 + data.scripts[i + 1];
}
return TRUE;
}
UBool
CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const {
// Both or neither need to be encoded as short primaries,
// so that we can test only one and use the same bit mask.
if(p >= firstShortPrimary) {
return q >= firstShortPrimary;
} else if(q >= firstShortPrimary) {
return FALSE;
}
// Both or neither must be potentially-variable,
// so that we can test only one and determine if both are variable.
if(p >= firstDigitPrimary) {
return q >= firstDigitPrimary;
} else if(q >= firstDigitPrimary) {
return FALSE;
}
// Both will be encoded with long mini primaries.
// They must be in the same special reordering group,
// so that we can test only one and determine if both are variable.
p >>= 24; // first primary byte
q >>= 24;
U_ASSERT(p != 0 && q != 0);
U_ASSERT(p <= result[headerLength - 1]); // the loop will terminate
for(int32_t i = 1;; ++i) {
uint32_t lastByte = result[i];
if(p <= lastByte) {
return q <= lastByte;
} else if(q <= lastByte) {
return FALSE;
}
}
}
void
CollationFastLatinBuilder::resetCEs() {
contractionCEs.removeAllElements();
uniqueCEs.removeAllElements();
shortPrimaryOverflow = FALSE;
result.truncate(headerLength);
}
void
CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
int32_t i = 0;
for(UChar c = 0;; ++i, ++c) {
if(c == CollationFastLatin::LATIN_LIMIT) {
c = CollationFastLatin::PUNCT_START;
} else if(c == CollationFastLatin::PUNCT_LIMIT) {
break;
}
const CollationData *d;
uint32_t ce32 = data.getCE32(c);
if(ce32 == Collation::FALLBACK_CE32) {
d = data.base;
ce32 = d->getCE32(c);
} else {
d = &data;
}
if(getCEsFromCE32(*d, c, ce32, errorCode)) {
charCEs[i][0] = ce0;
charCEs[i][1] = ce1;
addUniqueCE(ce0, errorCode);
addUniqueCE(ce1, errorCode);
} else {
// bail out for c
charCEs[i][0] = ce0 = Collation::NO_CE;
charCEs[i][1] = ce1 = 0;
}
if(c == 0 && !isContractionCharCE(ce0)) {
// Always map U+0000 to a contraction.
// Write a contraction list with only a default value if there is no real contraction.
U_ASSERT(contractionCEs.isEmpty());
addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode);
charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG;
charCEs[0][1] = 0;
}
}
// Terminate the last contraction list.
contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode);
}
UBool
CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
ce32 = data.getFinalCE32(ce32);
ce1 = 0;
if(Collation::isSimpleOrLongCE32(ce32)) {
ce0 = Collation::ceFromCE32(ce32);
} else {
switch(Collation::tagFromCE32(ce32)) {
case Collation::LATIN_EXPANSION_TAG:
ce0 = Collation::latinCE0FromCE32(ce32);
ce1 = Collation::latinCE1FromCE32(ce32);
break;
case Collation::EXPANSION32_TAG: {
const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32);
int32_t length = Collation::lengthFromCE32(ce32);
if(length <= 2) {
ce0 = Collation::ceFromCE32(ce32s[0]);
if(length == 2) {
ce1 = Collation::ceFromCE32(ce32s[1]);
}
break;
} else {
return FALSE;
}
}
case Collation::EXPANSION_TAG: {
const int64_t *ces = data.ces + Collation::indexFromCE32(ce32);
int32_t length = Collation::lengthFromCE32(ce32);
if(length <= 2) {
ce0 = ces[0];
if(length == 2) {
ce1 = ces[1];
}
break;
} else {
return FALSE;
}
}
// Note: We could support PREFIX_TAG (assert c>=0)
// by recursing on its default CE32 and checking that none of the prefixes starts
// with a fast Latin character.
// However, currently (2013) there are only the L-before-middle-dot
// prefix mappings in the Latin range, and those would be rejected anyway.
case Collation::CONTRACTION_TAG:
U_ASSERT(c >= 0);
return getCEsFromContractionCE32(data, ce32, errorCode);
case Collation::OFFSET_TAG:
U_ASSERT(c >= 0);
ce0 = data.getCEFromOffsetCE32(c, ce32);
break;
default:
return FALSE;
}
}
// A mapping can be completely ignorable.
if(ce0 == 0) { return ce1 == 0; }
// We do not support an ignorable ce0 unless it is completely ignorable.
uint32_t p0 = (uint32_t)(ce0 >> 32);
if(p0 == 0) { return FALSE; }
// We only support primaries up to the Latin script.
if(p0 > lastLatinPrimary) { return FALSE; }
// We support non-common secondary and case weights only together with short primaries.
uint32_t lower32_0 = (uint32_t)ce0;
if(p0 < firstShortPrimary) {
uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK;
if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; }
}
// No below-common tertiary weights.
if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; }
if(ce1 != 0) {
// Both primaries must be in the same group,
// or both must get short mini primaries,
// or a short-primary CE is followed by a secondary CE.
// This is so that we can test the first primary and use the same mask for both,
// and determine for both whether they are variable.
uint32_t p1 = (uint32_t)(ce1 >> 32);
if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; }
uint32_t lower32_1 = (uint32_t)ce1;
// No tertiary CEs.
if((lower32_1 >> 16) == 0) { return FALSE; }
// We support non-common secondary and case weights
// only for secondary CEs or together with short primaries.
if(p1 != 0 && p1 < firstShortPrimary) {
uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK;
if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; }
}
// No below-common tertiary weights.
if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; }
}
// No quaternary weights.
if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; }
return TRUE;
}
UBool
CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
const UChar *p = data.contexts + Collation::indexFromCE32(ce32);
ce32 = CollationData::readCE32(p); // Default if no suffix match.
// Since the original ce32 is not a prefix mapping,
// the default ce32 must not be another contraction.
U_ASSERT(!Collation::isContractionCE32(ce32));
int32_t contractionIndex = contractionCEs.size();
if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) {
addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode);
} else {
// Bail out for c-without-contraction.
addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode);
}
// Handle an encodable contraction unless the next contraction is too long
// and starts with the same character.
int32_t prevX = -1;
UBool addContraction = FALSE;
UCharsTrie::Iterator suffixes(p + 2, 0, errorCode);
while(suffixes.next(errorCode)) {
const UnicodeString &suffix = suffixes.getString();
int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0));
if(x < 0) { continue; } // ignore anything but fast Latin text
if(x == prevX) {
if(addContraction) {
// Bail out for all contractions starting with this character.
addContractionEntry(x, Collation::NO_CE, 0, errorCode);
addContraction = FALSE;
}
continue;
}
if(addContraction) {
addContractionEntry(prevX, ce0, ce1, errorCode);
}
ce32 = (uint32_t)suffixes.getValue();
if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) {
addContraction = TRUE;
} else {
addContractionEntry(x, Collation::NO_CE, 0, errorCode);
addContraction = FALSE;
}
prevX = x;
}
if(addContraction) {
addContractionEntry(prevX, ce0, ce1, errorCode);
}
if(U_FAILURE(errorCode)) { return FALSE; }
// Note: There might not be any fast Latin contractions, but
// we need to enter contraction handling anyway so that we can bail out
// when there is a non-fast-Latin character following.
// For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the
// following umlaut and bail out, rather than return the difference of Y vs. u.
ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex;
ce1 = 0;
return TRUE;
}
void
CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1,
UErrorCode &errorCode) {
contractionCEs.addElement(x, errorCode);
contractionCEs.addElement(cce0, errorCode);
contractionCEs.addElement(cce1, errorCode);
addUniqueCE(cce0, errorCode);
addUniqueCE(cce1, errorCode);
}
void
CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; }
ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits
int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
if(i < 0) {
uniqueCEs.insertElementAt(ce, ~i, errorCode);
}
}
uint32_t
CollationFastLatinBuilder::getMiniCE(int64_t ce) const {
ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits
int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
U_ASSERT(index >= 0);
return miniCEs[index];
}
UBool
CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
uprv_free(miniCEs);
miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2);
if(miniCEs == NULL) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
int32_t group = 1;
uint32_t lastGroupByte = result[group];
// The lowest unique CE must be at least a secondary CE.
U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0);
uint32_t prevPrimary = 0;
uint32_t prevSecondary = 0;
uint32_t pri = 0;
uint32_t sec = 0;
uint32_t ter = CollationFastLatin::COMMON_TER;
for(int32_t i = 0; i < uniqueCEs.size(); ++i) {
int64_t ce = uniqueCEs.elementAti(i);
// Note: At least one of the p/s/t weights changes from one unique CE to the next.
// (uniqueCEs does not store case bits.)
uint32_t p = (uint32_t)(ce >> 32);
if(p != prevPrimary) {
uint32_t p1 = p >> 24;
while(p1 > lastGroupByte) {
U_ASSERT(pri <= CollationFastLatin::MAX_LONG);
// Add the last "long primary" in or before the group
// into the upper 9 bits of the group entry.
result.setCharAt(group, (UChar)((pri << 4) | lastGroupByte));
if(++group < headerLength) { // group is 1-based
lastGroupByte = result[group];
} else {
lastGroupByte = 0xff;
break;
}
}
if(p < firstShortPrimary) {
if(pri == 0) {
pri = CollationFastLatin::MIN_LONG;
} else if(pri < CollationFastLatin::MAX_LONG) {
pri += CollationFastLatin::LONG_INC;
} else {
#if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("long-primary overflow for %08x\n", p);
#endif
miniCEs[i] = CollationFastLatin::BAIL_OUT;
continue;
}
} else {
if(pri < CollationFastLatin::MIN_SHORT) {
pri = CollationFastLatin::MIN_SHORT;
} else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) {
// Reserve the highest primary weight for U+FFFF.
pri += CollationFastLatin::SHORT_INC;
} else {
#if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("short-primary overflow for %08x\n", p);
#endif
shortPrimaryOverflow = TRUE;
miniCEs[i] = CollationFastLatin::BAIL_OUT;
continue;
}
}
prevPrimary = p;
prevSecondary = Collation::COMMON_WEIGHT16;
sec = CollationFastLatin::COMMON_SEC;
ter = CollationFastLatin::COMMON_TER;
}
uint32_t lower32 = (uint32_t)ce;
uint32_t s = lower32 >> 16;
if(s != prevSecondary) {
if(pri == 0) {
if(sec == 0) {
sec = CollationFastLatin::MIN_SEC_HIGH;
} else if(sec < CollationFastLatin::MAX_SEC_HIGH) {
sec += CollationFastLatin::SEC_INC;
} else {
miniCEs[i] = CollationFastLatin::BAIL_OUT;
continue;
}
prevSecondary = s;
ter = CollationFastLatin::COMMON_TER;
} else if(s < Collation::COMMON_WEIGHT16) {
if(sec == CollationFastLatin::COMMON_SEC) {
sec = CollationFastLatin::MIN_SEC_BEFORE;
} else if(sec < CollationFastLatin::MAX_SEC_BEFORE) {
sec += CollationFastLatin::SEC_INC;
} else {
miniCEs[i] = CollationFastLatin::BAIL_OUT;
continue;
}
} else if(s == Collation::COMMON_WEIGHT16) {
sec = CollationFastLatin::COMMON_SEC;
} else {
if(sec < CollationFastLatin::MIN_SEC_AFTER) {
sec = CollationFastLatin::MIN_SEC_AFTER;
} else if(sec < CollationFastLatin::MAX_SEC_AFTER) {
sec += CollationFastLatin::SEC_INC;
} else {
miniCEs[i] = CollationFastLatin::BAIL_OUT;
continue;
}
}
prevSecondary = s;
ter = CollationFastLatin::COMMON_TER;
}
U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs
uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK;
if(t > Collation::COMMON_WEIGHT16) {
if(ter < CollationFastLatin::MAX_TER_AFTER) {
++ter;
} else {
miniCEs[i] = CollationFastLatin::BAIL_OUT;
continue;
}
}
if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) {
U_ASSERT(sec == CollationFastLatin::COMMON_SEC);
miniCEs[i] = (uint16_t)(pri | ter);
} else {
miniCEs[i] = (uint16_t)(pri | sec | ter);
}
}
#if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("last mini primary: %04x\n", pri);
#endif
#if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2
for(int32_t i = 0; i < uniqueCEs.size(); ++i) {
int64_t ce = uniqueCEs.elementAti(i);
printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]);
}
#endif
return U_SUCCESS(errorCode);
}
UBool
CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return FALSE; }
int32_t miniCEsStart = result.length();
for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
result.append(0); // initialize to completely ignorable
}
int32_t indexBase = result.length();
for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
int64_t ce = charCEs[i][0];
if(isContractionCharCE(ce)) { continue; } // defer contraction
uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]);
if(miniCE > 0xffff) {
// Note: There is a chance that this new expansion is the same as a previous one,
// and if so, then we could reuse the other expansion.
// However, that seems unlikely.
int32_t expansionIndex = result.length() - indexBase;
if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) {
miniCE = CollationFastLatin::BAIL_OUT;
} else {
result.append((UChar)(miniCE >> 16)).append((UChar)miniCE);
miniCE = CollationFastLatin::EXPANSION | expansionIndex;
}
}
result.setCharAt(miniCEsStart + i, (UChar)miniCE);
}
return U_SUCCESS(errorCode);
}
UBool
CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) {
// We encode all contraction lists so that the first word of a list
// terminates the previous list, and we only need one additional terminator at the end.
if(U_FAILURE(errorCode)) { return FALSE; }
int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS;
int32_t firstContractionIndex = result.length();
for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
int64_t ce = charCEs[i][0];
if(!isContractionCharCE(ce)) { continue; }
int32_t contractionIndex = result.length() - indexBase;
if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) {
result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT);
continue;
}
UBool firstTriple = TRUE;
for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) {
int32_t x = contractionCEs.elementAti(index);
if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; }
int64_t cce0 = contractionCEs.elementAti(index + 1);
int64_t cce1 = contractionCEs.elementAti(index + 2);
uint32_t miniCE = encodeTwoCEs(cce0, cce1);
if(miniCE == CollationFastLatin::BAIL_OUT) {
result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
} else if(miniCE <= 0xffff) {
result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
result.append((UChar)miniCE);
} else {
result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
result.append((UChar)(miniCE >> 16)).append((UChar)miniCE);
}
firstTriple = FALSE;
}
// Note: There is a chance that this new contraction list is the same as a previous one,
// and if so, then we could truncate the result and reuse the other list.
// However, that seems unlikely.
result.setCharAt(headerLength + i,
(UChar)(CollationFastLatin::CONTRACTION | contractionIndex));
}
if(result.length() > firstContractionIndex) {
// Terminate the last contraction list.
result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK);
}
if(result.isBogus()) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
#if DEBUG_COLLATION_FAST_LATIN_BUILDER
printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2);
puts(" header & below-digit groups map");
int32_t i = 0;
for(; i < headerLength; ++i) {
printf(" %04x", result[i]);
}
printf("\n char mini CEs");
U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0);
for(; i < indexBase; i += 16) {
UChar32 c = i - headerLength;
if(c >= CollationFastLatin::LATIN_LIMIT) {
c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT;
}
printf("\n %04x:", c);
for(int32_t j = 0; j < 16; ++j) {
printf(" %04x", result[i + j]);
}
}
printf("\n expansions & contractions");
for(; i < result.length(); ++i) {
if((i - indexBase) % 16 == 0) { puts(""); }
printf(" %04x", result[i]);
}
puts("");
#endif
return TRUE;
}
uint32_t
CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const {
if(first == 0) {
return 0; // completely ignorable
}
if(first == Collation::NO_CE) {
return CollationFastLatin::BAIL_OUT;
}
U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY);
uint32_t miniCE = getMiniCE(first);
if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; }
if(miniCE >= CollationFastLatin::MIN_SHORT) {
// Extract & copy the case bits.
// Shift them from normal CE bits 15..14 to mini CE bits 4..3.
uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3));
// Only in mini CEs: Ignorable case bits = 0, lowercase = 1.
c += CollationFastLatin::LOWER_CASE;
miniCE |= c;
}
if(second == 0) { return miniCE; }
uint32_t miniCE1 = getMiniCE(second);
if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; }
uint32_t case1 = (uint32_t)second & Collation::CASE_MASK;
if(miniCE >= CollationFastLatin::MIN_SHORT &&
(miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) {
// Try to combine the two mini CEs into one.
uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK;
uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK;
if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 &&
ter1 == CollationFastLatin::COMMON_TER) {
// sec1>=sec_high implies pri1==0.
return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1;
}
}
if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) {
// Secondary CE, or a CE with a short primary, copy the case bits.
case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE;
miniCE1 |= case1;
}
return (miniCE << 16) | miniCE1;
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_COLLATION