scuffed-code/icu4c/source/i18n/plurrule.cpp

1717 lines
51 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2007-2016, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*
* File plurrule.cpp
*/
#include <math.h>
#include <stdio.h>
#include "unicode/utypes.h"
#include "unicode/localpointer.h"
#include "unicode/plurrule.h"
#include "unicode/upluralrules.h"
#include "unicode/ures.h"
#include "unicode/numfmt.h"
#include "unicode/decimfmt.h"
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "digitlst.h"
#include "hash.h"
#include "locutil.h"
#include "mutex.h"
#include "patternprops.h"
#include "plurrule_impl.h"
#include "putilimp.h"
#include "ucln_in.h"
#include "ustrfmt.h"
#include "uassert.h"
#include "uvectr32.h"
#include "sharedpluralrules.h"
#include "unifiedcache.h"
#include "digitinterval.h"
#include "visibledigits.h"
#if !UCONFIG_NO_FORMATTING
U_NAMESPACE_BEGIN
static const UChar PLURAL_KEYWORD_OTHER[]={LOW_O,LOW_T,LOW_H,LOW_E,LOW_R,0};
static const UChar PLURAL_DEFAULT_RULE[]={LOW_O,LOW_T,LOW_H,LOW_E,LOW_R,COLON,SPACE,LOW_N,0};
static const UChar PK_IN[]={LOW_I,LOW_N,0};
static const UChar PK_NOT[]={LOW_N,LOW_O,LOW_T,0};
static const UChar PK_IS[]={LOW_I,LOW_S,0};
static const UChar PK_MOD[]={LOW_M,LOW_O,LOW_D,0};
static const UChar PK_AND[]={LOW_A,LOW_N,LOW_D,0};
static const UChar PK_OR[]={LOW_O,LOW_R,0};
static const UChar PK_VAR_N[]={LOW_N,0};
static const UChar PK_VAR_I[]={LOW_I,0};
static const UChar PK_VAR_F[]={LOW_F,0};
static const UChar PK_VAR_T[]={LOW_T,0};
static const UChar PK_VAR_V[]={LOW_V,0};
static const UChar PK_WITHIN[]={LOW_W,LOW_I,LOW_T,LOW_H,LOW_I,LOW_N,0};
static const UChar PK_DECIMAL[]={LOW_D,LOW_E,LOW_C,LOW_I,LOW_M,LOW_A,LOW_L,0};
static const UChar PK_INTEGER[]={LOW_I,LOW_N,LOW_T,LOW_E,LOW_G,LOW_E,LOW_R,0};
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(PluralRules)
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(PluralKeywordEnumeration)
PluralRules::PluralRules(UErrorCode& /*status*/)
: UObject(),
mRules(NULL)
{
}
PluralRules::PluralRules(const PluralRules& other)
: UObject(other),
mRules(NULL)
{
*this=other;
}
PluralRules::~PluralRules() {
delete mRules;
}
SharedPluralRules::~SharedPluralRules() {
delete ptr;
}
PluralRules*
PluralRules::clone() const {
return new PluralRules(*this);
}
PluralRules&
PluralRules::operator=(const PluralRules& other) {
if (this != &other) {
delete mRules;
if (other.mRules==NULL) {
mRules = NULL;
}
else {
mRules = new RuleChain(*other.mRules);
}
}
return *this;
}
StringEnumeration* PluralRules::getAvailableLocales(UErrorCode &status) {
StringEnumeration *result = new PluralAvailableLocalesEnumeration(status);
if (result == NULL && U_SUCCESS(status)) {
status = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(status)) {
delete result;
result = NULL;
}
return result;
}
PluralRules* U_EXPORT2
PluralRules::createRules(const UnicodeString& description, UErrorCode& status) {
if (U_FAILURE(status)) {
return NULL;
}
PluralRuleParser parser;
PluralRules *newRules = new PluralRules(status);
if (U_SUCCESS(status) && newRules == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
parser.parse(description, newRules, status);
if (U_FAILURE(status)) {
delete newRules;
newRules = NULL;
}
return newRules;
}
PluralRules* U_EXPORT2
PluralRules::createDefaultRules(UErrorCode& status) {
return createRules(UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1), status);
}
/******************************************************************************/
/* Create PluralRules cache */
template<> U_I18N_API
const SharedPluralRules *LocaleCacheKey<SharedPluralRules>::createObject(
const void * /*unused*/, UErrorCode &status) const {
const char *localeId = fLoc.getName();
PluralRules *pr = PluralRules::internalForLocale(
localeId, UPLURAL_TYPE_CARDINAL, status);
if (U_FAILURE(status)) {
return NULL;
}
SharedPluralRules *result = new SharedPluralRules(pr);
if (result == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
delete pr;
return NULL;
}
result->addRef();
return result;
}
/* end plural rules cache */
/******************************************************************************/
const SharedPluralRules* U_EXPORT2
PluralRules::createSharedInstance(
const Locale& locale, UPluralType type, UErrorCode& status) {
if (U_FAILURE(status)) {
return NULL;
}
if (type != UPLURAL_TYPE_CARDINAL) {
status = U_UNSUPPORTED_ERROR;
return NULL;
}
const SharedPluralRules *result = NULL;
UnifiedCache::getByLocale(locale, result, status);
return result;
}
PluralRules* U_EXPORT2
PluralRules::forLocale(const Locale& locale, UErrorCode& status) {
return forLocale(locale, UPLURAL_TYPE_CARDINAL, status);
}
PluralRules* U_EXPORT2
PluralRules::forLocale(const Locale& locale, UPluralType type, UErrorCode& status) {
if (type != UPLURAL_TYPE_CARDINAL) {
return internalForLocale(locale, type, status);
}
const SharedPluralRules *shared = createSharedInstance(
locale, type, status);
if (U_FAILURE(status)) {
return NULL;
}
PluralRules *result = (*shared)->clone();
shared->removeRef();
if (result == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
return result;
}
PluralRules* U_EXPORT2
PluralRules::internalForLocale(const Locale& locale, UPluralType type, UErrorCode& status) {
if (U_FAILURE(status)) {
return NULL;
}
if (type >= UPLURAL_TYPE_COUNT) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
PluralRules *newObj = new PluralRules(status);
if (newObj==NULL || U_FAILURE(status)) {
delete newObj;
return NULL;
}
UnicodeString locRule = newObj->getRuleFromResource(locale, type, status);
// TODO: which errors, if any, should be returned?
if (locRule.length() == 0) {
// Locales with no specific rules (all numbers have the "other" category
// will return a U_MISSING_RESOURCE_ERROR at this point. This is not
// an error.
locRule = UnicodeString(PLURAL_DEFAULT_RULE);
status = U_ZERO_ERROR;
}
PluralRuleParser parser;
parser.parse(locRule, newObj, status);
// TODO: should rule parse errors be returned, or
// should we silently use default rules?
// Original impl used default rules.
// Ask the question to ICU Core.
return newObj;
}
UnicodeString
PluralRules::select(int32_t number) const {
return select(FixedDecimal(number));
}
UnicodeString
PluralRules::select(double number) const {
return select(FixedDecimal(number));
}
UnicodeString
PluralRules::select(const Formattable& obj, const NumberFormat& fmt, UErrorCode& status) const {
if (U_SUCCESS(status)) {
const DecimalFormat *decFmt = dynamic_cast<const DecimalFormat *>(&fmt);
if (decFmt != NULL) {
VisibleDigitsWithExponent digits;
decFmt->initVisibleDigitsWithExponent(obj, digits, status);
if (U_SUCCESS(status)) {
return select(digits);
}
} else {
double number = obj.getDouble(status);
if (U_SUCCESS(status)) {
return select(number);
}
}
}
return UnicodeString();
}
UnicodeString
PluralRules::select(const IFixedDecimal &number) const {
if (mRules == NULL) {
return UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1);
}
else {
return mRules->select(number);
}
}
UnicodeString
PluralRules::select(const VisibleDigitsWithExponent &number) const {
if (number.getExponent() != NULL) {
return UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1);
}
return select(FixedDecimal(number.getMantissa()));
}
StringEnumeration*
PluralRules::getKeywords(UErrorCode& status) const {
if (U_FAILURE(status)) return NULL;
StringEnumeration* nameEnumerator = new PluralKeywordEnumeration(mRules, status);
if (U_FAILURE(status)) {
delete nameEnumerator;
return NULL;
}
return nameEnumerator;
}
double
PluralRules::getUniqueKeywordValue(const UnicodeString& /* keyword */) {
// Not Implemented.
return UPLRULES_NO_UNIQUE_VALUE;
}
int32_t
PluralRules::getAllKeywordValues(const UnicodeString & /* keyword */, double * /* dest */,
int32_t /* destCapacity */, UErrorCode& error) {
error = U_UNSUPPORTED_ERROR;
return 0;
}
static double scaleForInt(double d) {
double scale = 1.0;
while (d != floor(d)) {
d = d * 10.0;
scale = scale * 10.0;
}
return scale;
}
static int32_t
getSamplesFromString(const UnicodeString &samples, double *dest,
int32_t destCapacity, UErrorCode& status) {
int32_t sampleCount = 0;
int32_t sampleStartIdx = 0;
int32_t sampleEndIdx = 0;
//std::string ss; // TODO: debugging.
// std::cout << "PluralRules::getSamples(), samples = \"" << samples.toUTF8String(ss) << "\"\n";
for (sampleCount = 0; sampleCount < destCapacity && sampleStartIdx < samples.length(); ) {
sampleEndIdx = samples.indexOf(COMMA, sampleStartIdx);
if (sampleEndIdx == -1) {
sampleEndIdx = samples.length();
}
const UnicodeString &sampleRange = samples.tempSubStringBetween(sampleStartIdx, sampleEndIdx);
// ss.erase();
// std::cout << "PluralRules::getSamples(), samplesRange = \"" << sampleRange.toUTF8String(ss) << "\"\n";
int32_t tildeIndex = sampleRange.indexOf(TILDE);
if (tildeIndex < 0) {
FixedDecimal fixed(sampleRange, status);
double sampleValue = fixed.source;
if (fixed.visibleDecimalDigitCount == 0 || sampleValue != floor(sampleValue)) {
dest[sampleCount++] = sampleValue;
}
} else {
FixedDecimal fixedLo(sampleRange.tempSubStringBetween(0, tildeIndex), status);
FixedDecimal fixedHi(sampleRange.tempSubStringBetween(tildeIndex+1), status);
double rangeLo = fixedLo.source;
double rangeHi = fixedHi.source;
if (U_FAILURE(status)) {
break;
}
if (rangeHi < rangeLo) {
status = U_INVALID_FORMAT_ERROR;
break;
}
// For ranges of samples with fraction decimal digits, scale the number up so that we
// are adding one in the units place. Avoids roundoffs from repetitive adds of tenths.
double scale = scaleForInt(rangeLo);
double t = scaleForInt(rangeHi);
if (t > scale) {
scale = t;
}
rangeLo *= scale;
rangeHi *= scale;
for (double n=rangeLo; n<=rangeHi; n+=1) {
// Hack Alert: don't return any decimal samples with integer values that
// originated from a format with trailing decimals.
// This API is returning doubles, which can't distinguish having displayed
// zeros to the right of the decimal.
// This results in test failures with values mapping back to a different keyword.
double sampleValue = n/scale;
if (!(sampleValue == floor(sampleValue) && fixedLo.visibleDecimalDigitCount > 0)) {
dest[sampleCount++] = sampleValue;
}
if (sampleCount >= destCapacity) {
break;
}
}
}
sampleStartIdx = sampleEndIdx + 1;
}
return sampleCount;
}
int32_t
PluralRules::getSamples(const UnicodeString &keyword, double *dest,
int32_t destCapacity, UErrorCode& status) {
RuleChain *rc = rulesForKeyword(keyword);
if (rc == NULL || destCapacity == 0 || U_FAILURE(status)) {
return 0;
}
int32_t numSamples = getSamplesFromString(rc->fIntegerSamples, dest, destCapacity, status);
if (numSamples == 0) {
numSamples = getSamplesFromString(rc->fDecimalSamples, dest, destCapacity, status);
}
return numSamples;
}
RuleChain *PluralRules::rulesForKeyword(const UnicodeString &keyword) const {
RuleChain *rc;
for (rc = mRules; rc != NULL; rc = rc->fNext) {
if (rc->fKeyword == keyword) {
break;
}
}
return rc;
}
UBool
PluralRules::isKeyword(const UnicodeString& keyword) const {
if (0 == keyword.compare(PLURAL_KEYWORD_OTHER, 5)) {
return true;
}
return rulesForKeyword(keyword) != NULL;
}
UnicodeString
PluralRules::getKeywordOther() const {
return UnicodeString(TRUE, PLURAL_KEYWORD_OTHER, 5);
}
UBool
PluralRules::operator==(const PluralRules& other) const {
const UnicodeString *ptrKeyword;
UErrorCode status= U_ZERO_ERROR;
if ( this == &other ) {
return TRUE;
}
LocalPointer<StringEnumeration> myKeywordList(getKeywords(status));
LocalPointer<StringEnumeration> otherKeywordList(other.getKeywords(status));
if (U_FAILURE(status)) {
return FALSE;
}
if (myKeywordList->count(status)!=otherKeywordList->count(status)) {
return FALSE;
}
myKeywordList->reset(status);
while ((ptrKeyword=myKeywordList->snext(status))!=NULL) {
if (!other.isKeyword(*ptrKeyword)) {
return FALSE;
}
}
otherKeywordList->reset(status);
while ((ptrKeyword=otherKeywordList->snext(status))!=NULL) {
if (!this->isKeyword(*ptrKeyword)) {
return FALSE;
}
}
if (U_FAILURE(status)) {
return FALSE;
}
return TRUE;
}
void
PluralRuleParser::parse(const UnicodeString& ruleData, PluralRules *prules, UErrorCode &status)
{
if (U_FAILURE(status)) {
return;
}
U_ASSERT(ruleIndex == 0); // Parsers are good for a single use only!
ruleSrc = &ruleData;
while (ruleIndex< ruleSrc->length()) {
getNextToken(status);
if (U_FAILURE(status)) {
return;
}
checkSyntax(status);
if (U_FAILURE(status)) {
return;
}
switch (type) {
case tAnd:
U_ASSERT(curAndConstraint != NULL);
curAndConstraint = curAndConstraint->add();
break;
case tOr:
{
U_ASSERT(currentChain != NULL);
OrConstraint *orNode=currentChain->ruleHeader;
while (orNode->next != NULL) {
orNode = orNode->next;
}
orNode->next= new OrConstraint();
orNode=orNode->next;
orNode->next=NULL;
curAndConstraint = orNode->add();
}
break;
case tIs:
U_ASSERT(curAndConstraint != NULL);
U_ASSERT(curAndConstraint->value == -1);
U_ASSERT(curAndConstraint->rangeList == NULL);
break;
case tNot:
U_ASSERT(curAndConstraint != NULL);
curAndConstraint->negated=TRUE;
break;
case tNotEqual:
curAndConstraint->negated=TRUE;
U_FALLTHROUGH;
case tIn:
case tWithin:
case tEqual:
U_ASSERT(curAndConstraint != NULL);
curAndConstraint->rangeList = new UVector32(status);
curAndConstraint->rangeList->addElement(-1, status); // range Low
curAndConstraint->rangeList->addElement(-1, status); // range Hi
rangeLowIdx = 0;
rangeHiIdx = 1;
curAndConstraint->value=PLURAL_RANGE_HIGH;
curAndConstraint->integerOnly = (type != tWithin);
break;
case tNumber:
U_ASSERT(curAndConstraint != NULL);
if ( (curAndConstraint->op==AndConstraint::MOD)&&
(curAndConstraint->opNum == -1 ) ) {
curAndConstraint->opNum=getNumberValue(token);
}
else {
if (curAndConstraint->rangeList == NULL) {
// this is for an 'is' rule
curAndConstraint->value = getNumberValue(token);
} else {
// this is for an 'in' or 'within' rule
if (curAndConstraint->rangeList->elementAti(rangeLowIdx) == -1) {
curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeLowIdx);
curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeHiIdx);
}
else {
curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeHiIdx);
if (curAndConstraint->rangeList->elementAti(rangeLowIdx) >
curAndConstraint->rangeList->elementAti(rangeHiIdx)) {
// Range Lower bound > Range Upper bound.
// U_UNEXPECTED_TOKEN seems a little funny, but it is consistently
// used for all plural rule parse errors.
status = U_UNEXPECTED_TOKEN;
break;
}
}
}
}
break;
case tComma:
// TODO: rule syntax checking is inadequate, can happen with badly formed rules.
// Catch cases like "n mod 10, is 1" here instead.
if (curAndConstraint == NULL || curAndConstraint->rangeList == NULL) {
status = U_UNEXPECTED_TOKEN;
break;
}
U_ASSERT(curAndConstraint->rangeList->size() >= 2);
rangeLowIdx = curAndConstraint->rangeList->size();
curAndConstraint->rangeList->addElement(-1, status); // range Low
rangeHiIdx = curAndConstraint->rangeList->size();
curAndConstraint->rangeList->addElement(-1, status); // range Hi
break;
case tMod:
U_ASSERT(curAndConstraint != NULL);
curAndConstraint->op=AndConstraint::MOD;
break;
case tVariableN:
case tVariableI:
case tVariableF:
case tVariableT:
case tVariableV:
U_ASSERT(curAndConstraint != NULL);
curAndConstraint->digitsType = type;
break;
case tKeyword:
{
RuleChain *newChain = new RuleChain;
if (newChain == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
break;
}
newChain->fKeyword = token;
if (prules->mRules == NULL) {
prules->mRules = newChain;
} else {
// The new rule chain goes at the end of the linked list of rule chains,
// unless there is an "other" keyword & chain. "other" must remain last.
RuleChain *insertAfter = prules->mRules;
while (insertAfter->fNext!=NULL &&
insertAfter->fNext->fKeyword.compare(PLURAL_KEYWORD_OTHER, 5) != 0 ){
insertAfter=insertAfter->fNext;
}
newChain->fNext = insertAfter->fNext;
insertAfter->fNext = newChain;
}
OrConstraint *orNode = new OrConstraint();
newChain->ruleHeader = orNode;
curAndConstraint = orNode->add();
currentChain = newChain;
}
break;
case tInteger:
for (;;) {
getNextToken(status);
if (U_FAILURE(status) || type == tSemiColon || type == tEOF || type == tAt) {
break;
}
if (type == tEllipsis) {
currentChain->fIntegerSamplesUnbounded = TRUE;
continue;
}
currentChain->fIntegerSamples.append(token);
}
break;
case tDecimal:
for (;;) {
getNextToken(status);
if (U_FAILURE(status) || type == tSemiColon || type == tEOF || type == tAt) {
break;
}
if (type == tEllipsis) {
currentChain->fDecimalSamplesUnbounded = TRUE;
continue;
}
currentChain->fDecimalSamples.append(token);
}
break;
default:
break;
}
prevType=type;
if (U_FAILURE(status)) {
break;
}
}
}
UnicodeString
PluralRules::getRuleFromResource(const Locale& locale, UPluralType type, UErrorCode& errCode) {
UnicodeString emptyStr;
if (U_FAILURE(errCode)) {
return emptyStr;
}
LocalUResourceBundlePointer rb(ures_openDirect(NULL, "plurals", &errCode));
if(U_FAILURE(errCode)) {
return emptyStr;
}
const char *typeKey;
switch (type) {
case UPLURAL_TYPE_CARDINAL:
typeKey = "locales";
break;
case UPLURAL_TYPE_ORDINAL:
typeKey = "locales_ordinals";
break;
default:
// Must not occur: The caller should have checked for valid types.
errCode = U_ILLEGAL_ARGUMENT_ERROR;
return emptyStr;
}
LocalUResourceBundlePointer locRes(ures_getByKey(rb.getAlias(), typeKey, NULL, &errCode));
if(U_FAILURE(errCode)) {
return emptyStr;
}
int32_t resLen=0;
const char *curLocaleName=locale.getName();
const UChar* s = ures_getStringByKey(locRes.getAlias(), curLocaleName, &resLen, &errCode);
if (s == NULL) {
// Check parent locales.
UErrorCode status = U_ZERO_ERROR;
char parentLocaleName[ULOC_FULLNAME_CAPACITY];
const char *curLocaleName=locale.getName();
uprv_strcpy(parentLocaleName, curLocaleName);
while (uloc_getParent(parentLocaleName, parentLocaleName,
ULOC_FULLNAME_CAPACITY, &status) > 0) {
resLen=0;
s = ures_getStringByKey(locRes.getAlias(), parentLocaleName, &resLen, &status);
if (s != NULL) {
errCode = U_ZERO_ERROR;
break;
}
status = U_ZERO_ERROR;
}
}
if (s==NULL) {
return emptyStr;
}
char setKey[256];
u_UCharsToChars(s, setKey, resLen + 1);
// printf("\n PluralRule: %s\n", setKey);
LocalUResourceBundlePointer ruleRes(ures_getByKey(rb.getAlias(), "rules", NULL, &errCode));
if(U_FAILURE(errCode)) {
return emptyStr;
}
LocalUResourceBundlePointer setRes(ures_getByKey(ruleRes.getAlias(), setKey, NULL, &errCode));
if (U_FAILURE(errCode)) {
return emptyStr;
}
int32_t numberKeys = ures_getSize(setRes.getAlias());
UnicodeString result;
const char *key=NULL;
for(int32_t i=0; i<numberKeys; ++i) { // Keys are zero, one, few, ...
UnicodeString rules = ures_getNextUnicodeString(setRes.getAlias(), &key, &errCode);
UnicodeString uKey(key, -1, US_INV);
result.append(uKey);
result.append(COLON);
result.append(rules);
result.append(SEMI_COLON);
}
return result;
}
UnicodeString
PluralRules::getRules() const {
UnicodeString rules;
if (mRules != NULL) {
mRules->dumpRules(rules);
}
return rules;
}
AndConstraint::AndConstraint() {
op = AndConstraint::NONE;
opNum=-1;
value = -1;
rangeList = NULL;
negated = FALSE;
integerOnly = FALSE;
digitsType = none;
next=NULL;
}
AndConstraint::AndConstraint(const AndConstraint& other) {
this->op = other.op;
this->opNum=other.opNum;
this->value=other.value;
this->rangeList=NULL;
if (other.rangeList != NULL) {
UErrorCode status = U_ZERO_ERROR;
this->rangeList = new UVector32(status);
this->rangeList->assign(*other.rangeList, status);
}
this->integerOnly=other.integerOnly;
this->negated=other.negated;
this->digitsType = other.digitsType;
if (other.next==NULL) {
this->next=NULL;
}
else {
this->next = new AndConstraint(*other.next);
}
}
AndConstraint::~AndConstraint() {
delete rangeList;
if (next!=NULL) {
delete next;
}
}
UBool
AndConstraint::isFulfilled(const IFixedDecimal &number) {
UBool result = TRUE;
if (digitsType == none) {
// An empty AndConstraint, created by a rule with a keyword but no following expression.
return TRUE;
}
double n = number.getPluralOperand(digitsType); // pulls n | i | v | f value for the number.
// Will always be positive.
// May be non-integer (n option only)
do {
if (integerOnly && n != uprv_floor(n)) {
result = FALSE;
break;
}
if (op == MOD) {
n = fmod(n, opNum);
}
if (rangeList == NULL) {
result = value == -1 || // empty rule
n == value; // 'is' rule
break;
}
result = FALSE; // 'in' or 'within' rule
for (int32_t r=0; r<rangeList->size(); r+=2) {
if (rangeList->elementAti(r) <= n && n <= rangeList->elementAti(r+1)) {
result = TRUE;
break;
}
}
} while (FALSE);
if (negated) {
result = !result;
}
return result;
}
AndConstraint*
AndConstraint::add()
{
this->next = new AndConstraint();
return this->next;
}
OrConstraint::OrConstraint() {
childNode=NULL;
next=NULL;
}
OrConstraint::OrConstraint(const OrConstraint& other) {
if ( other.childNode == NULL ) {
this->childNode = NULL;
}
else {
this->childNode = new AndConstraint(*(other.childNode));
}
if (other.next == NULL ) {
this->next = NULL;
}
else {
this->next = new OrConstraint(*(other.next));
}
}
OrConstraint::~OrConstraint() {
if (childNode!=NULL) {
delete childNode;
}
if (next!=NULL) {
delete next;
}
}
AndConstraint*
OrConstraint::add()
{
OrConstraint *curOrConstraint=this;
{
while (curOrConstraint->next!=NULL) {
curOrConstraint = curOrConstraint->next;
}
U_ASSERT(curOrConstraint->childNode == NULL);
curOrConstraint->childNode = new AndConstraint();
}
return curOrConstraint->childNode;
}
UBool
OrConstraint::isFulfilled(const IFixedDecimal &number) {
OrConstraint* orRule=this;
UBool result=FALSE;
while (orRule!=NULL && !result) {
result=TRUE;
AndConstraint* andRule = orRule->childNode;
while (andRule!=NULL && result) {
result = andRule->isFulfilled(number);
andRule=andRule->next;
}
orRule = orRule->next;
}
return result;
}
RuleChain::RuleChain(): fKeyword(), fNext(NULL), ruleHeader(NULL), fDecimalSamples(), fIntegerSamples(),
fDecimalSamplesUnbounded(FALSE), fIntegerSamplesUnbounded(FALSE) {
}
RuleChain::RuleChain(const RuleChain& other) :
fKeyword(other.fKeyword), fNext(NULL), ruleHeader(NULL), fDecimalSamples(other.fDecimalSamples),
fIntegerSamples(other.fIntegerSamples), fDecimalSamplesUnbounded(other.fDecimalSamplesUnbounded),
fIntegerSamplesUnbounded(other.fIntegerSamplesUnbounded) {
if (other.ruleHeader != NULL) {
this->ruleHeader = new OrConstraint(*(other.ruleHeader));
}
if (other.fNext != NULL ) {
this->fNext = new RuleChain(*other.fNext);
}
}
RuleChain::~RuleChain() {
delete fNext;
delete ruleHeader;
}
UnicodeString
RuleChain::select(const IFixedDecimal &number) const {
if (!number.isNaN() && !number.isInfinite()) {
for (const RuleChain *rules = this; rules != NULL; rules = rules->fNext) {
if (rules->ruleHeader->isFulfilled(number)) {
return rules->fKeyword;
}
}
}
return UnicodeString(TRUE, PLURAL_KEYWORD_OTHER, 5);
}
static UnicodeString tokenString(tokenType tok) {
UnicodeString s;
switch (tok) {
case tVariableN:
s.append(LOW_N); break;
case tVariableI:
s.append(LOW_I); break;
case tVariableF:
s.append(LOW_F); break;
case tVariableV:
s.append(LOW_V); break;
case tVariableT:
s.append(LOW_T); break;
default:
s.append(TILDE);
}
return s;
}
void
RuleChain::dumpRules(UnicodeString& result) {
UChar digitString[16];
if ( ruleHeader != NULL ) {
result += fKeyword;
result += COLON;
result += SPACE;
OrConstraint* orRule=ruleHeader;
while ( orRule != NULL ) {
AndConstraint* andRule=orRule->childNode;
while ( andRule != NULL ) {
if ((andRule->op==AndConstraint::NONE) && (andRule->rangeList==NULL) && (andRule->value == -1)) {
// Empty Rules.
} else if ( (andRule->op==AndConstraint::NONE) && (andRule->rangeList==NULL) ) {
result += tokenString(andRule->digitsType);
result += UNICODE_STRING_SIMPLE(" is ");
if (andRule->negated) {
result += UNICODE_STRING_SIMPLE("not ");
}
uprv_itou(digitString,16, andRule->value,10,0);
result += UnicodeString(digitString);
}
else {
result += tokenString(andRule->digitsType);
result += SPACE;
if (andRule->op==AndConstraint::MOD) {
result += UNICODE_STRING_SIMPLE("mod ");
uprv_itou(digitString,16, andRule->opNum,10,0);
result += UnicodeString(digitString);
}
if (andRule->rangeList==NULL) {
if (andRule->negated) {
result += UNICODE_STRING_SIMPLE(" is not ");
uprv_itou(digitString,16, andRule->value,10,0);
result += UnicodeString(digitString);
}
else {
result += UNICODE_STRING_SIMPLE(" is ");
uprv_itou(digitString,16, andRule->value,10,0);
result += UnicodeString(digitString);
}
}
else {
if (andRule->negated) {
if ( andRule->integerOnly ) {
result += UNICODE_STRING_SIMPLE(" not in ");
}
else {
result += UNICODE_STRING_SIMPLE(" not within ");
}
}
else {
if ( andRule->integerOnly ) {
result += UNICODE_STRING_SIMPLE(" in ");
}
else {
result += UNICODE_STRING_SIMPLE(" within ");
}
}
for (int32_t r=0; r<andRule->rangeList->size(); r+=2) {
int32_t rangeLo = andRule->rangeList->elementAti(r);
int32_t rangeHi = andRule->rangeList->elementAti(r+1);
uprv_itou(digitString,16, rangeLo, 10, 0);
result += UnicodeString(digitString);
result += UNICODE_STRING_SIMPLE("..");
uprv_itou(digitString,16, rangeHi, 10,0);
result += UnicodeString(digitString);
if (r+2 < andRule->rangeList->size()) {
result += UNICODE_STRING_SIMPLE(", ");
}
}
}
}
if ( (andRule=andRule->next) != NULL) {
result += UNICODE_STRING_SIMPLE(" and ");
}
}
if ( (orRule = orRule->next) != NULL ) {
result += UNICODE_STRING_SIMPLE(" or ");
}
}
}
if ( fNext != NULL ) {
result += UNICODE_STRING_SIMPLE("; ");
fNext->dumpRules(result);
}
}
UErrorCode
RuleChain::getKeywords(int32_t capacityOfKeywords, UnicodeString* keywords, int32_t& arraySize) const {
if ( arraySize < capacityOfKeywords-1 ) {
keywords[arraySize++]=fKeyword;
}
else {
return U_BUFFER_OVERFLOW_ERROR;
}
if ( fNext != NULL ) {
return fNext->getKeywords(capacityOfKeywords, keywords, arraySize);
}
else {
return U_ZERO_ERROR;
}
}
UBool
RuleChain::isKeyword(const UnicodeString& keywordParam) const {
if ( fKeyword == keywordParam ) {
return TRUE;
}
if ( fNext != NULL ) {
return fNext->isKeyword(keywordParam);
}
else {
return FALSE;
}
}
PluralRuleParser::PluralRuleParser() :
ruleIndex(0), token(), type(none), prevType(none),
curAndConstraint(NULL), currentChain(NULL), rangeLowIdx(-1), rangeHiIdx(-1)
{
}
PluralRuleParser::~PluralRuleParser() {
}
int32_t
PluralRuleParser::getNumberValue(const UnicodeString& token) {
int32_t i;
char digits[128];
i = token.extract(0, token.length(), digits, UPRV_LENGTHOF(digits), US_INV);
digits[i]='\0';
return((int32_t)atoi(digits));
}
void
PluralRuleParser::checkSyntax(UErrorCode &status)
{
if (U_FAILURE(status)) {
return;
}
if (!(prevType==none || prevType==tSemiColon)) {
type = getKeyType(token, type); // Switch token type from tKeyword if we scanned a reserved word,
// and we are not at the start of a rule, where a
// keyword is expected.
}
switch(prevType) {
case none:
case tSemiColon:
if (type!=tKeyword && type != tEOF) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tVariableN:
case tVariableI:
case tVariableF:
case tVariableT:
case tVariableV:
if (type != tIs && type != tMod && type != tIn &&
type != tNot && type != tWithin && type != tEqual && type != tNotEqual) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tKeyword:
if (type != tColon) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tColon:
if (!(type == tVariableN ||
type == tVariableI ||
type == tVariableF ||
type == tVariableT ||
type == tVariableV ||
type == tAt)) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tIs:
if ( type != tNumber && type != tNot) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tNot:
if (type != tNumber && type != tIn && type != tWithin) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tMod:
case tDot2:
case tIn:
case tWithin:
case tEqual:
case tNotEqual:
if (type != tNumber) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tAnd:
case tOr:
if ( type != tVariableN &&
type != tVariableI &&
type != tVariableF &&
type != tVariableT &&
type != tVariableV) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tComma:
if (type != tNumber) {
status = U_UNEXPECTED_TOKEN;
}
break;
case tNumber:
if (type != tDot2 && type != tSemiColon && type != tIs && type != tNot &&
type != tIn && type != tEqual && type != tNotEqual && type != tWithin &&
type != tAnd && type != tOr && type != tComma && type != tAt &&
type != tEOF)
{
status = U_UNEXPECTED_TOKEN;
}
// TODO: a comma following a number that is not part of a range will be allowed.
// It's not the only case of this sort of thing. Parser needs a re-write.
break;
case tAt:
if (type != tDecimal && type != tInteger) {
status = U_UNEXPECTED_TOKEN;
}
break;
default:
status = U_UNEXPECTED_TOKEN;
break;
}
}
/*
* Scan the next token from the input rules.
* rules and returned token type are in the parser state variables.
*/
void
PluralRuleParser::getNextToken(UErrorCode &status)
{
if (U_FAILURE(status)) {
return;
}
UChar ch;
while (ruleIndex < ruleSrc->length()) {
ch = ruleSrc->charAt(ruleIndex);
type = charType(ch);
if (type != tSpace) {
break;
}
++(ruleIndex);
}
if (ruleIndex >= ruleSrc->length()) {
type = tEOF;
return;
}
int32_t curIndex= ruleIndex;
switch (type) {
case tColon:
case tSemiColon:
case tComma:
case tEllipsis:
case tTilde: // scanned '~'
case tAt: // scanned '@'
case tEqual: // scanned '='
case tMod: // scanned '%'
// Single character tokens.
++curIndex;
break;
case tNotEqual: // scanned '!'
if (ruleSrc->charAt(curIndex+1) == EQUALS) {
curIndex += 2;
} else {
type = none;
curIndex += 1;
}
break;
case tKeyword:
while (type == tKeyword && ++curIndex < ruleSrc->length()) {
ch = ruleSrc->charAt(curIndex);
type = charType(ch);
}
type = tKeyword;
break;
case tNumber:
while (type == tNumber && ++curIndex < ruleSrc->length()) {
ch = ruleSrc->charAt(curIndex);
type = charType(ch);
}
type = tNumber;
break;
case tDot:
// We could be looking at either ".." in a range, or "..." at the end of a sample.
if (curIndex+1 >= ruleSrc->length() || ruleSrc->charAt(curIndex+1) != DOT) {
++curIndex;
break; // Single dot
}
if (curIndex+2 >= ruleSrc->length() || ruleSrc->charAt(curIndex+2) != DOT) {
curIndex += 2;
type = tDot2;
break; // double dot
}
type = tEllipsis;
curIndex += 3;
break; // triple dot
default:
status = U_UNEXPECTED_TOKEN;
++curIndex;
break;
}
U_ASSERT(ruleIndex <= ruleSrc->length());
U_ASSERT(curIndex <= ruleSrc->length());
token=UnicodeString(*ruleSrc, ruleIndex, curIndex-ruleIndex);
ruleIndex = curIndex;
}
tokenType
PluralRuleParser::charType(UChar ch) {
if ((ch>=U_ZERO) && (ch<=U_NINE)) {
return tNumber;
}
if (ch>=LOW_A && ch<=LOW_Z) {
return tKeyword;
}
switch (ch) {
case COLON:
return tColon;
case SPACE:
return tSpace;
case SEMI_COLON:
return tSemiColon;
case DOT:
return tDot;
case COMMA:
return tComma;
case EXCLAMATION:
return tNotEqual;
case EQUALS:
return tEqual;
case PERCENT_SIGN:
return tMod;
case AT:
return tAt;
case ELLIPSIS:
return tEllipsis;
case TILDE:
return tTilde;
default :
return none;
}
}
// Set token type for reserved words in the Plural Rule syntax.
tokenType
PluralRuleParser::getKeyType(const UnicodeString &token, tokenType keyType)
{
if (keyType != tKeyword) {
return keyType;
}
if (0 == token.compare(PK_VAR_N, 1)) {
keyType = tVariableN;
} else if (0 == token.compare(PK_VAR_I, 1)) {
keyType = tVariableI;
} else if (0 == token.compare(PK_VAR_F, 1)) {
keyType = tVariableF;
} else if (0 == token.compare(PK_VAR_T, 1)) {
keyType = tVariableT;
} else if (0 == token.compare(PK_VAR_V, 1)) {
keyType = tVariableV;
} else if (0 == token.compare(PK_IS, 2)) {
keyType = tIs;
} else if (0 == token.compare(PK_AND, 3)) {
keyType = tAnd;
} else if (0 == token.compare(PK_IN, 2)) {
keyType = tIn;
} else if (0 == token.compare(PK_WITHIN, 6)) {
keyType = tWithin;
} else if (0 == token.compare(PK_NOT, 3)) {
keyType = tNot;
} else if (0 == token.compare(PK_MOD, 3)) {
keyType = tMod;
} else if (0 == token.compare(PK_OR, 2)) {
keyType = tOr;
} else if (0 == token.compare(PK_DECIMAL, 7)) {
keyType = tDecimal;
} else if (0 == token.compare(PK_INTEGER, 7)) {
keyType = tInteger;
}
return keyType;
}
PluralKeywordEnumeration::PluralKeywordEnumeration(RuleChain *header, UErrorCode& status)
: pos(0), fKeywordNames(status) {
if (U_FAILURE(status)) {
return;
}
fKeywordNames.setDeleter(uprv_deleteUObject);
UBool addKeywordOther=TRUE;
RuleChain *node=header;
while(node!=NULL) {
fKeywordNames.addElement(new UnicodeString(node->fKeyword), status);
if (U_FAILURE(status)) {
return;
}
if (0 == node->fKeyword.compare(PLURAL_KEYWORD_OTHER, 5)) {
addKeywordOther= FALSE;
}
node=node->fNext;
}
if (addKeywordOther) {
fKeywordNames.addElement(new UnicodeString(PLURAL_KEYWORD_OTHER), status);
}
}
const UnicodeString*
PluralKeywordEnumeration::snext(UErrorCode& status) {
if (U_SUCCESS(status) && pos < fKeywordNames.size()) {
return (const UnicodeString*)fKeywordNames.elementAt(pos++);
}
return NULL;
}
void
PluralKeywordEnumeration::reset(UErrorCode& /*status*/) {
pos=0;
}
int32_t
PluralKeywordEnumeration::count(UErrorCode& /*status*/) const {
return fKeywordNames.size();
}
PluralKeywordEnumeration::~PluralKeywordEnumeration() {
}
FixedDecimal::FixedDecimal(const VisibleDigits &digits) {
digits.getFixedDecimal(
source, intValue, decimalDigits,
decimalDigitsWithoutTrailingZeros,
visibleDecimalDigitCount, hasIntegerValue);
isNegative = digits.isNegative();
_isNaN = digits.isNaN();
_isInfinite = digits.isInfinite();
}
FixedDecimal::FixedDecimal(double n, int32_t v, int64_t f) {
init(n, v, f);
// check values. TODO make into unit test.
//
// long visiblePower = (int) Math.pow(10, v);
// if (decimalDigits > visiblePower) {
// throw new IllegalArgumentException();
// }
// double fraction = intValue + (decimalDigits / (double) visiblePower);
// if (fraction != source) {
// double diff = Math.abs(fraction - source)/(Math.abs(fraction) + Math.abs(source));
// if (diff > 0.00000001d) {
// throw new IllegalArgumentException();
// }
// }
}
FixedDecimal::FixedDecimal(double n, int32_t v) {
// Ugly, but for samples we don't care.
init(n, v, getFractionalDigits(n, v));
}
FixedDecimal::FixedDecimal(double n) {
init(n);
}
FixedDecimal::FixedDecimal() {
init(0, 0, 0);
}
// Create a FixedDecimal from a UnicodeString containing a number.
// Inefficient, but only used for samples, so simplicity trumps efficiency.
FixedDecimal::FixedDecimal(const UnicodeString &num, UErrorCode &status) {
CharString cs;
cs.appendInvariantChars(num, status);
DigitList dl;
dl.set(cs.toStringPiece(), status);
if (U_FAILURE(status)) {
init(0, 0, 0);
return;
}
int32_t decimalPoint = num.indexOf(DOT);
double n = dl.getDouble();
if (decimalPoint == -1) {
init(n, 0, 0);
} else {
int32_t v = num.length() - decimalPoint - 1;
init(n, v, getFractionalDigits(n, v));
}
}
FixedDecimal::FixedDecimal(const FixedDecimal &other) {
source = other.source;
visibleDecimalDigitCount = other.visibleDecimalDigitCount;
decimalDigits = other.decimalDigits;
decimalDigitsWithoutTrailingZeros = other.decimalDigitsWithoutTrailingZeros;
intValue = other.intValue;
hasIntegerValue = other.hasIntegerValue;
isNegative = other.isNegative;
_isNaN = other._isNaN;
_isInfinite = other._isInfinite;
}
void FixedDecimal::init(double n) {
int32_t numFractionDigits = decimals(n);
init(n, numFractionDigits, getFractionalDigits(n, numFractionDigits));
}
void FixedDecimal::init(double n, int32_t v, int64_t f) {
2013-09-13 05:16:54 +00:00
isNegative = n < 0.0;
source = fabs(n);
_isNaN = uprv_isNaN(source);
_isInfinite = uprv_isInfinite(source);
if (_isNaN || _isInfinite) {
v = 0;
f = 0;
intValue = 0;
hasIntegerValue = FALSE;
} else {
intValue = (int64_t)source;
hasIntegerValue = (source == intValue);
}
visibleDecimalDigitCount = v;
decimalDigits = f;
if (f == 0) {
decimalDigitsWithoutTrailingZeros = 0;
} else {
int64_t fdwtz = f;
while ((fdwtz%10) == 0) {
fdwtz /= 10;
}
decimalDigitsWithoutTrailingZeros = fdwtz;
}
}
// Fast path only exact initialization. Return true if successful.
// Note: Do not multiply by 10 each time through loop, rounding cruft can build
// up that makes the check for an integer result fail.
// A single multiply of the original number works more reliably.
static int32_t p10[] = {1, 10, 100, 1000, 10000};
UBool FixedDecimal::quickInit(double n) {
UBool success = FALSE;
n = fabs(n);
int32_t numFractionDigits;
for (numFractionDigits = 0; numFractionDigits <= 3; numFractionDigits++) {
double scaledN = n * p10[numFractionDigits];
if (scaledN == floor(scaledN)) {
success = TRUE;
break;
}
}
if (success) {
init(n, numFractionDigits, getFractionalDigits(n, numFractionDigits));
}
return success;
}
int32_t FixedDecimal::decimals(double n) {
// Count the number of decimal digits in the fraction part of the number, excluding trailing zeros.
// fastpath the common cases, integers or fractions with 3 or fewer digits
n = fabs(n);
for (int ndigits=0; ndigits<=3; ndigits++) {
double scaledN = n * p10[ndigits];
if (scaledN == floor(scaledN)) {
return ndigits;
}
}
// Slow path, convert with sprintf, parse converted output.
char buf[30] = {0};
sprintf(buf, "%1.15e", n);
// formatted number looks like this: 1.234567890123457e-01
int exponent = atoi(buf+18);
int numFractionDigits = 15;
for (int i=16; ; --i) {
if (buf[i] != '0') {
break;
}
--numFractionDigits;
}
numFractionDigits -= exponent; // Fraction part of fixed point representation.
return numFractionDigits;
}
// Get the fraction digits of a double, represented as an integer.
// v is the number of visible fraction digits in the displayed form of the number.
// Example: n = 1001.234, v = 6, result = 234000
// TODO: need to think through how this is used in the plural rule context.
// This function can easily encounter integer overflow,
// and can easily return noise digits when the precision of a double is exceeded.
int64_t FixedDecimal::getFractionalDigits(double n, int32_t v) {
2013-09-13 05:16:54 +00:00
if (v == 0 || n == floor(n) || uprv_isNaN(n) || uprv_isPositiveInfinity(n)) {
return 0;
}
n = fabs(n);
double fract = n - floor(n);
switch (v) {
case 1: return (int64_t)(fract*10.0 + 0.5);
case 2: return (int64_t)(fract*100.0 + 0.5);
case 3: return (int64_t)(fract*1000.0 + 0.5);
default:
double scaled = floor(fract * pow(10.0, (double)v) + 0.5);
if (scaled > U_INT64_MAX) {
return U_INT64_MAX;
} else {
return (int64_t)scaled;
}
}
}
void FixedDecimal::adjustForMinFractionDigits(int32_t minFractionDigits) {
int32_t numTrailingFractionZeros = minFractionDigits - visibleDecimalDigitCount;
if (numTrailingFractionZeros > 0) {
for (int32_t i=0; i<numTrailingFractionZeros; i++) {
// Do not let the decimalDigits value overflow if there are many trailing zeros.
// Limit the value to 18 digits, the most that a 64 bit int can fully represent.
if (decimalDigits >= 100000000000000000LL) {
break;
}
decimalDigits *= 10;
}
visibleDecimalDigitCount += numTrailingFractionZeros;
}
}
double FixedDecimal::getPluralOperand(PluralOperand operand) const {
switch(operand) {
case PLURAL_OPERAND_N: return source;
case PLURAL_OPERAND_I: return intValue;
case PLURAL_OPERAND_F: return decimalDigits;
case PLURAL_OPERAND_T: return decimalDigitsWithoutTrailingZeros;
case PLURAL_OPERAND_V: return visibleDecimalDigitCount;
default:
U_ASSERT(FALSE); // unexpected.
return source;
}
}
bool FixedDecimal::isNaN() const {
return _isNaN;
}
bool FixedDecimal::isInfinite() const {
return _isInfinite;
}
bool FixedDecimal::isNanOrInfinity() const {
return _isNaN || _isInfinite;
}
int32_t FixedDecimal::getVisibleFractionDigitCount() const {
return visibleDecimalDigitCount;
}
PluralAvailableLocalesEnumeration::PluralAvailableLocalesEnumeration(UErrorCode &status) {
fLocales = NULL;
fRes = NULL;
fOpenStatus = status;
if (U_FAILURE(status)) {
return;
}
fOpenStatus = U_ZERO_ERROR;
LocalUResourceBundlePointer rb(ures_openDirect(NULL, "plurals", &fOpenStatus));
fLocales = ures_getByKey(rb.getAlias(), "locales", NULL, &fOpenStatus);
}
PluralAvailableLocalesEnumeration::~PluralAvailableLocalesEnumeration() {
ures_close(fLocales);
ures_close(fRes);
fLocales = NULL;
fRes = NULL;
}
const char *PluralAvailableLocalesEnumeration::next(int32_t *resultLength, UErrorCode &status) {
if (U_FAILURE(status)) {
return NULL;
}
if (U_FAILURE(fOpenStatus)) {
status = fOpenStatus;
return NULL;
}
fRes = ures_getNextResource(fLocales, fRes, &status);
if (fRes == NULL || U_FAILURE(status)) {
if (status == U_INDEX_OUTOFBOUNDS_ERROR) {
status = U_ZERO_ERROR;
}
return NULL;
}
const char *result = ures_getKey(fRes);
if (resultLength != NULL) {
*resultLength = static_cast<int32_t>(uprv_strlen(result));
}
return result;
}
void PluralAvailableLocalesEnumeration::reset(UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (U_FAILURE(fOpenStatus)) {
status = fOpenStatus;
return;
}
ures_resetIterator(fLocales);
}
int32_t PluralAvailableLocalesEnumeration::count(UErrorCode &status) const {
if (U_FAILURE(status)) {
return 0;
}
if (U_FAILURE(fOpenStatus)) {
status = fOpenStatus;
return 0;
}
return ures_getSize(fLocales);
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof