scuffed-code/icu4c/source/i18n/number_fluent.cpp

845 lines
26 KiB
C++
Raw Normal View History

// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "uassert.h"
#include "unicode/numberformatter.h"
#include "number_decimalquantity.h"
#include "number_formatimpl.h"
#include "umutex.h"
#include "number_skeletons.h"
#include "number_utypes.h"
#include "util.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
template<typename Derived>
Derived NumberFormatterSettings<Derived>::notation(const Notation& notation) const& {
Derived copy(*this);
// NOTE: Slicing is OK.
copy.fMacros.notation = notation;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::notation(const Notation& notation)&& {
Derived move(std::move(*this));
// NOTE: Slicing is OK.
move.fMacros.notation = notation;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unit(const icu::MeasureUnit& unit) const& {
Derived copy(*this);
// NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit.
// TimeUnit may be affected, but TimeUnit is not as relevant to number formatting.
copy.fMacros.unit = unit;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unit(const icu::MeasureUnit& unit)&& {
Derived move(std::move(*this));
// See comments above about slicing.
move.fMacros.unit = unit;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptUnit(icu::MeasureUnit* unit) const& {
Derived copy(*this);
// Just move the unit into the MacroProps by value, and delete it since we have ownership.
// NOTE: Slicing occurs here. However, CurrencyUnit can be restored from MeasureUnit.
// TimeUnit may be affected, but TimeUnit is not as relevant to number formatting.
if (unit != nullptr) {
// TODO: On nullptr, reset to default value?
copy.fMacros.unit = std::move(*unit);
delete unit;
}
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptUnit(icu::MeasureUnit* unit)&& {
Derived move(std::move(*this));
// See comments above about slicing and ownership.
if (unit != nullptr) {
// TODO: On nullptr, reset to default value?
move.fMacros.unit = std::move(*unit);
delete unit;
}
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::perUnit(const icu::MeasureUnit& perUnit) const& {
Derived copy(*this);
// See comments above about slicing.
copy.fMacros.perUnit = perUnit;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::perUnit(const icu::MeasureUnit& perUnit)&& {
Derived move(std::move(*this));
// See comments above about slicing.
move.fMacros.perUnit = perUnit;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptPerUnit(icu::MeasureUnit* perUnit) const& {
Derived copy(*this);
// See comments above about slicing and ownership.
if (perUnit != nullptr) {
// TODO: On nullptr, reset to default value?
copy.fMacros.perUnit = std::move(*perUnit);
delete perUnit;
}
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptPerUnit(icu::MeasureUnit* perUnit)&& {
Derived move(std::move(*this));
// See comments above about slicing and ownership.
if (perUnit != nullptr) {
// TODO: On nullptr, reset to default value?
move.fMacros.perUnit = std::move(*perUnit);
delete perUnit;
}
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::precision(const Precision& precision) const& {
Derived copy(*this);
// NOTE: Slicing is OK.
copy.fMacros.precision = precision;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::precision(const Precision& precision)&& {
Derived move(std::move(*this));
// NOTE: Slicing is OK.
move.fMacros.precision = precision;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::roundingMode(UNumberFormatRoundingMode roundingMode) const& {
Derived copy(*this);
copy.fMacros.roundingMode = roundingMode;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::roundingMode(UNumberFormatRoundingMode roundingMode)&& {
Derived move(std::move(*this));
move.fMacros.roundingMode = roundingMode;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::grouping(UGroupingStrategy strategy) const& {
Derived copy(*this);
// NOTE: This is slightly different than how the setting is stored in Java
// because we want to put it on the stack.
copy.fMacros.grouper = Grouper::forStrategy(strategy);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::grouping(UGroupingStrategy strategy)&& {
Derived move(std::move(*this));
move.fMacros.grouper = Grouper::forStrategy(strategy);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::integerWidth(const IntegerWidth& style) const& {
Derived copy(*this);
copy.fMacros.integerWidth = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::integerWidth(const IntegerWidth& style)&& {
Derived move(std::move(*this));
move.fMacros.integerWidth = style;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::symbols(const DecimalFormatSymbols& symbols) const& {
Derived copy(*this);
copy.fMacros.symbols.setTo(symbols);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::symbols(const DecimalFormatSymbols& symbols)&& {
Derived move(std::move(*this));
move.fMacros.symbols.setTo(symbols);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptSymbols(NumberingSystem* ns) const& {
Derived copy(*this);
copy.fMacros.symbols.setTo(ns);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::adoptSymbols(NumberingSystem* ns)&& {
Derived move(std::move(*this));
move.fMacros.symbols.setTo(ns);
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitWidth(UNumberUnitWidth width) const& {
Derived copy(*this);
copy.fMacros.unitWidth = width;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::unitWidth(UNumberUnitWidth width)&& {
Derived move(std::move(*this));
move.fMacros.unitWidth = width;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::sign(UNumberSignDisplay style) const& {
Derived copy(*this);
copy.fMacros.sign = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::sign(UNumberSignDisplay style)&& {
Derived move(std::move(*this));
move.fMacros.sign = style;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::decimal(UNumberDecimalSeparatorDisplay style) const& {
Derived copy(*this);
copy.fMacros.decimal = style;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::decimal(UNumberDecimalSeparatorDisplay style)&& {
Derived move(std::move(*this));
move.fMacros.decimal = style;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::scale(const Scale& scale) const& {
Derived copy(*this);
copy.fMacros.scale = scale;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::scale(const Scale& scale)&& {
Derived move(std::move(*this));
move.fMacros.scale = scale;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::padding(const Padder& padder) const& {
Derived copy(*this);
copy.fMacros.padder = padder;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::padding(const Padder& padder)&& {
Derived move(std::move(*this));
move.fMacros.padder = padder;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::threshold(int32_t threshold) const& {
Derived copy(*this);
copy.fMacros.threshold = threshold;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::threshold(int32_t threshold)&& {
Derived move(std::move(*this));
move.fMacros.threshold = threshold;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(const impl::MacroProps& macros) const& {
Derived copy(*this);
copy.fMacros = macros;
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(const impl::MacroProps& macros)&& {
Derived move(std::move(*this));
move.fMacros = macros;
return move;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(impl::MacroProps&& macros) const& {
Derived copy(*this);
copy.fMacros = std::move(macros);
return copy;
}
template<typename Derived>
Derived NumberFormatterSettings<Derived>::macros(impl::MacroProps&& macros)&& {
Derived move(std::move(*this));
move.fMacros = std::move(macros);
return move;
}
template<typename Derived>
UnicodeString NumberFormatterSettings<Derived>::toSkeleton(UErrorCode& status) const {
if (fMacros.copyErrorTo(status)) {
return {};
}
return skeleton::generate(fMacros, status);
}
// Declare all classes that implement NumberFormatterSettings
// See https://stackoverflow.com/a/495056/1407170
template
class icu::number::NumberFormatterSettings<icu::number::UnlocalizedNumberFormatter>;
template
class icu::number::NumberFormatterSettings<icu::number::LocalizedNumberFormatter>;
UnlocalizedNumberFormatter NumberFormatter::with() {
UnlocalizedNumberFormatter result;
return result;
}
LocalizedNumberFormatter NumberFormatter::withLocale(const Locale& locale) {
return with().locale(locale);
}
UnlocalizedNumberFormatter
NumberFormatter::fromSkeleton(const UnicodeString& skeleton, UErrorCode& status) {
return skeleton::create(skeleton, status);
}
template<typename T> using NFS = NumberFormatterSettings<T>;
using LNF = LocalizedNumberFormatter;
using UNF = UnlocalizedNumberFormatter;
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const UNF& other)
: UNF(static_cast<const NFS<UNF>&>(other)) {}
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(const NFS<UNF>& other)
: NFS<UNF>(other) {
// No additional fields to assign
}
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(UNF&& src) U_NOEXCEPT
: UNF(static_cast<NFS<UNF>&&>(src)) {}
UnlocalizedNumberFormatter::UnlocalizedNumberFormatter(NFS<UNF>&& src) U_NOEXCEPT
: NFS<UNF>(std::move(src)) {
// No additional fields to assign
}
UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(const UNF& other) {
NFS<UNF>::operator=(static_cast<const NFS<UNF>&>(other));
// No additional fields to assign
return *this;
}
UnlocalizedNumberFormatter& UnlocalizedNumberFormatter::operator=(UNF&& src) U_NOEXCEPT {
NFS<UNF>::operator=(static_cast<NFS<UNF>&&>(src));
// No additional fields to assign
return *this;
}
LocalizedNumberFormatter::LocalizedNumberFormatter(const LNF& other)
: LNF(static_cast<const NFS<LNF>&>(other)) {}
LocalizedNumberFormatter::LocalizedNumberFormatter(const NFS<LNF>& other)
: NFS<LNF>(other) {
// No additional fields to assign (let call count and compiled formatter reset to defaults)
}
LocalizedNumberFormatter::LocalizedNumberFormatter(LocalizedNumberFormatter&& src) U_NOEXCEPT
: LNF(static_cast<NFS<LNF>&&>(src)) {}
LocalizedNumberFormatter::LocalizedNumberFormatter(NFS<LNF>&& src) U_NOEXCEPT
: NFS<LNF>(std::move(src)) {
// For the move operators, copy over the compiled formatter.
// Note: if the formatter is not compiled, call count information is lost.
if (static_cast<LNF&&>(src).fCompiled != nullptr) {
lnfMoveHelper(static_cast<LNF&&>(src));
}
}
LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(const LNF& other) {
NFS<LNF>::operator=(static_cast<const NFS<LNF>&>(other));
// No additional fields to assign (let call count and compiled formatter reset to defaults)
return *this;
}
LocalizedNumberFormatter& LocalizedNumberFormatter::operator=(LNF&& src) U_NOEXCEPT {
NFS<LNF>::operator=(static_cast<NFS<LNF>&&>(src));
// For the move operators, copy over the compiled formatter.
// Note: if the formatter is not compiled, call count information is lost.
if (static_cast<LNF&&>(src).fCompiled != nullptr) {
// Formatter is compiled
lnfMoveHelper(static_cast<LNF&&>(src));
} else {
// Reset to default values.
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(fUnsafeCallCount);
umtx_storeRelease(*callCount, 0);
fCompiled = nullptr;
}
return *this;
}
void LocalizedNumberFormatter::lnfMoveHelper(LNF&& src) {
// Copy over the compiled formatter and set call count to INT32_MIN as in computeCompiled().
// Don't copy the call count directly because doing so requires a loadAcquire/storeRelease.
// The bits themselves appear to be platform-dependent, so copying them might not be safe.
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(fUnsafeCallCount);
umtx_storeRelease(*callCount, INT32_MIN);
fCompiled = src.fCompiled;
// Reset the source object to leave it in a safe state.
auto* srcCallCount = reinterpret_cast<u_atomic_int32_t*>(src.fUnsafeCallCount);
umtx_storeRelease(*srcCallCount, 0);
src.fCompiled = nullptr;
}
LocalizedNumberFormatter::~LocalizedNumberFormatter() {
delete fCompiled;
}
LocalizedNumberFormatter::LocalizedNumberFormatter(const MacroProps& macros, const Locale& locale) {
fMacros = macros;
fMacros.locale = locale;
}
LocalizedNumberFormatter::LocalizedNumberFormatter(MacroProps&& macros, const Locale& locale) {
fMacros = std::move(macros);
fMacros.locale = locale;
}
LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale) const& {
return LocalizedNumberFormatter(fMacros, locale);
}
LocalizedNumberFormatter UnlocalizedNumberFormatter::locale(const Locale& locale)&& {
return LocalizedNumberFormatter(std::move(fMacros), locale);
}
SymbolsWrapper::SymbolsWrapper(const SymbolsWrapper& other) {
doCopyFrom(other);
}
SymbolsWrapper::SymbolsWrapper(SymbolsWrapper&& src) U_NOEXCEPT {
doMoveFrom(std::move(src));
}
SymbolsWrapper& SymbolsWrapper::operator=(const SymbolsWrapper& other) {
if (this == &other) {
return *this;
}
doCleanup();
doCopyFrom(other);
return *this;
}
SymbolsWrapper& SymbolsWrapper::operator=(SymbolsWrapper&& src) U_NOEXCEPT {
if (this == &src) {
return *this;
}
doCleanup();
doMoveFrom(std::move(src));
return *this;
}
SymbolsWrapper::~SymbolsWrapper() {
doCleanup();
}
void SymbolsWrapper::setTo(const DecimalFormatSymbols& dfs) {
doCleanup();
fType = SYMPTR_DFS;
fPtr.dfs = new DecimalFormatSymbols(dfs);
}
void SymbolsWrapper::setTo(const NumberingSystem* ns) {
doCleanup();
fType = SYMPTR_NS;
fPtr.ns = ns;
}
void SymbolsWrapper::doCopyFrom(const SymbolsWrapper& other) {
fType = other.fType;
switch (fType) {
case SYMPTR_NONE:
// No action necessary
break;
case SYMPTR_DFS:
// Memory allocation failures are exposed in copyErrorTo()
if (other.fPtr.dfs != nullptr) {
fPtr.dfs = new DecimalFormatSymbols(*other.fPtr.dfs);
} else {
fPtr.dfs = nullptr;
}
break;
case SYMPTR_NS:
// Memory allocation failures are exposed in copyErrorTo()
if (other.fPtr.ns != nullptr) {
fPtr.ns = new NumberingSystem(*other.fPtr.ns);
} else {
fPtr.ns = nullptr;
}
break;
}
}
void SymbolsWrapper::doMoveFrom(SymbolsWrapper&& src) {
fType = src.fType;
switch (fType) {
case SYMPTR_NONE:
// No action necessary
break;
case SYMPTR_DFS:
fPtr.dfs = src.fPtr.dfs;
src.fPtr.dfs = nullptr;
break;
case SYMPTR_NS:
fPtr.ns = src.fPtr.ns;
src.fPtr.ns = nullptr;
break;
}
}
void SymbolsWrapper::doCleanup() {
switch (fType) {
case SYMPTR_NONE:
// No action necessary
break;
case SYMPTR_DFS:
delete fPtr.dfs;
break;
case SYMPTR_NS:
delete fPtr.ns;
break;
}
}
bool SymbolsWrapper::isDecimalFormatSymbols() const {
return fType == SYMPTR_DFS;
}
bool SymbolsWrapper::isNumberingSystem() const {
return fType == SYMPTR_NS;
}
const DecimalFormatSymbols* SymbolsWrapper::getDecimalFormatSymbols() const {
U_ASSERT(fType == SYMPTR_DFS);
return fPtr.dfs;
}
const NumberingSystem* SymbolsWrapper::getNumberingSystem() const {
U_ASSERT(fType == SYMPTR_NS);
return fPtr.ns;
}
FormattedNumber::FormattedNumber(FormattedNumber&& src) U_NOEXCEPT
: fResults(src.fResults), fErrorCode(src.fErrorCode) {
// Disown src.fResults to prevent double-deletion
src.fResults = nullptr;
src.fErrorCode = U_INVALID_STATE_ERROR;
}
FormattedNumber& FormattedNumber::operator=(FormattedNumber&& src) U_NOEXCEPT {
delete fResults;
fResults = src.fResults;
fErrorCode = src.fErrorCode;
// Disown src.fResults to prevent double-deletion
src.fResults = nullptr;
src.fErrorCode = U_INVALID_STATE_ERROR;
return *this;
}
FormattedNumber LocalizedNumberFormatter::formatInt(int64_t value, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToLong(value);
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
FormattedNumber LocalizedNumberFormatter::formatDouble(double value, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToDouble(value);
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
FormattedNumber LocalizedNumberFormatter::formatDecimal(StringPiece value, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity.setToDecNumber(value, status);
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
FormattedNumber
LocalizedNumberFormatter::formatDecimalQuantity(const DecimalQuantity& dq, UErrorCode& status) const {
if (U_FAILURE(status)) { return FormattedNumber(U_ILLEGAL_ARGUMENT_ERROR); }
auto results = new UFormattedNumberData();
if (results == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return FormattedNumber(status);
}
results->quantity = dq;
formatImpl(results, status);
// Do not save the results object if we encountered a failure.
if (U_SUCCESS(status)) {
return FormattedNumber(results);
} else {
delete results;
return FormattedNumber(status);
}
}
void LocalizedNumberFormatter::formatImpl(impl::UFormattedNumberData* results, UErrorCode& status) const {
if (computeCompiled(status)) {
fCompiled->apply(results->quantity, results->string, status);
} else {
NumberFormatterImpl::applyStatic(fMacros, results->quantity, results->string, status);
}
}
void LocalizedNumberFormatter::getAffixImpl(bool isPrefix, bool isNegative, UnicodeString& result,
UErrorCode& status) const {
NumberStringBuilder string;
auto signum = static_cast<int8_t>(isNegative ? -1 : 1);
// Always return affixes for plural form OTHER.
static const StandardPlural::Form plural = StandardPlural::OTHER;
int32_t prefixLength;
if (computeCompiled(status)) {
prefixLength = fCompiled->getPrefixSuffix(signum, plural, string, status);
} else {
prefixLength = NumberFormatterImpl::getPrefixSuffixStatic(fMacros, signum, plural, string, status);
}
result.remove();
if (isPrefix) {
result.append(string.toTempUnicodeString().tempSubStringBetween(0, prefixLength));
} else {
result.append(string.toTempUnicodeString().tempSubStringBetween(prefixLength, string.length()));
}
}
bool LocalizedNumberFormatter::computeCompiled(UErrorCode& status) const {
// fUnsafeCallCount contains memory to be interpreted as an atomic int, most commonly
// std::atomic<int32_t>. Since the type of atomic int is platform-dependent, we cast the
// bytes in fUnsafeCallCount to u_atomic_int32_t, a typedef for the platform-dependent
// atomic int type defined in umutex.h.
static_assert(
sizeof(u_atomic_int32_t) <= sizeof(fUnsafeCallCount),
"Atomic integer size on this platform exceeds the size allocated by fUnsafeCallCount");
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(
const_cast<LocalizedNumberFormatter*>(this)->fUnsafeCallCount);
// A positive value in the atomic int indicates that the data structure is not yet ready;
// a negative value indicates that it is ready. If, after the increment, the atomic int
// is exactly threshold, then it is the current thread's job to build the data structure.
// Note: We set the callCount to INT32_MIN so that if another thread proceeds to increment
// the atomic int, the value remains below zero.
int32_t currentCount = umtx_loadAcquire(*callCount);
if (0 <= currentCount && currentCount <= fMacros.threshold && fMacros.threshold > 0) {
currentCount = umtx_atomic_inc(callCount);
}
if (currentCount == fMacros.threshold && fMacros.threshold > 0) {
// Build the data structure and then use it (slow to fast path).
const NumberFormatterImpl* compiled = NumberFormatterImpl::fromMacros(fMacros, status);
U_ASSERT(fCompiled == nullptr);
const_cast<LocalizedNumberFormatter*>(this)->fCompiled = compiled;
umtx_storeRelease(*callCount, INT32_MIN);
return true;
} else if (currentCount < 0) {
// The data structure is already built; use it (fast path).
U_ASSERT(fCompiled != nullptr);
return true;
} else {
// Format the number without building the data structure (slow path).
return false;
}
}
const impl::NumberFormatterImpl* LocalizedNumberFormatter::getCompiled() const {
return fCompiled;
}
int32_t LocalizedNumberFormatter::getCallCount() const {
auto* callCount = reinterpret_cast<u_atomic_int32_t*>(
const_cast<LocalizedNumberFormatter*>(this)->fUnsafeCallCount);
return umtx_loadAcquire(*callCount);
}
UnicodeString FormattedNumber::toString() const {
UErrorCode localStatus = U_ZERO_ERROR;
return toString(localStatus);
}
UnicodeString FormattedNumber::toString(UErrorCode& status) const {
if (U_FAILURE(status)) {
return ICU_Utility::makeBogusString();
}
if (fResults == nullptr) {
status = fErrorCode;
return ICU_Utility::makeBogusString();
}
return fResults->string.toUnicodeString();
}
Appendable& FormattedNumber::appendTo(Appendable& appendable) {
UErrorCode localStatus = U_ZERO_ERROR;
return appendTo(appendable, localStatus);
}
Appendable& FormattedNumber::appendTo(Appendable& appendable, UErrorCode& status) {
if (U_FAILURE(status)) {
return appendable;
}
if (fResults == nullptr) {
status = fErrorCode;
return appendable;
}
appendable.appendString(fResults->string.chars(), fResults->string.length());
return appendable;
}
void FormattedNumber::populateFieldPosition(FieldPosition& fieldPosition, UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
if (fResults == nullptr) {
status = fErrorCode;
return;
}
// in case any users were depending on the old behavior:
fieldPosition.setBeginIndex(0);
fieldPosition.setEndIndex(0);
fResults->string.nextFieldPosition(fieldPosition, status);
}
UBool FormattedNumber::nextFieldPosition(FieldPosition& fieldPosition, UErrorCode& status) const {
if (U_FAILURE(status)) {
return FALSE;
}
if (fResults == nullptr) {
status = fErrorCode;
return FALSE;
}
// NOTE: MSVC sometimes complains when implicitly converting between bool and UBool
return fResults->string.nextFieldPosition(fieldPosition, status) ? TRUE : FALSE;
}
void FormattedNumber::populateFieldPositionIterator(FieldPositionIterator& iterator, UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
if (fResults == nullptr) {
status = fErrorCode;
return;
}
fResults->string.getAllFieldPositions(iterator, status);
}
void FormattedNumber::getAllFieldPositions(FieldPositionIterator& iterator, UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
if (fResults == nullptr) {
status = fErrorCode;
return;
}
fResults->string.getAllFieldPositions(iterator, status);
}
void FormattedNumber::getDecimalQuantity(DecimalQuantity& output, UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
if (fResults == nullptr) {
status = fErrorCode;
return;
}
output = fResults->quantity;
}
FormattedNumber::~FormattedNumber() {
delete fResults;
}
#endif /* #if !UCONFIG_NO_FORMATTING */