2014-02-25 21:21:49 +00:00
|
|
|
/*
|
|
|
|
*******************************************************************************
|
2016-05-31 21:45:07 +00:00
|
|
|
* Copyright (C) 2013-2015, International Business Machines
|
|
|
|
* Corporation and others. All Rights Reserved.
|
2014-02-25 21:21:49 +00:00
|
|
|
*******************************************************************************
|
|
|
|
* collationfastlatin.h
|
|
|
|
*
|
|
|
|
* created on: 2013aug09
|
|
|
|
* created by: Markus W. Scherer
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __COLLATIONFASTLATIN_H__
|
|
|
|
#define __COLLATIONFASTLATIN_H__
|
|
|
|
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
|
|
|
|
#if !UCONFIG_NO_COLLATION
|
|
|
|
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
struct CollationData;
|
|
|
|
struct CollationSettings;
|
|
|
|
|
|
|
|
class U_I18N_API CollationFastLatin /* all static */ {
|
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* Fast Latin format version (one byte 1..FF).
|
|
|
|
* Must be incremented for any runtime-incompatible changes,
|
|
|
|
* in particular, for changes to any of the following constants.
|
|
|
|
*
|
|
|
|
* When the major version number of the main data format changes,
|
|
|
|
* we can reset this fast Latin version to 1.
|
|
|
|
*/
|
2015-01-07 03:37:11 +00:00
|
|
|
static const uint16_t VERSION = 2;
|
2014-02-25 21:21:49 +00:00
|
|
|
|
|
|
|
static const int32_t LATIN_MAX = 0x17f;
|
|
|
|
static const int32_t LATIN_LIMIT = LATIN_MAX + 1;
|
|
|
|
|
|
|
|
static const int32_t LATIN_MAX_UTF8_LEAD = 0xc5; // UTF-8 lead byte of LATIN_MAX
|
|
|
|
|
|
|
|
static const int32_t PUNCT_START = 0x2000;
|
|
|
|
static const int32_t PUNCT_LIMIT = 0x2040;
|
|
|
|
|
|
|
|
// excludes U+FFFE & U+FFFF
|
|
|
|
static const int32_t NUM_FAST_CHARS = LATIN_LIMIT + (PUNCT_LIMIT - PUNCT_START);
|
|
|
|
|
|
|
|
// Note on the supported weight ranges:
|
|
|
|
// Analysis of UCA 6.3 and CLDR 23 non-search tailorings shows that
|
|
|
|
// the CEs for characters in the above ranges, excluding expansions with length >2,
|
|
|
|
// excluding contractions of >2 characters, and other restrictions
|
|
|
|
// (see the builder's getCEsFromCE32()),
|
|
|
|
// use at most about 150 primary weights,
|
|
|
|
// where about 94 primary weights are possibly-variable (space/punct/symbol/currency),
|
|
|
|
// at most 4 secondary before-common weights,
|
|
|
|
// at most 4 secondary after-common weights,
|
|
|
|
// at most 16 secondary high weights (in secondary CEs), and
|
|
|
|
// at most 4 tertiary after-common weights.
|
|
|
|
// The following ranges are designed to support slightly more weights than that.
|
|
|
|
// (en_US_POSIX is unusual: It creates about 64 variable + 116 Latin primaries.)
|
|
|
|
|
|
|
|
// Digits may use long primaries (preserving more short ones)
|
|
|
|
// or short primaries (faster) without changing this data structure.
|
|
|
|
// (If we supported numeric collation, then digits would have to have long primaries
|
|
|
|
// so that special handling does not affect the fast path.)
|
|
|
|
|
|
|
|
static const uint32_t SHORT_PRIMARY_MASK = 0xfc00; // bits 15..10
|
|
|
|
static const uint32_t INDEX_MASK = 0x3ff; // bits 9..0 for expansions & contractions
|
|
|
|
static const uint32_t SECONDARY_MASK = 0x3e0; // bits 9..5
|
|
|
|
static const uint32_t CASE_MASK = 0x18; // bits 4..3
|
|
|
|
static const uint32_t LONG_PRIMARY_MASK = 0xfff8; // bits 15..3
|
|
|
|
static const uint32_t TERTIARY_MASK = 7; // bits 2..0
|
|
|
|
static const uint32_t CASE_AND_TERTIARY_MASK = CASE_MASK | TERTIARY_MASK;
|
|
|
|
|
|
|
|
static const uint32_t TWO_SHORT_PRIMARIES_MASK =
|
|
|
|
(SHORT_PRIMARY_MASK << 16) | SHORT_PRIMARY_MASK; // 0xfc00fc00
|
|
|
|
static const uint32_t TWO_LONG_PRIMARIES_MASK =
|
|
|
|
(LONG_PRIMARY_MASK << 16) | LONG_PRIMARY_MASK; // 0xfff8fff8
|
|
|
|
static const uint32_t TWO_SECONDARIES_MASK =
|
|
|
|
(SECONDARY_MASK << 16) | SECONDARY_MASK; // 0x3e003e0
|
|
|
|
static const uint32_t TWO_CASES_MASK =
|
|
|
|
(CASE_MASK << 16) | CASE_MASK; // 0x180018
|
|
|
|
static const uint32_t TWO_TERTIARIES_MASK =
|
|
|
|
(TERTIARY_MASK << 16) | TERTIARY_MASK; // 0x70007
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Contraction with one fast Latin character.
|
|
|
|
* Use INDEX_MASK to find the start of the contraction list after the fixed table.
|
|
|
|
* The first entry contains the default mapping.
|
|
|
|
* Otherwise use CONTR_CHAR_MASK for the contraction character index
|
|
|
|
* (in ascending order).
|
|
|
|
* Use CONTR_LENGTH_SHIFT for the length of the entry
|
|
|
|
* (1=BAIL_OUT, 2=one CE, 3=two CEs).
|
|
|
|
*
|
|
|
|
* Also, U+0000 maps to a contraction entry, so that the fast path need not
|
|
|
|
* check for NUL termination.
|
|
|
|
* It usually maps to a contraction list with only the completely ignorable default value.
|
|
|
|
*/
|
|
|
|
static const uint32_t CONTRACTION = 0x400;
|
|
|
|
/**
|
|
|
|
* An expansion encodes two CEs.
|
|
|
|
* Use INDEX_MASK to find the pair of CEs after the fixed table.
|
|
|
|
*
|
|
|
|
* The higher a mini CE value, the easier it is to process.
|
|
|
|
* For expansions and higher, no context needs to be considered.
|
|
|
|
*/
|
|
|
|
static const uint32_t EXPANSION = 0x800;
|
|
|
|
/**
|
|
|
|
* Encodes one CE with a long/low mini primary (there are 128).
|
|
|
|
* All potentially-variable primaries must be in this range,
|
|
|
|
* to make the short-primary path as fast as possible.
|
|
|
|
*/
|
|
|
|
static const uint32_t MIN_LONG = 0xc00;
|
|
|
|
static const uint32_t LONG_INC = 8;
|
|
|
|
static const uint32_t MAX_LONG = 0xff8;
|
|
|
|
/**
|
|
|
|
* Encodes one CE with a short/high primary (there are 60),
|
|
|
|
* plus a secondary CE if the secondary weight is high.
|
|
|
|
* Fast handling: At least all letter primaries should be in this range.
|
|
|
|
*/
|
|
|
|
static const uint32_t MIN_SHORT = 0x1000;
|
|
|
|
static const uint32_t SHORT_INC = 0x400;
|
|
|
|
/** The highest primary weight is reserved for U+FFFF. */
|
|
|
|
static const uint32_t MAX_SHORT = SHORT_PRIMARY_MASK;
|
|
|
|
|
|
|
|
static const uint32_t MIN_SEC_BEFORE = 0; // must add SEC_OFFSET
|
|
|
|
static const uint32_t SEC_INC = 0x20;
|
|
|
|
static const uint32_t MAX_SEC_BEFORE = MIN_SEC_BEFORE + 4 * SEC_INC; // 5 before common
|
|
|
|
static const uint32_t COMMON_SEC = MAX_SEC_BEFORE + SEC_INC;
|
|
|
|
static const uint32_t MIN_SEC_AFTER = COMMON_SEC + SEC_INC;
|
|
|
|
static const uint32_t MAX_SEC_AFTER = MIN_SEC_AFTER + 5 * SEC_INC; // 6 after common
|
|
|
|
static const uint32_t MIN_SEC_HIGH = MAX_SEC_AFTER + SEC_INC; // 20 high secondaries
|
|
|
|
static const uint32_t MAX_SEC_HIGH = SECONDARY_MASK;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Lookup: Add this offset to secondary weights, except for completely ignorable CEs.
|
|
|
|
* Must be greater than any special value, e.g., MERGE_WEIGHT.
|
|
|
|
* The exact value is not relevant for the format version.
|
|
|
|
*/
|
|
|
|
static const uint32_t SEC_OFFSET = SEC_INC;
|
|
|
|
static const uint32_t COMMON_SEC_PLUS_OFFSET = COMMON_SEC + SEC_OFFSET;
|
|
|
|
|
|
|
|
static const uint32_t TWO_SEC_OFFSETS =
|
|
|
|
(SEC_OFFSET << 16) | SEC_OFFSET; // 0x200020
|
|
|
|
static const uint32_t TWO_COMMON_SEC_PLUS_OFFSET =
|
|
|
|
(COMMON_SEC_PLUS_OFFSET << 16) | COMMON_SEC_PLUS_OFFSET;
|
|
|
|
|
|
|
|
static const uint32_t LOWER_CASE = 8; // case bits include this offset
|
|
|
|
static const uint32_t TWO_LOWER_CASES = (LOWER_CASE << 16) | LOWER_CASE; // 0x80008
|
|
|
|
|
|
|
|
static const uint32_t COMMON_TER = 0; // must add TER_OFFSET
|
|
|
|
static const uint32_t MAX_TER_AFTER = 7; // 7 after common
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Lookup: Add this offset to tertiary weights, except for completely ignorable CEs.
|
|
|
|
* Must be greater than any special value, e.g., MERGE_WEIGHT.
|
|
|
|
* Must be greater than case bits as well, so that with combined case+tertiary weights
|
|
|
|
* plus the offset the tertiary bits does not spill over into the case bits.
|
|
|
|
* The exact value is not relevant for the format version.
|
|
|
|
*/
|
|
|
|
static const uint32_t TER_OFFSET = SEC_OFFSET;
|
|
|
|
static const uint32_t COMMON_TER_PLUS_OFFSET = COMMON_TER + TER_OFFSET;
|
|
|
|
|
|
|
|
static const uint32_t TWO_TER_OFFSETS = (TER_OFFSET << 16) | TER_OFFSET;
|
|
|
|
static const uint32_t TWO_COMMON_TER_PLUS_OFFSET =
|
|
|
|
(COMMON_TER_PLUS_OFFSET << 16) | COMMON_TER_PLUS_OFFSET;
|
|
|
|
|
|
|
|
static const uint32_t MERGE_WEIGHT = 3;
|
|
|
|
static const uint32_t EOS = 2; // end of string
|
|
|
|
static const uint32_t BAIL_OUT = 1;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Contraction result first word bits 8..0 contain the
|
|
|
|
* second contraction character, as a char index 0..NUM_FAST_CHARS-1.
|
|
|
|
* Each contraction list is terminated with a word containing CONTR_CHAR_MASK.
|
|
|
|
*/
|
|
|
|
static const uint32_t CONTR_CHAR_MASK = 0x1ff;
|
|
|
|
/**
|
|
|
|
* Contraction result first word bits 10..9 contain the result length:
|
|
|
|
* 1=bail out, 2=one mini CE, 3=two mini CEs
|
|
|
|
*/
|
|
|
|
static const uint32_t CONTR_LENGTH_SHIFT = 9;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Comparison return value when the regular comparison must be used.
|
|
|
|
* The exact value is not relevant for the format version.
|
|
|
|
*/
|
|
|
|
static const int32_t BAIL_OUT_RESULT = -2;
|
|
|
|
|
|
|
|
static inline int32_t getCharIndex(UChar c) {
|
|
|
|
if(c <= LATIN_MAX) {
|
|
|
|
return c;
|
|
|
|
} else if(PUNCT_START <= c && c < PUNCT_LIMIT) {
|
|
|
|
return c - (PUNCT_START - LATIN_LIMIT);
|
|
|
|
} else {
|
|
|
|
// Not a fast Latin character.
|
|
|
|
// Note: U+FFFE & U+FFFF are forbidden in tailorings
|
|
|
|
// and thus do not occur in any contractions.
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes the options value for the compare functions
|
|
|
|
* and writes the precomputed primary weights.
|
|
|
|
* Returns -1 if the Latin fastpath is not supported for the data and settings.
|
|
|
|
* The capacity must be LATIN_LIMIT.
|
|
|
|
*/
|
|
|
|
static int32_t getOptions(const CollationData *data, const CollationSettings &settings,
|
|
|
|
uint16_t *primaries, int32_t capacity);
|
|
|
|
|
|
|
|
static int32_t compareUTF16(const uint16_t *table, const uint16_t *primaries, int32_t options,
|
|
|
|
const UChar *left, int32_t leftLength,
|
|
|
|
const UChar *right, int32_t rightLength);
|
|
|
|
|
|
|
|
static int32_t compareUTF8(const uint16_t *table, const uint16_t *primaries, int32_t options,
|
|
|
|
const uint8_t *left, int32_t leftLength,
|
|
|
|
const uint8_t *right, int32_t rightLength);
|
|
|
|
|
|
|
|
private:
|
|
|
|
static uint32_t lookup(const uint16_t *table, UChar32 c);
|
|
|
|
static uint32_t lookupUTF8(const uint16_t *table, UChar32 c,
|
|
|
|
const uint8_t *s8, int32_t &sIndex, int32_t sLength);
|
|
|
|
static uint32_t lookupUTF8Unsafe(const uint16_t *table, UChar32 c,
|
|
|
|
const uint8_t *s8, int32_t &sIndex);
|
|
|
|
|
|
|
|
static uint32_t nextPair(const uint16_t *table, UChar32 c, uint32_t ce,
|
|
|
|
const UChar *s16, const uint8_t *s8, int32_t &sIndex, int32_t &sLength);
|
|
|
|
|
|
|
|
static inline uint32_t getPrimaries(uint32_t variableTop, uint32_t pair) {
|
|
|
|
uint32_t ce = pair & 0xffff;
|
|
|
|
if(ce >= MIN_SHORT) { return pair & TWO_SHORT_PRIMARIES_MASK; }
|
|
|
|
if(ce > variableTop) { return pair & TWO_LONG_PRIMARIES_MASK; }
|
|
|
|
if(ce >= MIN_LONG) { return 0; } // variable
|
|
|
|
return pair; // special mini CE
|
|
|
|
}
|
|
|
|
static inline uint32_t getSecondariesFromOneShortCE(uint32_t ce) {
|
|
|
|
ce &= SECONDARY_MASK;
|
|
|
|
if(ce < MIN_SEC_HIGH) {
|
|
|
|
return ce + SEC_OFFSET;
|
|
|
|
} else {
|
|
|
|
return ((ce + SEC_OFFSET) << 16) | COMMON_SEC_PLUS_OFFSET;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static uint32_t getSecondaries(uint32_t variableTop, uint32_t pair);
|
|
|
|
static uint32_t getCases(uint32_t variableTop, UBool strengthIsPrimary, uint32_t pair);
|
|
|
|
static uint32_t getTertiaries(uint32_t variableTop, UBool withCaseBits, uint32_t pair);
|
|
|
|
static uint32_t getQuaternaries(uint32_t variableTop, uint32_t pair);
|
|
|
|
|
|
|
|
private:
|
|
|
|
CollationFastLatin(); // no constructor
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Format of the CollationFastLatin data table.
|
2015-01-07 03:37:11 +00:00
|
|
|
* CollationFastLatin::VERSION = 2.
|
2014-02-25 21:21:49 +00:00
|
|
|
*
|
|
|
|
* This table contains data for a Latin-text collation fastpath.
|
|
|
|
* The data is stored as an array of uint16_t which contains the following parts.
|
|
|
|
*
|
|
|
|
* uint16_t -- version & header length
|
|
|
|
* Bits 15..8: version, must match the VERSION
|
|
|
|
* 7..0: length of the header
|
|
|
|
*
|
|
|
|
* uint16_t varTops[header length - 1]
|
2015-01-07 03:37:11 +00:00
|
|
|
* Version 2:
|
|
|
|
* varTops[m] is the highest CollationFastLatin long-primary weight
|
|
|
|
* of supported maxVariable group m
|
|
|
|
* (special reorder group space, punct, symbol, currency).
|
|
|
|
*
|
|
|
|
* Version 1:
|
2014-02-25 21:21:49 +00:00
|
|
|
* Each of these values maps the variable top lead byte of a supported maxVariable group
|
|
|
|
* to the highest CollationFastLatin long-primary weight.
|
|
|
|
* The values are stored in ascending order.
|
|
|
|
* Bits 15..7: max fast-Latin long-primary weight (bits 11..3 shifted left by 4 bits)
|
|
|
|
* 6..0: regular primary lead byte
|
|
|
|
*
|
|
|
|
* uint16_t miniCEs[0x1c0]
|
|
|
|
* A mini collation element for each character U+0000..U+017F and U+2000..U+203F.
|
|
|
|
* Each value encodes one or two mini CEs (two are possible if the first one
|
|
|
|
* has a short mini primary and the second one is a secondary CE, i.e., primary == 0),
|
|
|
|
* or points to an expansion or to a contraction table.
|
|
|
|
* U+0000 always has a contraction entry,
|
|
|
|
* so that NUL-termination need not be tested in the fastpath.
|
|
|
|
* If the collation elements for a character or contraction cannot be encoded in this format,
|
|
|
|
* then the BAIL_OUT value is stored.
|
|
|
|
* For details see the comments for the class constants.
|
|
|
|
*
|
|
|
|
* uint16_t expansions[variable length];
|
|
|
|
* Expansion mini CEs contain an offset relative to just after the miniCEs table.
|
|
|
|
* An expansions contains exactly 2 mini CEs.
|
|
|
|
*
|
|
|
|
* uint16_t contractions[variable length];
|
|
|
|
* Contraction mini CEs contain an offset relative to just after the miniCEs table.
|
|
|
|
* It points to a list of tuples which map from a contraction suffix character to a result.
|
|
|
|
* First uint16_t of each tuple:
|
|
|
|
* Bits 10..9: Length of the result (1..3), see comments on CONTR_LENGTH_SHIFT.
|
|
|
|
* Bits 8..0: Contraction character, see comments on CONTR_CHAR_MASK.
|
|
|
|
* This is followed by 0, 1, or 2 uint16_t according to the length.
|
|
|
|
* Each list is terminated by an entry with CONTR_CHAR_MASK.
|
|
|
|
* Each list starts with such an entry which also contains the default result
|
|
|
|
* for when there is no contraction match.
|
2015-01-07 03:37:11 +00:00
|
|
|
*
|
|
|
|
* -----------------
|
|
|
|
* Changes for version 2 (ICU 55)
|
|
|
|
*
|
|
|
|
* Special reorder groups do not necessarily start on whole primary lead bytes any more.
|
|
|
|
* Therefore, the varTops data has a new format:
|
|
|
|
* Version 1 stored the lead bytes of the highest root primaries for
|
|
|
|
* the maxVariable-supported special reorder groups.
|
|
|
|
* Now the top 16 bits would need to be stored,
|
|
|
|
* and it is simpler to store only the fast-Latin weights.
|
2014-02-25 21:21:49 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
U_NAMESPACE_END
|
|
|
|
|
|
|
|
#endif // !UCONFIG_NO_COLLATION
|
|
|
|
#endif // __COLLATIONFASTLATIN_H__
|