scuffed-code/icu4c/source/tools/makeconv/genmbcs.c

1735 lines
65 KiB
C
Raw Normal View History

/*
*******************************************************************************
*
* Copyright (C) 2000-2001, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: genmbcs.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000jul06
* created by: Markus W. Scherer
*/
#include <stdio.h>
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "unewdata.h"
#include "ucnv_cnv.h"
#include "ucnvmbcs.h"
#include "makeconv.h"
#include "genmbcs.h"
enum {
MBCS_STATE_FLAG_DIRECT=1,
MBCS_STATE_FLAG_SURROGATES,
MBCS_STATE_FLAG_READY=16
};
enum {
MBCS_STAGE_2_BLOCK_SIZE=0x40, /* 64; 64=1<<6 for 6 bits in stage 2 */
MBCS_STAGE_2_BLOCK_SIZE_SHIFT=6, /* log2(MBCS_STAGE_2_BLOCK_SIZE) */
MBCS_STAGE_1_SIZE=0x440, /* 0x110000>>10, or 17*64 for one entry per 1k code points */
MBCS_STAGE_2_SIZE=0xfbc0, /* 0x10000-MBCS_STAGE_1_SIZE */
MBCS_MAX_STAGE_2_TOP=MBCS_STAGE_2_SIZE,
MBCS_STAGE_2_MAX_BLOCKS=MBCS_STAGE_2_SIZE>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT,
MBCS_STAGE_2_ALL_UNASSIGNED_INDEX=0, /* stage 1 entry for the all-unassigned stage 2 block */
MBCS_STAGE_2_FIRST_ASSIGNED=MBCS_STAGE_2_BLOCK_SIZE, /* start of the first stage 2 block after the all-unassigned one */
MBCS_MAX_STATE_COUNT=128,
MBCS_MAX_FALLBACK_COUNT=1000
};
typedef struct MBCSData {
NewConverter newConverter;
/* toUnicode */
int32_t stateTable[MBCS_MAX_STATE_COUNT][256];
uint32_t stateFlags[MBCS_MAX_STATE_COUNT],
stateOffsetSum[MBCS_MAX_STATE_COUNT];
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
uint16_t *unicodeCodeUnits;
_MBCSHeader header;
int32_t countToUCodeUnits;
/* fromUnicode */
uint16_t stage1[MBCS_STAGE_1_SIZE];
uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
uint8_t *fromUBytes;
uint32_t stage2Top, stage3Top, maxCharLength;
} MBCSData;
/* prototypes */
static void
MBCSClose(NewConverter *cnvData);
static UBool
MBCSProcessStates(NewConverter *cnvData);
static UBool
MBCSAddToUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback);
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
uint32_t b);
static UBool
MBCSSingleAddFromUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback);
static UBool
MBCSAddFromUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback);
static void
MBCSPostprocess(NewConverter *cnvData, const UConverterStaticData *staticData);
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData);
/* implementation ----------------------------------------------------------- */
static void
MBCSInit(MBCSData *mbcsData, uint8_t maxCharLength) {
int i;
uprv_memset(mbcsData, 0, sizeof(MBCSData));
mbcsData->newConverter.close=MBCSClose;
mbcsData->newConverter.startMappings=MBCSProcessStates;
mbcsData->newConverter.isValid=MBCSIsValid;
mbcsData->newConverter.addToUnicode=MBCSAddToUnicode;
if(maxCharLength==1) {
mbcsData->newConverter.addFromUnicode=MBCSSingleAddFromUnicode;
} else {
mbcsData->newConverter.addFromUnicode=MBCSAddFromUnicode;
}
mbcsData->newConverter.finishMappings=MBCSPostprocess;
mbcsData->newConverter.write=MBCSWrite;
mbcsData->header.version[0]=4;
mbcsData->stateFlags[0]=MBCS_STATE_FLAG_DIRECT;
mbcsData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; /* after stage 1 and one all-unassigned stage 2 block */
mbcsData->stage3Top=16*maxCharLength; /* after one all-unassigned stage 3 block */
mbcsData->maxCharLength=maxCharLength;
mbcsData->header.flags=maxCharLength-1; /* outputType */
/* point all entries in stage 1 to the "all-unassigned" first block in stage 2 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
}
}
NewConverter *
MBCSOpen(uint8_t maxCharLength) {
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
if(mbcsData!=NULL) {
MBCSInit(mbcsData, maxCharLength);
}
return &mbcsData->newConverter;
}
static void
MBCSClose(NewConverter *cnvData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
if(mbcsData!=NULL) {
if(mbcsData->unicodeCodeUnits!=NULL) {
uprv_free(mbcsData->unicodeCodeUnits);
}
if(mbcsData->fromUBytes!=NULL) {
uprv_free(mbcsData->fromUBytes);
}
uprv_free(mbcsData);
}
}
static const char *
skipWhitespace(const char *s) {
while(*s==' ' || *s=='\t') {
++s;
}
return s;
}
/*
* state table row grammar (ebnf-style):
* (whitespace is allowed between all tokens)
*
* row=[[firstentry ','] entry (',' entry)*]
* firstentry="initial" | "surrogates"
* (initial state (default for state 0), output is all surrogate pairs)
* entry=range [':' nextstate] ['.' action]
* range=number ['-' number]
* nextstate=number
* (0..7f)
* action='u' | 's' | 'p' | 'i'
* (unassigned, state change only, surrogate pair, illegal)
* number=(1- or 2-digit hexadecimal number)
*/
static const char *
parseState(const char *s, int32_t state[256], uint32_t *pFlags) {
const char *t;
uint32_t start, end, i;
int32_t entry;
/* initialize the state: all illegal with U+ffff */
for(i=0; i<256; ++i) {
state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0xffff);
}
/* skip leading white space */
s=skipWhitespace(s);
/* is there an "initial" or "surrogates" directive? */
if(uprv_strncmp("initial", s, 7)==0) {
*pFlags=MBCS_STATE_FLAG_DIRECT;
s=skipWhitespace(s+7);
if(*s++!=',') {
return s-1;
}
} else if(*pFlags==0 && uprv_strncmp("surrogates", s, 10)==0) {
*pFlags=MBCS_STATE_FLAG_SURROGATES;
s=skipWhitespace(s+10);
if(*s++!=',') {
return s-1;
}
} else if(*s==0) {
/* empty state row: all-illegal */
return NULL;
}
for(;;) {
/* read an entry, the start of the range first */
s=skipWhitespace(s);
start=uprv_strtoul(s, (char **)&t, 16);
if(s==t || 0xff<start) {
return s;
}
s=skipWhitespace(t);
/* read the end of the range if there is one */
if(*s=='-') {
s=skipWhitespace(s+1);
end=uprv_strtoul(s, (char **)&t, 16);
if(s==t || end<start || 0xff<end) {
return s;
}
s=skipWhitespace(t);
} else {
end=start;
}
/* determine the state entrys for this range */
if(*s!=':' && *s!='.') {
/* the default is: final state with valid entries */
entry=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_16, 0);
} else {
entry=MBCS_ENTRY_TRANSITION(0, 0);
if(*s==':') {
/* get the next state, default to 0 */
s=skipWhitespace(s+1);
i=uprv_strtoul(s, (char **)&t, 16);
if(s!=t) {
if(0x7f<i) {
return s;
}
s=skipWhitespace(t);
entry=MBCS_ENTRY_SET_STATE(entry, i);
}
}
/* get the state action, default to valid */
if(*s=='.') {
/* this is a final state */
entry=MBCS_ENTRY_SET_FINAL(entry);
s=skipWhitespace(s+1);
if(*s=='u') {
/* unassigned set U+fffe */
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_UNASSIGNED, 0xfffe);
s=skipWhitespace(s+1);
} else if(*s=='p') {
if(*pFlags!=MBCS_STATE_FLAG_DIRECT) {
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16_PAIR);
} else {
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16);
}
s=skipWhitespace(s+1);
} else if(*s=='s') {
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_CHANGE_ONLY);
s=skipWhitespace(s+1);
} else if(*s=='i') {
/* illegal set U+ffff */
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_ILLEGAL, 0xffff);
s=skipWhitespace(s+1);
} else {
/* default to valid */
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_VALID_16);
}
} else {
/* this is an intermediate state, nothing to do */
}
}
/* adjust "final valid" states according to the state flags */
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16) {
switch(*pFlags) {
case 0:
/* no adjustment */
break;
case MBCS_STATE_FLAG_DIRECT:
/* set the valid-direct code point to "unassigned"==0xfffe */
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_VALID_DIRECT_16, 0xfffe);
break;
case MBCS_STATE_FLAG_SURROGATES:
entry=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_VALID_16_PAIR, 0);
break;
default:
break;
}
}
/* set this entry for the range */
for(i=start; i<=end; ++i) {
state[i]=entry;
}
if(*s==',') {
++s;
} else {
return *s==0 ? NULL : s;
}
}
}
UBool
MBCSAddState(NewConverter *cnvData, const char *s) {
MBCSData *mbcsData=(MBCSData *)cnvData;
const char *error;
if(mbcsData->header.countStates==MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "error: too many states (maximum %u)\n", MBCS_MAX_STATE_COUNT);
return FALSE;
}
error=parseState(s, mbcsData->stateTable[mbcsData->header.countStates],
&mbcsData->stateFlags[mbcsData->header.countStates]);
if(error!=NULL) {
fprintf(stderr, "parse error in state definition at '%s'\n", error);
return FALSE;
}
++mbcsData->header.countStates;
return TRUE;
}
static int32_t
sumUpStates(MBCSData *mbcsData) {
int32_t entry, sum;
int state, cell, count;
UBool allStatesReady;
/*
* Sum up the offsets for all states.
* In each final state (where there are only final entries),
* the offsets add up directly.
* In all other state table rows, for each transition entry to another state,
* the offsets sum of that state needs to be added.
* This is achieved in at most countStates iterations.
*/
allStatesReady=FALSE;
for(count=mbcsData->header.countStates; !allStatesReady && count>=0; --count) {
allStatesReady=TRUE;
for(state=mbcsData->header.countStates-1; state>=0; --state) {
if(!(mbcsData->stateFlags[state]&MBCS_STATE_FLAG_READY)) {
allStatesReady=FALSE;
sum=0;
/* at first, add up only the final delta offsets to keep them <512 */
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(MBCS_ENTRY_IS_FINAL(entry)) {
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
mbcsData->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_VALUE(entry, sum);
sum+=1;
break;
case MBCS_STATE_VALID_16_PAIR:
mbcsData->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_VALUE(entry, sum);
sum+=2;
break;
default:
/* no addition */
break;
}
}
}
/* now, add up the delta offsets for the transitional entries */
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(mbcsData->stateFlags[MBCS_ENTRY_TRANSITION_STATE(entry)]&MBCS_STATE_FLAG_READY) {
mbcsData->stateTable[state][cell]=MBCS_ENTRY_TRANSITION_SET_OFFSET(entry, sum);
sum+=mbcsData->stateOffsetSum[MBCS_ENTRY_TRANSITION_STATE(entry)];
} else {
/* that next state does not have a sum yet, we cannot finish the one for this state */
sum=-1;
break;
}
}
}
if(sum!=-1) {
mbcsData->stateOffsetSum[state]=sum;
mbcsData->stateFlags[state]|=MBCS_STATE_FLAG_READY;
}
}
}
}
if(!allStatesReady) {
fprintf(stderr, "error: the state table contains loops\n");
return -1;
}
/*
* For all "direct" (i.e., initial) states>0,
* the offsets need to be increased by the sum of
* the previous initial states.
*/
sum=mbcsData->stateOffsetSum[0];
for(state=1; state<(int)mbcsData->header.countStates; ++state) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
int32_t sum2=sum;
sum+=mbcsData->stateOffsetSum[state];
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
mbcsData->stateTable[state][cell]=MBCS_ENTRY_TRANSITION_ADD_OFFSET(entry, sum2);
}
}
}
}
if(VERBOSE) {
printf("the total number of offsets is 0x%lx=%ld\n",
(unsigned long)sum, (long)sum);
}
/* round up to the next even number to have the following data 32-bit-aligned */
sum=(sum+1)&~1;
return mbcsData->countToUCodeUnits=sum;
}
static UBool
MBCSProcessStates(NewConverter *cnvData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
int32_t i, entry, sum;
int state, cell;
/*
* first make sure that all "next state" values are within limits
* and that all next states after final ones have the "direct"
* flag of initial states
*/
for(state=mbcsData->header.countStates-1; state>=0; --state) {
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
if((uint8_t)MBCS_ENTRY_STATE(entry)>=mbcsData->header.countStates) {
fprintf(stderr, "error: state table entry [%x][%x] has a next state of %x that is too high\n",
state, cell, MBCS_ENTRY_STATE(entry));
return FALSE;
}
if(MBCS_ENTRY_IS_FINAL(entry) && (mbcsData->stateFlags[MBCS_ENTRY_STATE(entry)]&0xf)!=MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state table entry [%x][%x] is final but has a non-initial next state of %x\n",
state, cell, MBCS_ENTRY_STATE(entry));
return FALSE;
} else if(MBCS_ENTRY_IS_TRANSITION(entry) && (mbcsData->stateFlags[MBCS_ENTRY_STATE(entry)]&0xf)==MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state table entry [%x][%x] is not final but has an initial next state of %x\n",
state, cell, MBCS_ENTRY_STATE(entry));
return FALSE;
}
}
}
/* is this an SI/SO (like EBCDIC-stateful) state table? */
if(mbcsData->header.countStates>=2 && (mbcsData->stateFlags[1]&0xf)==MBCS_STATE_FLAG_DIRECT) {
if(mbcsData->maxCharLength!=2) {
fprintf(stderr, "error: SI/SO codepages must have max 2 bytes/char (not %x)\n", mbcsData->maxCharLength);
return FALSE;
}
if(mbcsData->header.countStates<3) {
fprintf(stderr, "error: SI/SO codepages must have at least 3 states (not %x)\n", mbcsData->header.countStates);
return FALSE;
}
/* are the SI/SO all in the right places? */
if( mbcsData->stateTable[0][0xe]==MBCS_ENTRY_FINAL(1, MBCS_STATE_CHANGE_ONLY, 0) &&
mbcsData->stateTable[0][0xf]==MBCS_ENTRY_FINAL(0, MBCS_STATE_CHANGE_ONLY, 0) &&
mbcsData->stateTable[1][0xe]==MBCS_ENTRY_FINAL(1, MBCS_STATE_CHANGE_ONLY, 0) &&
mbcsData->stateTable[1][0xf]==MBCS_ENTRY_FINAL(0, MBCS_STATE_CHANGE_ONLY, 0)
) {
mbcsData->header.flags=MBCS_OUTPUT_2_SISO;
} else {
fprintf(stderr, "error: SI/SO codepages must have in states 0 and 1 transitions e:1.s, f:0.s\n");
return FALSE;
}
state=2;
} else {
state=1;
}
/* check that no unexpected state is a "direct" one */
while(state<(int)mbcsData->header.countStates) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
fprintf(stderr, "error: state %d is 'initial' - not supported except for SI/SO codepages\n", state);
return FALSE;
}
++state;
}
sum=sumUpStates(mbcsData);
if(sum<0) {
return FALSE;
}
/* allocate the code unit array and prefill it with "unassigned" values */
if(sum>0) {
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==NULL) {
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
(long)sum);
return FALSE;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
}
/* allocate the codepage mappings and preset the first 16 characters to 0 */
if(mbcsData->maxCharLength==1) {
/* allocate 64k 16-bit results for single-byte codepages */
sum=0x20000;
} else {
/* allocate 1M * maxCharLength bytes for at most 1M mappings */
sum=0x100000*mbcsData->maxCharLength;
}
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
if(mbcsData->fromUBytes==NULL) {
fprintf(stderr, "error: out of memory allocating %ldMB for target mappings\n",
(long)sum);
return FALSE;
}
/* initialize the all-unassigned first stage 3 block */
uprv_memset(mbcsData->fromUBytes, 0, 64);
return TRUE;
}
/* find a fallback for this offset; return the index or -1 if not found */
static int32_t
findFallback(MBCSData *mbcsData, uint32_t offset) {
_MBCSToUFallback *toUFallbacks;
int32_t i, limit;
limit=mbcsData->header.countToUFallbacks;
if(limit==0) {
/* shortcut: most codepages do not have fallbacks from codepage to Unicode */
return -1;
}
/* do a linear search for the fallback mapping (the table is not yet sorted) */
toUFallbacks=mbcsData->toUFallbacks;
for(i=0; i<limit; ++i) {
if(offset==toUFallbacks[i].offset) {
return i;
}
}
return -1;
}
/* return TRUE for success */
static UBool
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
int32_t i=findFallback(mbcsData, offset);
if(i>=0) {
/* if there is already a fallback for this offset, then overwrite it */
mbcsData->toUFallbacks[i].codePoint=c;
return TRUE;
} else {
/* if there is no fallback for this offset, then add one */
i=mbcsData->header.countToUFallbacks;
if(i>=MBCS_MAX_FALLBACK_COUNT) {
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%lx\n", c);
return FALSE;
} else {
mbcsData->toUFallbacks[i].offset=offset;
mbcsData->toUFallbacks[i].codePoint=c;
mbcsData->header.countToUFallbacks=i+1;
return TRUE;
}
}
}
/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
static int32_t
removeFallback(MBCSData *mbcsData, uint32_t offset) {
int32_t i=findFallback(mbcsData, offset);
if(i>=0) {
_MBCSToUFallback *toUFallbacks;
int32_t limit, old;
toUFallbacks=mbcsData->toUFallbacks;
limit=mbcsData->header.countToUFallbacks;
old=(int32_t)toUFallbacks[i].codePoint;
/* copy the last fallback entry here to keep the list contiguous */
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
mbcsData->header.countToUFallbacks=limit-1;
return old;
} else {
return -1;
}
}
/*
* isFallback is almost a boolean:
* 1 (TRUE) this is a fallback mapping
* 0 (FALSE) this is a precise mapping
* -1 the precision of this mapping is not specified
*/
static UBool
MBCSAddToUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint32_t offset=0;
int32_t i=0, entry, old;
uint8_t state=0;
if(mbcsData->header.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return FALSE;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->stateTable[state][bytes[i++]];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%02lx (U+%lx)\n",
state, (unsigned long)b, c);
return FALSE;
}
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%02lx (U+%lx)\n",
(length-i), state, (unsigned long)b, c);
return FALSE;
}
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
case MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
case MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
case MBCS_STATE_FALLBACK_DIRECT_16:
case MBCS_STATE_VALID_DIRECT_16:
case MBCS_STATE_FALLBACK_DIRECT_20:
case MBCS_STATE_VALID_DIRECT_20:
if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
/* the "direct" action's value is not "valid-direct-16-unassigned" any more */
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
old=MBCS_ENTRY_FINAL_VALUE(entry);
} else {
old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
}
if(isFallback>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
c, (unsigned long)b, (long)old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
c, (unsigned long)b, (long)old);
}
/*
* Continue after the above warning
* if the precision of the mapping is unspecified.
*/
}
/* reassign the correct action code */
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(isFallback>0 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
if(c<=0xffff) {
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
} else {
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
}
mbcsData->stateTable[state][bytes[i-1]]=entry;
break;
case MBCS_STATE_VALID_16:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
/* check that this byte sequence is still unassigned */
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
if(isFallback>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
c, (unsigned long)b, (long)old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
c, (unsigned long)b, (long)old);
}
}
if(c>=0x10000) {
fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
}
if(isFallback>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
}
break;
case MBCS_STATE_VALID_16_PAIR:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to two 16-bit code units */
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
/* check that this byte sequence is still unassigned */
old=mbcsData->unicodeCodeUnits[offset];
if(old<0xfffe) {
int32_t real;
if(old<0xd800) {
real=old;
} else if(old<=0xdfff) {
real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
} else /* old<=0xe001 */ {
real=mbcsData->unicodeCodeUnits[offset+1];
}
if(isFallback>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
c, (unsigned long)b, (long)real);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04lx<->0x%02lx see U+%04lx\n",
c, (unsigned long)b, (long)real);
}
}
if(isFallback>0) {
/* assign only if there is no precise mapping */
if(old<=0xdbff || old==0xe000) {
/* do nothing */
} else if(c<=0xffff) {
/* set a BMP fallback code point as a pair with 0xe001 */
mbcsData->unicodeCodeUnits[offset++]=0xe001;
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a fallback surrogate pair with two second surrogates */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
} else {
if(c<0xd800) {
/* set a BMP code point */
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else if(c<=0xffff) {
/* set a BMP code point above 0xd800 as a pair with 0xe000 */
mbcsData->unicodeCodeUnits[offset++]=0xe000;
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a surrogate pair */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
}
break;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry0x%02lx: 0x%02lx (U+%lx)\n",
(unsigned long)entry, (unsigned long)b, c);
return FALSE;
}
return TRUE;
}
}
}
/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
uint32_t b) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint32_t offset=0;
int32_t i=0, entry;
uint8_t state=0;
if(mbcsData->header.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return FALSE;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->stateTable[state][bytes[i++]];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%02lx\n",
state, (unsigned long)b);
return FALSE;
}
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%02lx\n",
(length-i), state, (unsigned long)b);
return FALSE;
}
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state: 0x%02lx\n",
(unsigned long)b);
return FALSE;
case MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only: 0x%02lx\n",
(unsigned long)b);
return FALSE;
case MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state: 0x%02lx\n",
(unsigned long)b);
return FALSE;
case MBCS_STATE_FALLBACK_DIRECT_16:
case MBCS_STATE_VALID_DIRECT_16:
case MBCS_STATE_FALLBACK_DIRECT_20:
case MBCS_STATE_VALID_DIRECT_20:
case MBCS_STATE_VALID_16:
case MBCS_STATE_VALID_16_PAIR:
return TRUE;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry0x%02lx: 0x%02lx\n",
(long)entry, (unsigned long)b);
return FALSE;
}
}
}
}
static UBool
MBCSSingleAddFromUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint16_t *p;
uint32_t index;
uint16_t old;
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
/* inspect stage 1 */
index=c>>10;
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
if(mbcsData->stage2Top>=MBCS_MAX_STAGE_2_TOP) {
fprintf(stderr, "error: too many stage 2 entries at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
}
/*
* each stage 2 block contains 64 16-bit words:
* 6 code point bits 9..4 with 1 stage 3 index
*/
mbcsData->stage1[index]=(uint16_t)mbcsData->stage2Top;
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
}
/* inspect stage 2 */
index=(uint32_t)mbcsData->stage1[index]+((c>>4)&0x3f);
if(mbcsData->stage2Single[index]==0) {
/* allocate another block in stage 3 */
if(mbcsData->stage3Top>=0x10000) {
fprintf(stderr, "error: too many code points at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
}
/* each block has 16 uint16_t entries */
mbcsData->stage2Single[index]=(uint16_t)mbcsData->stage3Top;
uprv_memset(mbcsData->fromUBytes+2*mbcsData->stage3Top, 0, 32);
mbcsData->stage3Top+=16;
}
/* write the codepage entry into stage 3 and get the previous entry */
p=(uint16_t *)mbcsData->fromUBytes+mbcsData->stage2Single[index]+(c&0xf);
old=*p;
if(isFallback<=0) {
*p=(uint16_t)(0xf00|b);
} else if(IS_PRIVATE_USE(c)) {
*p=(uint16_t)(0xc00|b);
} else {
*p=(uint16_t)(0x800|b);
}
/* check that this Unicode code point was still unassigned */
if(old>=0xf00) {
if(isFallback>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02x\n",
c, (unsigned long)b, old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02x\n",
c, (unsigned long)b, old);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
return TRUE;
}
static UBool
MBCSAddFromUnicode(NewConverter *cnvData,
const uint8_t *bytes, int32_t length,
UChar32 c, uint32_t b,
int8_t isFallback) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint8_t *p;
uint32_t index, old;
if( (mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO &&
(*bytes==0xe || *bytes==0xf)
) {
fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
}
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for
* all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
/* inspect stage 1 */
index=c>>10;
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
if(mbcsData->stage2Top>=MBCS_MAX_STAGE_2_TOP) {
fprintf(stderr, "error: too many stage 2 entries at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
}
/*
* each stage 2 block contains 64 32-bit words:
* 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
*/
mbcsData->stage1[index]=(uint16_t)mbcsData->stage2Top;
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
}
/* inspect stage 2 */
index=mbcsData->stage1[index]+((c>>4)&0x3f);
if(mbcsData->stage2[index]==0) {
/* allocate another block in stage 3 */
if(mbcsData->stage3Top>=0x100000*mbcsData->maxCharLength) {
fprintf(stderr, "error: too many code points at U+%04lx<->0x%02lx\n",
c, (unsigned long)b);
return FALSE;
}
/* each block has 16*maxCharLength bytes */
mbcsData->stage2[index]=(mbcsData->stage3Top/16)/mbcsData->maxCharLength;
uprv_memset(mbcsData->fromUBytes+mbcsData->stage3Top, 0, 16*mbcsData->maxCharLength);
mbcsData->stage3Top+=16*mbcsData->maxCharLength;
}
/* write the codepage bytes into stage 3 and get the previous bytes */
old=0;
p=mbcsData->fromUBytes+(16*(uint32_t)(uint16_t)mbcsData->stage2[index]+(c&0xf))*mbcsData->maxCharLength;
switch(mbcsData->maxCharLength) {
case 2:
old=*(uint16_t *)p;
*(uint16_t *)p=(uint16_t)b;
break;
case 3:
old=(uint32_t)*p<<16;
*p++=(uint8_t)(b>>16);
old|=(uint32_t)*p<<8;
*p++=(uint8_t)(b>>8);
old|=*p;
*p=(uint8_t)b;
break;
case 4:
old=*(uint32_t *)p;
*(uint32_t *)p=b;
break;
default:
/* will never occur */
break;
}
/* check that this Unicode code point was still unassigned */
if((mbcsData->stage2[index]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
if(isFallback>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02lx\n",
c, (unsigned long)b, (unsigned long)old);
return FALSE;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04lx<->0x%02lx see 0x%02lx\n",
c, (unsigned long)b, (unsigned long)old);
}
/* continue after the above warning if the precision of the mapping is
unspecified */
}
if(isFallback<=0) {
/* set the "assigned" flag */
mbcsData->stage2[index]|=(1UL<<(16+(c&0xf)));
}
return TRUE;
}
static int
compareFallbacks(const void *fb1, const void *fb2) {
return ((const _MBCSToUFallback *)fb1)->offset-((const _MBCSToUFallback *)fb2)->offset;
}
/*
* This function tries to compact toUnicode tables for 2-byte codepages
* by finding lead bytes with all-unassigned trail bytes and adding another state
* for them.
*/
static void
compactToUnicode2(MBCSData *mbcsData) {
int32_t (*oldStateTable)[256];
uint16_t count[256];
uint16_t *oldUnicodeCodeUnits;
int32_t entry, offset, oldOffset, trailOffset, oldTrailOffset, savings, sum;
int32_t i, j, leadState, trailState, newState, fallback;
uint16_t unit;
/* find the lead state */
if((mbcsData->header.flags&0xff)==MBCS_OUTPUT_2_SISO) {
/* use the DBCS lead state for SI/SO codepages */
leadState=1;
} else {
leadState=0;
}
/* find the main trail state: the most used target state */
uprv_memset(count, 0, sizeof(count));
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[leadState][i];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
++count[MBCS_ENTRY_TRANSITION_STATE(entry)];
}
}
trailState=0;
for(i=1; i<(int)mbcsData->header.countStates; ++i) {
if(count[i]>count[trailState]) {
trailState=i;
}
}
/* count possible savings from lead bytes with all-unassigned results in all trail bytes */
uprv_memset(count, 0, sizeof(count));
savings=0;
/* for each lead byte */
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[leadState][i];
if(MBCS_ENTRY_IS_TRANSITION(entry) && (MBCS_ENTRY_TRANSITION_STATE(entry))==trailState) {
/* the offset is different for each lead byte */
offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
/* for each trail byte for this lead byte */
for(j=0; j<256; ++j) {
entry=mbcsData->stateTable[trailState][j];
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
++count[i];
} else {
j=999; /* do not count for this lead byte because there are assignments */
}
break;
case MBCS_STATE_VALID_16_PAIR:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe) {
count[i]+=2;
} else {
j=999; /* do not count for this lead byte because there are assignments */
}
break;
default:
break;
}
}
if(j==256) {
/* all trail bytes for this lead byte are unassigned */
savings+=count[i];
} else {
count[i]=0;
}
}
}
/* subtract from the possible savings the cost of an additional state */
savings=savings*2-1024; /* count bytes, not 16-bit words */
if(savings<=0) {
return;
}
if(VERBOSE) {
printf("compacting toUnicode data saves %ld bytes\n", (long)savings);
}
if(mbcsData->header.countStates>=MBCS_MAX_STATE_COUNT) {
fprintf(stderr, "cannot compact toUnicode because the maximum number of states is reached\n");
return;
}
/* make a copy of the state table */
oldStateTable=(int32_t (*)[256])uprv_malloc(mbcsData->header.countStates*1024);
if(oldStateTable==NULL) {
fprintf(stderr, "cannot compact toUnicode: out of memory\n");
return;
}
uprv_memcpy(oldStateTable, mbcsData->stateTable, mbcsData->header.countStates*1024);
/* add the new state */
/*
* this function does not catch the degenerate case where all lead bytes
* have all-unassigned trail bytes and the lead state could be removed
*/
newState=mbcsData->header.countStates++;
mbcsData->stateFlags[newState]=0;
/* copy the old trail state, turning all assigned states into unassigned ones */
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[trailState][i];
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
case MBCS_STATE_VALID_16_PAIR:
mbcsData->stateTable[newState][i]=MBCS_ENTRY_FINAL_SET_ACTION_VALUE(entry, MBCS_STATE_UNASSIGNED, 0xfffe);
break;
default:
mbcsData->stateTable[newState][i]=entry;
break;
}
}
/* in the lead state, redirect all lead bytes with all-unassigned trail bytes to the new state */
for(i=0; i<256; ++i) {
if(count[i]>0) {
mbcsData->stateTable[leadState][i]=MBCS_ENTRY_SET_STATE(mbcsData->stateTable[leadState][i], newState);
}
}
/* sum up the new state table */
for(i=0; i<(int)mbcsData->header.countStates; ++i) {
mbcsData->stateFlags[i]&=~MBCS_STATE_FLAG_READY;
}
sum=sumUpStates(mbcsData);
/* allocate a new, smaller code units array */
oldUnicodeCodeUnits=mbcsData->unicodeCodeUnits;
if(sum==0) {
mbcsData->unicodeCodeUnits=NULL;
if(oldUnicodeCodeUnits!=NULL) {
uprv_free(oldUnicodeCodeUnits);
}
uprv_free(oldStateTable);
return;
}
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==NULL) {
fprintf(stderr, "cannot compact toUnicode: out of memory allocating %ld 16-bit code units\n",
(long)sum);
/* revert to the old state table */
mbcsData->unicodeCodeUnits=oldUnicodeCodeUnits;
--mbcsData->header.countStates;
uprv_memcpy(mbcsData->stateTable, oldStateTable, mbcsData->header.countStates*1024);
uprv_free(oldStateTable);
return;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
/* copy the code units for all assigned characters */
/*
* The old state table has the same lead _and_ trail states for assigned characters!
* The differences are in the offsets, and in the trail states for some unassigned characters.
* For each character with an assigned state in the new table, it was assigned in the old one.
* Only still-assigned characters are copied.
* Note that fallback mappings need to get their offset values adjusted.
*/
/* for each initial state */
for(leadState=0; leadState<(int)mbcsData->header.countStates; ++leadState) {
if((mbcsData->stateFlags[leadState]&0xf)==MBCS_STATE_FLAG_DIRECT) {
/* for each lead byte from there */
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[leadState][i];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
trailState=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
/* the new state does not have assigned states */
if(trailState!=newState) {
trailOffset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
oldTrailOffset=MBCS_ENTRY_TRANSITION_OFFSET(oldStateTable[leadState][i]);
/* for each trail byte */
for(j=0; j<256; ++j) {
entry=mbcsData->stateTable[trailState][j];
/* copy assigned-character code units and adjust fallback offsets */
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
offset=trailOffset+MBCS_ENTRY_FINAL_VALUE_16(entry);
/* find the old offset according to the old state table */
oldOffset=oldTrailOffset+MBCS_ENTRY_FINAL_VALUE_16(oldStateTable[trailState][j]);
unit=mbcsData->unicodeCodeUnits[offset]=oldUnicodeCodeUnits[oldOffset];
if(unit==0xfffe && (fallback=findFallback(mbcsData, oldOffset))>=0) {
mbcsData->toUFallbacks[fallback].offset=0x80000000|offset;
}
break;
case MBCS_STATE_VALID_16_PAIR:
offset=trailOffset+MBCS_ENTRY_FINAL_VALUE_16(entry);
/* find the old offset according to the old state table */
oldOffset=oldTrailOffset+MBCS_ENTRY_FINAL_VALUE_16(oldStateTable[trailState][j]);
mbcsData->unicodeCodeUnits[offset++]=oldUnicodeCodeUnits[oldOffset++];
mbcsData->unicodeCodeUnits[offset]=oldUnicodeCodeUnits[oldOffset];
break;
default:
break;
}
}
}
}
}
}
}
/* remove temporary flags from fallback offsets that protected them from being modified twice */
sum=mbcsData->header.countToUFallbacks;
for(i=0; i<sum; ++i) {
mbcsData->toUFallbacks[i].offset&=0x7fffffff;
}
/* free temporary memory */
uprv_free(oldUnicodeCodeUnits);
uprv_free(oldStateTable);
}
/*
* recursive sub-function of compactToUnicodeHelper()
* returns:
* >0 number of bytes that are used in unicodeCodeUnits[] that could be saved,
* if all sequences from this state are unassigned, returns the
* <0 there are assignments in unicodeCodeUnits[]
* 0 no use of unicodeCodeUnits[]
*/
static int32_t
findUnassigned(MBCSData *mbcsData, int32_t state, int32_t offset, uint32_t b) {
int32_t i, entry, savings, localSavings, belowSavings;
UBool haveAssigned;
localSavings=belowSavings=0;
haveAssigned=FALSE;
for(i=0; i<256; ++i) {
entry=mbcsData->stateTable[state][i];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
savings=findUnassigned(mbcsData, MBCS_ENTRY_TRANSITION_STATE(entry), offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), (b<<8)|(uint32_t)i);
if(savings<0) {
haveAssigned=TRUE;
} else if(savings>0) {
printf(" all-unassigned sequences from prefix 0x%02lx state %ld use %ld bytes\n",
(unsigned long)((b<<8)|i), (long)state, (long)savings);
belowSavings+=savings;
}
} else if(!haveAssigned) {
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_VALID_16:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe && findFallback(mbcsData, entry)<0) {
localSavings+=2;
} else {
haveAssigned=TRUE;
}
break;
case MBCS_STATE_VALID_16_PAIR:
entry=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
if(mbcsData->unicodeCodeUnits[entry]==0xfffe) {
localSavings+=4;
} else {
haveAssigned=TRUE;
}
break;
default:
break;
}
}
}
if(haveAssigned) {
return -1;
} else {
return localSavings+belowSavings;
}
}
/* helper function for finding compaction opportunities */
static void
compactToUnicodeHelper(MBCSData *mbcsData) {
int32_t state, savings;
if(!VERBOSE) {
return;
}
/* for each initial state */
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
if((mbcsData->stateFlags[state]&0xf)==MBCS_STATE_FLAG_DIRECT) {
savings=findUnassigned(mbcsData, state, 0, 0);
if(savings>0) {
printf(" all-unassigned sequences from initial state %ld use %ld bytes\n",
(long)state, (long)savings);
}
}
}
}
static UBool
transformEUC(MBCSData *mbcsData) {
uint8_t *p8;
uint32_t i, value, oldLength=mbcsData->maxCharLength, old3Top=mbcsData->stage3Top, new3Top;
uint8_t b;
if(oldLength<3) {
return FALSE;
}
/* careful: 2-byte and 4-byte codes are stored in platform endianness! */
/* test if all first bytes are in {0, 0x8e, 0x8f} */
p8=mbcsData->fromUBytes;
#if !U_IS_BIG_ENDIAN
if(oldLength==4) {
p8+=3;
}
#endif
for(i=0; i<old3Top; i+=oldLength) {
b=p8[i];
if(b!=0 && b!=0x8e && b!=0x8f) {
/* some first byte does not fit the EUC pattern, nothing to be done */
return FALSE;
}
}
/* restore p if it was modified above */
p8=mbcsData->fromUBytes;
/* modify outputType and adjust stage3Top */
mbcsData->header.flags=MBCS_OUTPUT_3_EUC+oldLength-3;
mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
/*
* EUC-encode all byte sequences;
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
* p. 161 in chapter 4 "Encoding Methods"
*
* This also must reverse the byte order if the platform is little-endian!
*/
if(oldLength==3) {
uint16_t *q=(uint16_t *)p8;
for(i=0; i<old3Top; i+=oldLength) {
b=*p8;
if(b==0) {
/* short sequences are stored directly */
/* code set 0 or 1 */
(*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
} else if(b==0x8e) {
/* code set 2 */
(*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
} else /* b==0x8f */ {
/* code set 3 */
(*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
}
p8+=3;
}
} else /* oldLength==4 */ {
uint8_t *q=p8;
uint32_t *p32=(uint32_t *)p8;
for(i=0; i<old3Top; i+=4) {
value=(*p32++);
if(value<=0xffffff) {
/* short sequences are stored directly */
/* code set 0 or 1 */
(*q++)=(uint8_t)(value>>16);
(*q++)=(uint8_t)(value>>8);
(*q++)=(uint8_t)value;
} else if(value<=0x8effffff) {
/* code set 2 */
(*q++)=(uint8_t)((value>>16)&0x7f);
(*q++)=(uint8_t)(value>>8);
(*q++)=(uint8_t)value;
} else /* first byte is 0x8f */ {
/* code set 3 */
(*q++)=(uint8_t)(value>>16);
(*q++)=(uint8_t)((value>>8)&0x7f);
(*q++)=(uint8_t)value;
}
}
}
return TRUE;
}
/*
* Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
singleCompactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
(long)(mbcsData->stage2Top-newStart)*2);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
/* Compact stage 3 for SBCS - same algorithm as above. */
static void
singleCompactStage3(MBCSData *mbcsData) {
uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
/* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
uint16_t map[0x1000];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 3 block into the map */
map[0]=0;
/* begin with the first block after the all-unassigned one */
start=newStart=16;
while(start<mbcsData->stage3Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>4]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(16-i); i>0; --i) {
stage3[newStart++]=stage3[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>4]=newStart;
for(i=16; i>0; --i) {
stage3[newStart++]=stage3[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>4]=start;
start=newStart+=16;
}
}
/* adjust stage3Top */
if(VERBOSE && newStart<mbcsData->stage3Top) {
printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
(long)(mbcsData->stage3Top-newStart)*2);
}
mbcsData->stage3Top=newStart;
/* now adjust stage 2 */
for(i=0; i<mbcsData->stage2Top; ++i) {
mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
}
}
/*
* Compact stage 2 by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
compactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
(long)(mbcsData->stage2Top-newStart)*4);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
static void
MBCSPostprocess(NewConverter *cnvData, const UConverterStaticData *staticData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
int32_t entry;
int state, cell;
/* this needs to be printed before the EUC transformation because later maxCharLength might not be correct */
if(VERBOSE) {
printf("number of codepage characters in 16-blocks: 0x%lx=%lu\n",
(unsigned long)mbcsData->stage3Top/mbcsData->maxCharLength,
(unsigned long)mbcsData->stage3Top/mbcsData->maxCharLength);
}
/* test each state table entry */
for(state=0; state<(int)mbcsData->header.countStates; ++state) {
for(cell=0; cell<256; ++cell) {
entry=mbcsData->stateTable[state][cell];
/*
* if the entry is a final one with an MBCS_STATE_VALID_DIRECT_16 action code
* and the code point is "unassigned" (0xfffe), then change it to
* the "unassigned" action code with bits 26..23 set to zero and U+fffe.
*/
if(MBCS_ENTRY_SET_STATE(entry, 0)==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
mbcsData->stateTable[state][cell]=MBCS_ENTRY_FINAL_SET_ACTION(entry, MBCS_STATE_UNASSIGNED);
}
}
}
/* try to compact the toUnicode tables */
if(mbcsData->maxCharLength==2) {
compactToUnicode2(mbcsData);
} else if(mbcsData->maxCharLength>2) {
compactToUnicodeHelper(mbcsData);
}
/* sort toUFallbacks */
/*
* It should be safe to sort them before compactToUnicode2() is called,
* because it should not change the relative order of the offset values
* that it adjusts, but they need to be sorted at some point, and
* it is safest here.
*/
if(mbcsData->header.countToUFallbacks>0) {
qsort(mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks, sizeof(_MBCSToUFallback), compareFallbacks);
}
/* try to compact the fromUnicode tables */
transformEUC(mbcsData);
if(mbcsData->maxCharLength==1) {
singleCompactStage3(mbcsData);
singleCompactStage2(mbcsData);
} else {
compactStage2(mbcsData);
}
}
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, UNewDataMemory *pData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
int32_t i, stage1Top;
/* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
if(mbcsData->maxCharLength==1) {
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
} else {
stage1Top=0x40; /* 0x40==64 */
}
for(i=0; i<stage1Top; ++i) {
mbcsData->stage1[i]+=(uint16_t)stage1Top;
}
/* stage2Top has counted 16-bit results, now we need to count bytes */
mbcsData->stage2Top*=2;
/* stage3Top has counted 16-bit results, now we need to count bytes */
mbcsData->stage3Top*=2;
} else {
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
} else {
stage1Top=0x40; /* 0x40==64 */
}
for(i=0; i<stage1Top; ++i) {
mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
}
/* stage2Top has counted 32-bit results, now we need to count bytes */
mbcsData->stage2Top*=4;
/* stage3Top has already counted bytes */
}
/* round up stage2Top and stage3Top so that the sizes of all data blocks are multiples of 4 */
mbcsData->stage2Top=(mbcsData->stage2Top+3)&~3;
mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
/* fill the header */
mbcsData->header.offsetToUCodeUnits=
sizeof(_MBCSHeader)+
mbcsData->header.countStates*1024+
mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback);
mbcsData->header.offsetFromUTable=
mbcsData->header.offsetToUCodeUnits+
mbcsData->countToUCodeUnits*2;
mbcsData->header.offsetFromUBytes=
mbcsData->header.offsetFromUTable+
stage1Top*2+
mbcsData->stage2Top;
/* write the MBCS data */
udata_writeBlock(pData, &mbcsData->header, sizeof(_MBCSHeader));
udata_writeBlock(pData, mbcsData->stateTable, mbcsData->header.countStates*1024);
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->header.countToUFallbacks*sizeof(_MBCSToUFallback));
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->countToUCodeUnits*2);
udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
if(mbcsData->maxCharLength==1) {
udata_writeBlock(pData, mbcsData->stage2Single, mbcsData->stage2Top);
} else {
udata_writeBlock(pData, mbcsData->stage2, mbcsData->stage2Top);
}
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
/* return the number of bytes that should have been written */
return mbcsData->header.offsetFromUBytes+mbcsData->stage3Top;
}