scuffed-code/icu4c/source/i18n/ucol_elm.cpp

2071 lines
80 KiB
C++
Raw Normal View History

/*
*******************************************************************************
*
* Copyright (C) 2001-2012, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: ucaelems.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created 02/22/2001
* created by: Vladimir Weinstein
*
* This program reads the Franctional UCA table and generates
* internal format for UCA table as well as inverse UCA table.
* It then writes binary files containing the data: ucadata.dat
* & invuca.dat
*
* date name comments
* 03/02/2001 synwee added setMaxExpansion
* 03/07/2001 synwee merged UCA's maxexpansion and tailoring's
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/uchar.h"
#include "unicode/unistr.h"
#include "unicode/ucoleitr.h"
#include "unicode/normlzr.h"
#include "unicode/utf16.h"
#include "normalizer2impl.h"
#include "ucol_elm.h"
#include "ucol_tok.h"
#include "ucol_cnt.h"
#include "unicode/caniter.h"
#include "cmemory.h"
#include "uassert.h"
U_NAMESPACE_USE
static uint32_t uprv_uca_processContraction(CntTable *contractions, UCAElements *element, uint32_t existingCE, UErrorCode *status);
U_CDECL_BEGIN
static int32_t U_CALLCONV
prefixLookupHash(const UHashTok e) {
UCAElements *element = (UCAElements *)e.pointer;
UChar buf[256];
UHashTok key;
key.pointer = buf;
uprv_memcpy(buf, element->cPoints, element->cSize*sizeof(UChar));
buf[element->cSize] = 0;
//key.pointer = element->cPoints;
//element->cPoints[element->cSize] = 0;
return uhash_hashUChars(key);
}
static int8_t U_CALLCONV
prefixLookupComp(const UHashTok e1, const UHashTok e2) {
UCAElements *element1 = (UCAElements *)e1.pointer;
UCAElements *element2 = (UCAElements *)e2.pointer;
UChar buf1[256];
UHashTok key1;
key1.pointer = buf1;
uprv_memcpy(buf1, element1->cPoints, element1->cSize*sizeof(UChar));
buf1[element1->cSize] = 0;
UChar buf2[256];
UHashTok key2;
key2.pointer = buf2;
uprv_memcpy(buf2, element2->cPoints, element2->cSize*sizeof(UChar));
buf2[element2->cSize] = 0;
return uhash_compareUChars(key1, key2);
}
U_CDECL_END
static int32_t uprv_uca_addExpansion(ExpansionTable *expansions, uint32_t value, UErrorCode *status) {
if(U_FAILURE(*status)) {
return 0;
}
if(expansions->CEs == NULL) {
expansions->CEs = (uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE*sizeof(uint32_t));
/* test for NULL */
if (expansions->CEs == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
expansions->size = INIT_EXP_TABLE_SIZE;
expansions->position = 0;
}
if(expansions->position == expansions->size) {
uint32_t *newData = (uint32_t *)uprv_realloc(expansions->CEs, 2*expansions->size*sizeof(uint32_t));
if(newData == NULL) {
#ifdef UCOL_DEBUG
fprintf(stderr, "out of memory for expansions\n");
#endif
*status = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
expansions->CEs = newData;
expansions->size *= 2;
}
expansions->CEs[expansions->position] = value;
return(expansions->position++);
}
U_CAPI tempUCATable* U_EXPORT2
uprv_uca_initTempTable(UCATableHeader *image, UColOptionSet *opts, const UCollator *UCA, UColCETags initTag, UColCETags supplementaryInitTag, UErrorCode *status) {
MaxJamoExpansionTable *maxjet;
MaxExpansionTable *maxet;
tempUCATable *t = (tempUCATable *)uprv_malloc(sizeof(tempUCATable));
/* test for NULL */
if (t == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memset(t, 0, sizeof(tempUCATable));
maxet = (MaxExpansionTable *)uprv_malloc(sizeof(MaxExpansionTable));
if (maxet == NULL) {
goto allocation_failure;
}
uprv_memset(maxet, 0, sizeof(MaxExpansionTable));
t->maxExpansions = maxet;
maxjet = (MaxJamoExpansionTable *)uprv_malloc(sizeof(MaxJamoExpansionTable));
if (maxjet == NULL) {
goto allocation_failure;
}
uprv_memset(maxjet, 0, sizeof(MaxJamoExpansionTable));
t->maxJamoExpansions = maxjet;
t->image = image;
t->options = opts;
t->UCA = UCA;
t->expansions = (ExpansionTable *)uprv_malloc(sizeof(ExpansionTable));
/* test for NULL */
if (t->expansions == NULL) {
goto allocation_failure;
}
uprv_memset(t->expansions, 0, sizeof(ExpansionTable));
t->mapping = utrie_open(NULL, NULL, UCOL_ELM_TRIE_CAPACITY,
UCOL_SPECIAL_FLAG | (initTag<<24),
UCOL_SPECIAL_FLAG | (supplementaryInitTag << 24),
TRUE); // Do your own mallocs for the structure, array and have linear Latin 1
if (U_FAILURE(*status)) {
goto allocation_failure;
}
t->prefixLookup = uhash_open(prefixLookupHash, prefixLookupComp, NULL, status);
if (U_FAILURE(*status)) {
goto allocation_failure;
}
uhash_setValueDeleter(t->prefixLookup, uprv_free);
t->contractions = uprv_cnttab_open(t->mapping, status);
if (U_FAILURE(*status)) {
goto cleanup;
}
/* copy UCA's maxexpansion and merge as we go along */
if (UCA != NULL) {
/* adding an extra initial value for easier manipulation */
maxet->size = (int32_t)(UCA->lastEndExpansionCE - UCA->endExpansionCE) + 2;
maxet->position = maxet->size - 1;
maxet->endExpansionCE =
(uint32_t *)uprv_malloc(sizeof(uint32_t) * maxet->size);
/* test for NULL */
if (maxet->endExpansionCE == NULL) {
goto allocation_failure;
}
maxet->expansionCESize =
(uint8_t *)uprv_malloc(sizeof(uint8_t) * maxet->size);
/* test for NULL */
if (maxet->expansionCESize == NULL) {
goto allocation_failure;
}
/* initialized value */
*(maxet->endExpansionCE) = 0;
*(maxet->expansionCESize) = 0;
uprv_memcpy(maxet->endExpansionCE + 1, UCA->endExpansionCE,
sizeof(uint32_t) * (maxet->size - 1));
uprv_memcpy(maxet->expansionCESize + 1, UCA->expansionCESize,
sizeof(uint8_t) * (maxet->size - 1));
}
else {
maxet->size = 0;
}
maxjet->endExpansionCE = NULL;
maxjet->isV = NULL;
maxjet->size = 0;
maxjet->position = 0;
maxjet->maxLSize = 1;
maxjet->maxVSize = 1;
maxjet->maxTSize = 1;
t->unsafeCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
/* test for NULL */
if (t->unsafeCP == NULL) {
goto allocation_failure;
}
t->contrEndCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
/* test for NULL */
if (t->contrEndCP == NULL) {
goto allocation_failure;
}
uprv_memset(t->unsafeCP, 0, UCOL_UNSAFECP_TABLE_SIZE);
uprv_memset(t->contrEndCP, 0, UCOL_UNSAFECP_TABLE_SIZE);
t->cmLookup = NULL;
return t;
allocation_failure:
*status = U_MEMORY_ALLOCATION_ERROR;
cleanup:
uprv_uca_closeTempTable(t);
return NULL;
}
static tempUCATable* U_EXPORT2
uprv_uca_cloneTempTable(tempUCATable *t, UErrorCode *status) {
if(U_FAILURE(*status)) {
return NULL;
}
tempUCATable *r = (tempUCATable *)uprv_malloc(sizeof(tempUCATable));
/* test for NULL */
if (r == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memset(r, 0, sizeof(tempUCATable));
/* mapping */
if(t->mapping != NULL) {
/*r->mapping = ucmpe32_clone(t->mapping, status);*/
r->mapping = utrie_clone(NULL, t->mapping, NULL, 0);
}
// a hashing clone function would be very nice. We have none currently...
// However, we should be good, as closing should not produce any prefixed elements.
r->prefixLookup = NULL; // prefixes are not used in closing
/* expansions */
if(t->expansions != NULL) {
r->expansions = (ExpansionTable *)uprv_malloc(sizeof(ExpansionTable));
/* test for NULL */
if (r->expansions == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
r->expansions->position = t->expansions->position;
r->expansions->size = t->expansions->size;
if(t->expansions->CEs != NULL) {
r->expansions->CEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->expansions->size);
/* test for NULL */
if (r->expansions->CEs == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(r->expansions->CEs, t->expansions->CEs, sizeof(uint32_t)*t->expansions->position);
} else {
r->expansions->CEs = NULL;
}
}
if(t->contractions != NULL) {
r->contractions = uprv_cnttab_clone(t->contractions, status);
// Check for cloning failure.
if (r->contractions == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
r->contractions->mapping = r->mapping;
}
if(t->maxExpansions != NULL) {
r->maxExpansions = (MaxExpansionTable *)uprv_malloc(sizeof(MaxExpansionTable));
/* test for NULL */
if (r->maxExpansions == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
r->maxExpansions->size = t->maxExpansions->size;
r->maxExpansions->position = t->maxExpansions->position;
if(t->maxExpansions->endExpansionCE != NULL) {
r->maxExpansions->endExpansionCE = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->maxExpansions->size);
/* test for NULL */
if (r->maxExpansions->endExpansionCE == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memset(r->maxExpansions->endExpansionCE, 0xDB, sizeof(uint32_t)*t->maxExpansions->size);
uprv_memcpy(r->maxExpansions->endExpansionCE, t->maxExpansions->endExpansionCE, t->maxExpansions->position*sizeof(uint32_t));
} else {
r->maxExpansions->endExpansionCE = NULL;
}
if(t->maxExpansions->expansionCESize != NULL) {
r->maxExpansions->expansionCESize = (uint8_t *)uprv_malloc(sizeof(uint8_t)*t->maxExpansions->size);
/* test for NULL */
if (r->maxExpansions->expansionCESize == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memset(r->maxExpansions->expansionCESize, 0xDB, sizeof(uint8_t)*t->maxExpansions->size);
uprv_memcpy(r->maxExpansions->expansionCESize, t->maxExpansions->expansionCESize, t->maxExpansions->position*sizeof(uint8_t));
} else {
r->maxExpansions->expansionCESize = NULL;
}
}
if(t->maxJamoExpansions != NULL) {
r->maxJamoExpansions = (MaxJamoExpansionTable *)uprv_malloc(sizeof(MaxJamoExpansionTable));
/* test for NULL */
if (r->maxJamoExpansions == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
r->maxJamoExpansions->size = t->maxJamoExpansions->size;
r->maxJamoExpansions->position = t->maxJamoExpansions->position;
r->maxJamoExpansions->maxLSize = t->maxJamoExpansions->maxLSize;
r->maxJamoExpansions->maxVSize = t->maxJamoExpansions->maxVSize;
r->maxJamoExpansions->maxTSize = t->maxJamoExpansions->maxTSize;
if(t->maxJamoExpansions->size != 0) {
r->maxJamoExpansions->endExpansionCE = (uint32_t *)uprv_malloc(sizeof(uint32_t)*t->maxJamoExpansions->size);
/* test for NULL */
if (r->maxJamoExpansions->endExpansionCE == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(r->maxJamoExpansions->endExpansionCE, t->maxJamoExpansions->endExpansionCE, t->maxJamoExpansions->position*sizeof(uint32_t));
r->maxJamoExpansions->isV = (UBool *)uprv_malloc(sizeof(UBool)*t->maxJamoExpansions->size);
/* test for NULL */
if (r->maxJamoExpansions->isV == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(r->maxJamoExpansions->isV, t->maxJamoExpansions->isV, t->maxJamoExpansions->position*sizeof(UBool));
} else {
r->maxJamoExpansions->endExpansionCE = NULL;
r->maxJamoExpansions->isV = NULL;
}
}
if(t->unsafeCP != NULL) {
r->unsafeCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
/* test for NULL */
if (r->unsafeCP == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(r->unsafeCP, t->unsafeCP, UCOL_UNSAFECP_TABLE_SIZE);
}
if(t->contrEndCP != NULL) {
r->contrEndCP = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
/* test for NULL */
if (r->contrEndCP == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
goto cleanup;
}
uprv_memcpy(r->contrEndCP, t->contrEndCP, UCOL_UNSAFECP_TABLE_SIZE);
}
r->UCA = t->UCA;
r->image = t->image;
r->options = t->options;
return r;
cleanup:
uprv_uca_closeTempTable(t);
return NULL;
}
U_CAPI void U_EXPORT2
uprv_uca_closeTempTable(tempUCATable *t) {
if(t != NULL) {
if (t->expansions != NULL) {
uprv_free(t->expansions->CEs);
uprv_free(t->expansions);
}
if(t->contractions != NULL) {
uprv_cnttab_close(t->contractions);
}
if (t->mapping != NULL) {
utrie_close(t->mapping);
}
if(t->prefixLookup != NULL) {
uhash_close(t->prefixLookup);
}
if (t->maxExpansions != NULL) {
uprv_free(t->maxExpansions->endExpansionCE);
uprv_free(t->maxExpansions->expansionCESize);
uprv_free(t->maxExpansions);
}
if (t->maxJamoExpansions->size > 0) {
uprv_free(t->maxJamoExpansions->endExpansionCE);
uprv_free(t->maxJamoExpansions->isV);
}
uprv_free(t->maxJamoExpansions);
uprv_free(t->unsafeCP);
uprv_free(t->contrEndCP);
if (t->cmLookup != NULL) {
uprv_free(t->cmLookup->cPoints);
uprv_free(t->cmLookup);
}
uprv_free(t);
}
}
/**
* Looks for the maximum length of all expansion sequences ending with the same
* collation element. The size required for maxexpansion and maxsize is
* returned if the arrays are too small.
* @param endexpansion the last expansion collation element to be added
* @param expansionsize size of the expansion
* @param maxexpansion data structure to store the maximum expansion data.
* @param status error status
* @returns size of the maxexpansion and maxsize used.
*/
static int uprv_uca_setMaxExpansion(uint32_t endexpansion,
uint8_t expansionsize,
MaxExpansionTable *maxexpansion,
UErrorCode *status)
{
if (maxexpansion->size == 0) {
/* we'll always make the first element 0, for easier manipulation */
maxexpansion->endExpansionCE =
(uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(int32_t));
/* test for NULL */
if (maxexpansion->endExpansionCE == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
*(maxexpansion->endExpansionCE) = 0;
maxexpansion->expansionCESize =
(uint8_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(uint8_t));
/* test for NULL */;
if (maxexpansion->expansionCESize == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
*(maxexpansion->expansionCESize) = 0;
maxexpansion->size = INIT_EXP_TABLE_SIZE;
maxexpansion->position = 0;
}
if (maxexpansion->position + 1 == maxexpansion->size) {
uint32_t *neweece = (uint32_t *)uprv_realloc(maxexpansion->endExpansionCE,
2 * maxexpansion->size * sizeof(uint32_t));
if (neweece == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
maxexpansion->endExpansionCE = neweece;
uint8_t *neweces = (uint8_t *)uprv_realloc(maxexpansion->expansionCESize,
2 * maxexpansion->size * sizeof(uint8_t));
if (neweces == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
maxexpansion->expansionCESize = neweces;
maxexpansion->size *= 2;
}
uint32_t *pendexpansionce = maxexpansion->endExpansionCE;
uint8_t *pexpansionsize = maxexpansion->expansionCESize;
int pos = maxexpansion->position;
uint32_t *start = pendexpansionce;
uint32_t *limit = pendexpansionce + pos;
/* using binary search to determine if last expansion element is
already in the array */
uint32_t *mid;
int result = -1;
while (start < limit - 1) {
mid = start + ((limit - start) >> 1);
if (endexpansion <= *mid) {
limit = mid;
}
else {
start = mid;
}
}
if (*start == endexpansion) {
result = (int)(start - pendexpansionce);
}
else if (*limit == endexpansion) {
result = (int)(limit - pendexpansionce);
}
if (result > -1) {
/* found the ce in expansion, we'll just modify the size if it is
smaller */
uint8_t *currentsize = pexpansionsize + result;
if (*currentsize < expansionsize) {
*currentsize = expansionsize;
}
}
else {
/* we'll need to squeeze the value into the array.
initial implementation. */
/* shifting the subarray down by 1 */
int shiftsize = (int)((pendexpansionce + pos) - start);
uint32_t *shiftpos = start + 1;
uint8_t *sizeshiftpos = pexpansionsize + (shiftpos - pendexpansionce);
/* okay need to rearrange the array into sorted order */
if (shiftsize == 0 /*|| *(pendexpansionce + pos) < endexpansion*/) { /* the commented part is actually both redundant and dangerous */
*(pendexpansionce + pos + 1) = endexpansion;
*(pexpansionsize + pos + 1) = expansionsize;
}
else {
uprv_memmove(shiftpos + 1, shiftpos, shiftsize * sizeof(int32_t));
uprv_memmove(sizeshiftpos + 1, sizeshiftpos,
shiftsize * sizeof(uint8_t));
*shiftpos = endexpansion;
*sizeshiftpos = expansionsize;
}
maxexpansion->position ++;
#ifdef UCOL_DEBUG
int temp;
UBool found = FALSE;
for (temp = 0; temp < maxexpansion->position; temp ++) {
if (pendexpansionce[temp] >= pendexpansionce[temp + 1]) {
fprintf(stderr, "expansions %d\n", temp);
}
if (pendexpansionce[temp] == endexpansion) {
found =TRUE;
if (pexpansionsize[temp] < expansionsize) {
fprintf(stderr, "expansions size %d\n", temp);
}
}
}
if (pendexpansionce[temp] == endexpansion) {
found =TRUE;
if (pexpansionsize[temp] < expansionsize) {
fprintf(stderr, "expansions size %d\n", temp);
}
}
if (!found)
fprintf(stderr, "expansion not found %d\n", temp);
#endif
}
return maxexpansion->position;
}
/**
* Sets the maximum length of all jamo expansion sequences ending with the same
* collation element. The size required for maxexpansion and maxsize is
* returned if the arrays are too small.
* @param ch the jamo codepoint
* @param endexpansion the last expansion collation element to be added
* @param expansionsize size of the expansion
* @param maxexpansion data structure to store the maximum expansion data.
* @param status error status
* @returns size of the maxexpansion and maxsize used.
*/
static int uprv_uca_setMaxJamoExpansion(UChar ch,
uint32_t endexpansion,
uint8_t expansionsize,
MaxJamoExpansionTable *maxexpansion,
UErrorCode *status)
{
UBool isV = TRUE;
if (((uint32_t)ch - 0x1100) <= (0x1112 - 0x1100)) {
/* determines L for Jamo, doesn't need to store this since it is never
at the end of a expansion */
if (maxexpansion->maxLSize < expansionsize) {
maxexpansion->maxLSize = expansionsize;
}
return maxexpansion->position;
}
if (((uint32_t)ch - 0x1161) <= (0x1175 - 0x1161)) {
/* determines V for Jamo */
if (maxexpansion->maxVSize < expansionsize) {
maxexpansion->maxVSize = expansionsize;
}
}
if (((uint32_t)ch - 0x11A8) <= (0x11C2 - 0x11A8)) {
isV = FALSE;
/* determines T for Jamo */
if (maxexpansion->maxTSize < expansionsize) {
maxexpansion->maxTSize = expansionsize;
}
}
if (maxexpansion->size == 0) {
/* we'll always make the first element 0, for easier manipulation */
maxexpansion->endExpansionCE =
(uint32_t *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(uint32_t));
/* test for NULL */;
if (maxexpansion->endExpansionCE == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
*(maxexpansion->endExpansionCE) = 0;
maxexpansion->isV =
(UBool *)uprv_malloc(INIT_EXP_TABLE_SIZE * sizeof(UBool));
/* test for NULL */;
if (maxexpansion->isV == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(maxexpansion->endExpansionCE);
maxexpansion->endExpansionCE = NULL;
return 0;
}
*(maxexpansion->isV) = 0;
maxexpansion->size = INIT_EXP_TABLE_SIZE;
maxexpansion->position = 0;
}
if (maxexpansion->position + 1 == maxexpansion->size) {
maxexpansion->size *= 2;
maxexpansion->endExpansionCE = (uint32_t *)uprv_realloc(maxexpansion->endExpansionCE,
maxexpansion->size * sizeof(uint32_t));
if (maxexpansion->endExpansionCE == NULL) {
#ifdef UCOL_DEBUG
fprintf(stderr, "out of memory for maxExpansions\n");
#endif
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
maxexpansion->isV = (UBool *)uprv_realloc(maxexpansion->isV,
maxexpansion->size * sizeof(UBool));
if (maxexpansion->isV == NULL) {
#ifdef UCOL_DEBUG
fprintf(stderr, "out of memory for maxExpansions\n");
#endif
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(maxexpansion->endExpansionCE);
maxexpansion->endExpansionCE = NULL;
return 0;
}
}
uint32_t *pendexpansionce = maxexpansion->endExpansionCE;
int pos = maxexpansion->position;
while (pos > 0) {
pos --;
if (*(pendexpansionce + pos) == endexpansion) {
return maxexpansion->position;
}
}
*(pendexpansionce + maxexpansion->position) = endexpansion;
*(maxexpansion->isV + maxexpansion->position) = isV;
maxexpansion->position ++;
return maxexpansion->position;
}
static void ContrEndCPSet(uint8_t *table, UChar c) {
uint32_t hash;
uint8_t *htByte;
hash = c;
if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
}
htByte = &table[hash>>3];
*htByte |= (1 << (hash & 7));
}
static void unsafeCPSet(uint8_t *table, UChar c) {
uint32_t hash;
uint8_t *htByte;
hash = c;
if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
if (hash >= 0xd800 && hash <= 0xf8ff) {
/* Part of a surrogate, or in private use area. */
/* These don't go in the table */
return;
}
hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
}
htByte = &table[hash>>3];
*htByte |= (1 << (hash & 7));
}
static void
uprv_uca_createCMTable(tempUCATable *t, int32_t noOfCM, UErrorCode *status) {
t->cmLookup = (CombinClassTable *)uprv_malloc(sizeof(CombinClassTable));
if (t->cmLookup==NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
t->cmLookup->cPoints=(UChar *)uprv_malloc(noOfCM*sizeof(UChar));
if (t->cmLookup->cPoints ==NULL) {
uprv_free(t->cmLookup);
t->cmLookup = NULL;
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
t->cmLookup->size=noOfCM;
uprv_memset(t->cmLookup->index, 0, sizeof(t->cmLookup->index));
return;
}
static void
uprv_uca_copyCMTable(tempUCATable *t, UChar *cm, uint16_t *index) {
int32_t count=0;
for (int32_t i=0; i<256; ++i) {
if (index[i]>0) {
// cPoints is ordered by combining class value.
uprv_memcpy(t->cmLookup->cPoints+count, cm+(i<<8), index[i]*sizeof(UChar));
count += index[i];
}
t->cmLookup->index[i]=count;
}
return;
}
/* 1. to the UnsafeCP hash table, add all chars with combining class != 0 */
/* 2. build combining marks table for all chars with combining class != 0 */
static void uprv_uca_unsafeCPAddCCNZ(tempUCATable *t, UErrorCode *status) {
UChar c;
uint16_t fcd; // Hi byte is lead combining class. lo byte is trailing combing class.
UBool buildCMTable = (t->cmLookup==NULL); // flag for building combining class table
UChar *cm=NULL;
uint16_t index[256];
int32_t count=0;
const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status);
if (U_FAILURE(*status)) {
return;
}
if (buildCMTable) {
if (cm==NULL) {
cm = (UChar *)uprv_malloc(sizeof(UChar)*UCOL_MAX_CM_TAB);
if (cm==NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
uprv_memset(index, 0, sizeof(index));
}
for (c=0; c<0xffff; c++) {
if (U16_IS_LEAD(c)) {
fcd = 0;
if (nfcImpl->singleLeadMightHaveNonZeroFCD16(c)) {
UChar32 supp = U16_GET_SUPPLEMENTARY(c, 0xdc00);
UChar32 suppLimit = supp + 0x400;
while (supp < suppLimit) {
fcd |= nfcImpl->getFCD16FromNormData(supp++);
}
}
} else {
fcd = nfcImpl->getFCD16(c);
}
if (fcd >= 0x100 || // if the leading combining class(c) > 0 ||
(U16_IS_LEAD(c) && fcd != 0)) {// c is a leading surrogate with some FCD data
if (buildCMTable) {
uint32_t cClass = fcd & 0xff;
//uint32_t temp=(cClass<<8)+index[cClass];
cm[(cClass<<8)+index[cClass]] = c; //
index[cClass]++;
count++;
}
unsafeCPSet(t->unsafeCP, c);
}
}
// copy to cm table
if (buildCMTable) {
uprv_uca_createCMTable(t, count, status);
if(U_FAILURE(*status)) {
if (cm!=NULL) {
uprv_free(cm);
}
return;
}
uprv_uca_copyCMTable(t, cm, index);
}
if(t->prefixLookup != NULL) {
int32_t i = -1;
const UHashElement *e = NULL;
UCAElements *element = NULL;
UChar NFCbuf[256];
while((e = uhash_nextElement(t->prefixLookup, &i)) != NULL) {
element = (UCAElements *)e->value.pointer;
// codepoints here are in the NFD form. We need to add the
// first code point of the NFC form to unsafe, because
// strcoll needs to backup over them.
unorm_normalize(element->cPoints, element->cSize, UNORM_NFC, 0,
NFCbuf, 256, status);
unsafeCPSet(t->unsafeCP, NFCbuf[0]);
}
}
if (cm!=NULL) {
uprv_free(cm);
}
}
static uint32_t uprv_uca_addPrefix(tempUCATable *t, uint32_t CE,
UCAElements *element, UErrorCode *status)
{
// currently the longest prefix we're supporting in Japanese is two characters
// long. Although this table could quite easily mimic complete contraction stuff
// there is no good reason to make a general solution, as it would require some
// error prone messing.
CntTable *contractions = t->contractions;
UChar32 cp;
uint32_t cpsize = 0;
UChar *oldCP = element->cPoints;
uint32_t oldCPSize = element->cSize;
contractions->currentTag = SPEC_PROC_TAG;
// here, we will normalize & add prefix to the table.
uint32_t j = 0;
#ifdef UCOL_DEBUG
for(j=0; j<element->cSize; j++) {
fprintf(stdout, "CP: %04X ", element->cPoints[j]);
}
fprintf(stdout, "El: %08X Pref: ", CE);
for(j=0; j<element->prefixSize; j++) {
fprintf(stdout, "%04X ", element->prefix[j]);
}
fprintf(stdout, "%08X ", element->mapCE);
#endif
for (j = 1; j<element->prefixSize; j++) { /* First add NFD prefix chars to unsafe CP hash table */
// Unless it is a trail surrogate, which is handled algoritmically and
// shouldn't take up space in the table.
if(!(U16_IS_TRAIL(element->prefix[j]))) {
unsafeCPSet(t->unsafeCP, element->prefix[j]);
}
}
UChar tempPrefix = 0;
for(j = 0; j < /*nfcSize*/element->prefixSize/2; j++) { // prefixes are going to be looked up backwards
// therefore, we will promptly reverse the prefix buffer...
tempPrefix = *(/*nfcBuffer*/element->prefix+element->prefixSize-j-1);
*(/*nfcBuffer*/element->prefix+element->prefixSize-j-1) = element->prefix[j];
element->prefix[j] = tempPrefix;
}
#ifdef UCOL_DEBUG
fprintf(stdout, "Reversed: ");
for(j=0; j<element->prefixSize; j++) {
fprintf(stdout, "%04X ", element->prefix[j]);
}
fprintf(stdout, "%08X\n", element->mapCE);
#endif
// the first codepoint is also unsafe, as it forms a 'contraction' with the prefix
if(!(U16_IS_TRAIL(element->cPoints[0]))) {
unsafeCPSet(t->unsafeCP, element->cPoints[0]);
}
// Maybe we need this... To handle prefixes completely in the forward direction...
//if(element->cSize == 1) {
// if(!(U16_IS_TRAIL(element->cPoints[0]))) {
// ContrEndCPSet(t->contrEndCP, element->cPoints[0]);
// }
//}
element->cPoints = element->prefix;
element->cSize = element->prefixSize;
// Add the last char of the contraction to the contraction-end hash table.
// unless it is a trail surrogate, which is handled algorithmically and
// shouldn't be in the table
if(!(U16_IS_TRAIL(element->cPoints[element->cSize -1]))) {
ContrEndCPSet(t->contrEndCP, element->cPoints[element->cSize -1]);
}
// First we need to check if contractions starts with a surrogate
U16_NEXT(element->cPoints, cpsize, element->cSize, cp);
// If there are any Jamos in the contraction, we should turn on special
// processing for Jamos
if(UCOL_ISJAMO(element->prefix[0])) {
t->image->jamoSpecial = TRUE;
}
/* then we need to deal with it */
/* we could aready have something in table - or we might not */
if(!isPrefix(CE)) {
/* if it wasn't contraction, we wouldn't end up here*/
int32_t firstContractionOffset = 0;
firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, CE, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_addContraction(contractions, firstContractionOffset, *element->prefix, newCE, status);
uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, CE, status);
CE = constructContractCE(SPEC_PROC_TAG, firstContractionOffset);
} else { /* we are adding to existing contraction */
/* there were already some elements in the table, so we need to add a new contraction */
/* Two things can happen here: either the codepoint is already in the table, or it is not */
int32_t position = uprv_cnttab_findCP(contractions, CE, *element->prefix, status);
if(position > 0) { /* if it is we just continue down the chain */
uint32_t eCE = uprv_cnttab_getCE(contractions, CE, position, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status);
uprv_cnttab_setContraction(contractions, CE, position, *(element->prefix), newCE, status);
} else { /* if it isn't, we will have to create a new sequence */
uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_insertContraction(contractions, CE, *(element->prefix), element->mapCE, status);
}
}
element->cPoints = oldCP;
element->cSize = oldCPSize;
return CE;
}
// Note regarding surrogate handling: We are interested only in the single
// or leading surrogates in a contraction. If a surrogate is somewhere else
// in the contraction, it is going to be handled as a pair of code units,
// as it doesn't affect the performance AND handling surrogates specially
// would complicate code way too much.
static uint32_t uprv_uca_addContraction(tempUCATable *t, uint32_t CE,
UCAElements *element, UErrorCode *status)
{
CntTable *contractions = t->contractions;
UChar32 cp;
uint32_t cpsize = 0;
contractions->currentTag = CONTRACTION_TAG;
// First we need to check if contractions starts with a surrogate
U16_NEXT(element->cPoints, cpsize, element->cSize, cp);
if(cpsize<element->cSize) { // This is a real contraction, if there are other characters after the first
uint32_t j = 0;
for (j=1; j<element->cSize; j++) { /* First add contraction chars to unsafe CP hash table */
// Unless it is a trail surrogate, which is handled algoritmically and
// shouldn't take up space in the table.
if(!(U16_IS_TRAIL(element->cPoints[j]))) {
unsafeCPSet(t->unsafeCP, element->cPoints[j]);
}
}
// Add the last char of the contraction to the contraction-end hash table.
// unless it is a trail surrogate, which is handled algorithmically and
// shouldn't be in the table
if(!(U16_IS_TRAIL(element->cPoints[element->cSize -1]))) {
ContrEndCPSet(t->contrEndCP, element->cPoints[element->cSize -1]);
}
// If there are any Jamos in the contraction, we should turn on special
// processing for Jamos
if(UCOL_ISJAMO(element->cPoints[0])) {
t->image->jamoSpecial = TRUE;
}
/* then we need to deal with it */
/* we could aready have something in table - or we might not */
element->cPoints+=cpsize;
element->cSize-=cpsize;
if(!isContraction(CE)) {
/* if it wasn't contraction, we wouldn't end up here*/
int32_t firstContractionOffset = 0;
firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, CE, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_addContraction(contractions, firstContractionOffset, *element->cPoints, newCE, status);
uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, CE, status);
CE = constructContractCE(CONTRACTION_TAG, firstContractionOffset);
} else { /* we are adding to existing contraction */
/* there were already some elements in the table, so we need to add a new contraction */
/* Two things can happen here: either the codepoint is already in the table, or it is not */
int32_t position = uprv_cnttab_findCP(contractions, CE, *element->cPoints, status);
if(position > 0) { /* if it is we just continue down the chain */
uint32_t eCE = uprv_cnttab_getCE(contractions, CE, position, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status);
uprv_cnttab_setContraction(contractions, CE, position, *(element->cPoints), newCE, status);
} else { /* if it isn't, we will have to create a new sequence */
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_insertContraction(contractions, CE, *(element->cPoints), newCE, status);
}
}
element->cPoints-=cpsize;
element->cSize+=cpsize;
/*ucmpe32_set(t->mapping, cp, CE);*/
utrie_set32(t->mapping, cp, CE);
} else if(!isContraction(CE)) { /* this is just a surrogate, and there is no contraction */
/*ucmpe32_set(t->mapping, cp, element->mapCE);*/
utrie_set32(t->mapping, cp, element->mapCE);
} else { /* fill out the first stage of the contraction with the surrogate CE */
uprv_cnttab_changeContraction(contractions, CE, 0, element->mapCE, status);
uprv_cnttab_changeContraction(contractions, CE, 0xFFFF, element->mapCE, status);
}
return CE;
}
static uint32_t uprv_uca_processContraction(CntTable *contractions, UCAElements *element, uint32_t existingCE, UErrorCode *status) {
int32_t firstContractionOffset = 0;
// uint32_t contractionElement = UCOL_NOT_FOUND;
if(U_FAILURE(*status)) {
return UCOL_NOT_FOUND;
}
/* end of recursion */
if(element->cSize == 1) {
if(isCntTableElement(existingCE) && ((UColCETags)getCETag(existingCE) == contractions->currentTag)) {
uprv_cnttab_changeContraction(contractions, existingCE, 0, element->mapCE, status);
uprv_cnttab_changeContraction(contractions, existingCE, 0xFFFF, element->mapCE, status);
return existingCE;
} else {
return element->mapCE; /*can't do just that. existingCe might be a contraction, meaning that we need to do another step */
}
}
/* this recursion currently feeds on the only element we have... We will have to copy it in order to accomodate */
/* for both backward and forward cycles */
/* we encountered either an empty space or a non-contraction element */
/* this means we are constructing a new contraction sequence */
element->cPoints++;
element->cSize--;
if(!isCntTableElement(existingCE)) {
/* if it wasn't contraction, we wouldn't end up here*/
firstContractionOffset = uprv_cnttab_addContraction(contractions, UPRV_CNTTAB_NEWELEMENT, 0, existingCE, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_addContraction(contractions, firstContractionOffset, *element->cPoints, newCE, status);
uprv_cnttab_addContraction(contractions, firstContractionOffset, 0xFFFF, existingCE, status);
existingCE = constructContractCE(contractions->currentTag, firstContractionOffset);
} else { /* we are adding to existing contraction */
/* there were already some elements in the table, so we need to add a new contraction */
/* Two things can happen here: either the codepoint is already in the table, or it is not */
int32_t position = uprv_cnttab_findCP(contractions, existingCE, *element->cPoints, status);
if(position > 0) { /* if it is we just continue down the chain */
uint32_t eCE = uprv_cnttab_getCE(contractions, existingCE, position, status);
uint32_t newCE = uprv_uca_processContraction(contractions, element, eCE, status);
uprv_cnttab_setContraction(contractions, existingCE, position, *(element->cPoints), newCE, status);
} else { /* if it isn't, we will have to create a new sequence */
uint32_t newCE = uprv_uca_processContraction(contractions, element, UCOL_NOT_FOUND, status);
uprv_cnttab_insertContraction(contractions, existingCE, *(element->cPoints), newCE, status);
}
}
element->cPoints--;
element->cSize++;
return existingCE;
}
static uint32_t uprv_uca_finalizeAddition(tempUCATable *t, UCAElements *element, UErrorCode *status) {
uint32_t CE = UCOL_NOT_FOUND;
// This should add a completely ignorable element to the
// unsafe table, so that backward iteration will skip
// over it when treating contractions.
uint32_t i = 0;
if(element->mapCE == 0) {
for(i = 0; i < element->cSize; i++) {
if(!U16_IS_TRAIL(element->cPoints[i])) {
unsafeCPSet(t->unsafeCP, element->cPoints[i]);
}
}
}
if(element->cSize > 1) { /* we're adding a contraction */
uint32_t i = 0;
UChar32 cp;
U16_NEXT(element->cPoints, i, element->cSize, cp);
/*CE = ucmpe32_get(t->mapping, cp);*/
CE = utrie_get32(t->mapping, cp, NULL);
CE = uprv_uca_addContraction(t, CE, element, status);
} else { /* easy case, */
/*CE = ucmpe32_get(t->mapping, element->cPoints[0]);*/
CE = utrie_get32(t->mapping, element->cPoints[0], NULL);
if( CE != UCOL_NOT_FOUND) {
if(isCntTableElement(CE) /*isContraction(CE)*/) { /* adding a non contraction element (thai, expansion, single) to already existing contraction */
if(!isPrefix(element->mapCE)) { // we cannot reenter prefix elements - as we are going to create a dead loop
// Only expansions and regular CEs can go here... Contractions will never happen in this place
uprv_cnttab_setContraction(t->contractions, CE, 0, 0, element->mapCE, status);
/* This loop has to change the CE at the end of contraction REDO!*/
uprv_cnttab_changeLastCE(t->contractions, CE, element->mapCE, status);
}
} else {
/*ucmpe32_set(t->mapping, element->cPoints[0], element->mapCE);*/
utrie_set32(t->mapping, element->cPoints[0], element->mapCE);
if ((element->prefixSize!=0) && (!isSpecial(CE) || (getCETag(CE)!=IMPLICIT_TAG))) {
UCAElements *origElem = (UCAElements *)uprv_malloc(sizeof(UCAElements));
/* test for NULL */
if (origElem== NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
/* copy the original UCA value */
origElem->prefixSize = 0;
origElem->prefix = NULL;
origElem->cPoints = origElem->uchars;
origElem->cPoints[0] = element->cPoints[0];
origElem->cSize = 1;
origElem->CEs[0]=CE;
origElem->mapCE=CE;
origElem->noOfCEs=1;
uprv_uca_finalizeAddition(t, origElem, status);
uprv_free(origElem);
}
#ifdef UCOL_DEBUG
fprintf(stderr, "Warning - trying to overwrite existing data %08X for cp %04X with %08X\n", CE, element->cPoints[0], element->CEs[0]);
//*status = U_ILLEGAL_ARGUMENT_ERROR;
#endif
}
} else {
/*ucmpe32_set(t->mapping, element->cPoints[0], element->mapCE);*/
utrie_set32(t->mapping, element->cPoints[0], element->mapCE);
}
}
return CE;
}
/* This adds a read element, while testing for existence */
U_CAPI uint32_t U_EXPORT2
uprv_uca_addAnElement(tempUCATable *t, UCAElements *element, UErrorCode *status) {
U_NAMESPACE_USE
ExpansionTable *expansions = t->expansions;
uint32_t i = 1;
uint32_t expansion = 0;
uint32_t CE;
if(U_FAILURE(*status)) {
return 0xFFFF;
}
element->mapCE = 0; // clear mapCE so that we can catch expansions
if(element->noOfCEs == 1) {
element->mapCE = element->CEs[0];
} else {
/* ICU 2.1 long primaries */
/* unfortunately, it looks like we have to look for a long primary here */
/* since in canonical closure we are going to hit some long primaries from */
/* the first phase, and they will come back as continuations/expansions */
/* destroying the effect of the previous opitimization */
/* A long primary is a three byte primary with starting secondaries and tertiaries */
/* It can appear in long runs of only primary differences (like east Asian tailorings) */
/* also, it should not be an expansion, as expansions would break with this */
// This part came in from ucol_bld.cpp
//if(tok->expansion == 0
//&& noOfBytes[0] == 3 && noOfBytes[1] == 1 && noOfBytes[2] == 1
//&& CEparts[1] == (UCOL_BYTE_COMMON << 24) && CEparts[2] == (UCOL_BYTE_COMMON << 24)) {
/* we will construct a special CE that will go unchanged to the table */
if(element->noOfCEs == 2 // a two CE expansion
&& isContinuation(element->CEs[1]) // which is a continuation
&& (element->CEs[1] & (~(0xFF << 24 | UCOL_CONTINUATION_MARKER))) == 0 // that has only primaries in continuation,
&& (((element->CEs[0]>>8) & 0xFF) == UCOL_BYTE_COMMON) // a common secondary
&& ((element->CEs[0] & 0xFF) == UCOL_BYTE_COMMON) // and a common tertiary
)
{
#ifdef UCOL_DEBUG
fprintf(stdout, "Long primary %04X\n", element->cPoints[0]);
#endif
element->mapCE = UCOL_SPECIAL_FLAG | (LONG_PRIMARY_TAG<<24) // a long primary special
| ((element->CEs[0]>>8) & 0xFFFF00) // first and second byte of primary
| ((element->CEs[1]>>24) & 0xFF); // third byte of primary
}
else {
expansion = (uint32_t)(UCOL_SPECIAL_FLAG | (EXPANSION_TAG<<UCOL_TAG_SHIFT)
| (((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4)
& 0xFFFFF0));
for(i = 1; i<element->noOfCEs; i++) {
uprv_uca_addExpansion(expansions, element->CEs[i], status);
}
if(element->noOfCEs <= 0xF) {
expansion |= element->noOfCEs;
} else {
uprv_uca_addExpansion(expansions, 0, status);
}
element->mapCE = expansion;
uprv_uca_setMaxExpansion(element->CEs[element->noOfCEs - 1],
(uint8_t)element->noOfCEs,
t->maxExpansions,
status);
if(UCOL_ISJAMO(element->cPoints[0])) {
t->image->jamoSpecial = TRUE;
uprv_uca_setMaxJamoExpansion(element->cPoints[0],
element->CEs[element->noOfCEs - 1],
(uint8_t)element->noOfCEs,
t->maxJamoExpansions,
status);
}
if (U_FAILURE(*status)) {
return 0;
}
}
}
// We treat digits differently - they are "uber special" and should be
// processed differently if numeric collation is on.
UChar32 uniChar = 0;
//printElement(element);
if ((element->cSize == 2) && U16_IS_LEAD(element->cPoints[0])){
uniChar = U16_GET_SUPPLEMENTARY(element->cPoints[0], element->cPoints[1]);
} else if (element->cSize == 1){
uniChar = element->cPoints[0];
}
// Here, we either have one normal CE OR mapCE is set. Therefore, we stuff only
// one element to the expansion buffer. When we encounter a digit and we don't
// do numeric collation, we will just pick the CE we have and break out of case
// (see ucol.cpp ucol_prv_getSpecialCE && ucol_prv_getSpecialPrevCE). If we picked
// a special, further processing will occur. If it's a simple CE, we'll return due
// to how the loop is constructed.
if (uniChar != 0 && u_isdigit(uniChar)){
expansion = (uint32_t)(UCOL_SPECIAL_FLAG | (DIGIT_TAG<<UCOL_TAG_SHIFT) | 1); // prepare the element
if(element->mapCE) { // if there is an expansion, we'll pick it here
expansion |= ((uprv_uca_addExpansion(expansions, element->mapCE, status)+(headersize>>2))<<4);
} else {
expansion |= ((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4);
}
element->mapCE = expansion;
// Need to go back to the beginning of the digit string if in the middle!
if(uniChar <= 0xFFFF) { // supplementaries are always unsafe. API takes UChars
unsafeCPSet(t->unsafeCP, (UChar)uniChar);
}
}
// here we want to add the prefix structure.
// I will try to process it as a reverse contraction, if possible.
// prefix buffer is already reversed.
if(element->prefixSize!=0) {
// We keep the seen prefix starter elements in a hashtable
// we need it to be able to distinguish between the simple
// codepoints and prefix starters. Also, we need to use it
// for canonical closure.
UCAElements *composed = (UCAElements *)uprv_malloc(sizeof(UCAElements));
/* test for NULL */
if (composed == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
uprv_memcpy(composed, element, sizeof(UCAElements));
composed->cPoints = composed->uchars;
composed->prefix = composed->prefixChars;
composed->prefixSize = unorm_normalize(element->prefix, element->prefixSize, UNORM_NFC, 0, composed->prefix, 128, status);
if(t->prefixLookup != NULL) {
UCAElements *uCE = (UCAElements *)uhash_get(t->prefixLookup, element);
if(uCE != NULL) { // there is already a set of code points here
element->mapCE = uprv_uca_addPrefix(t, uCE->mapCE, element, status);
} else { // no code points, so this spot is clean
element->mapCE = uprv_uca_addPrefix(t, UCOL_NOT_FOUND, element, status);
uCE = (UCAElements *)uprv_malloc(sizeof(UCAElements));
/* test for NULL */
if (uCE == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
uprv_memcpy(uCE, element, sizeof(UCAElements));
uCE->cPoints = uCE->uchars;
uhash_put(t->prefixLookup, uCE, uCE, status);
}
if(composed->prefixSize != element->prefixSize || uprv_memcmp(composed->prefix, element->prefix, element->prefixSize)) {
// do it!
composed->mapCE = uprv_uca_addPrefix(t, element->mapCE, composed, status);
}
}
uprv_free(composed);
}
// We need to use the canonical iterator here
// the way we do it is to generate the canonically equivalent strings
// for the contraction and then add the sequences that pass FCD check
if(element->cSize > 1 && !(element->cSize==2 && U16_IS_LEAD(element->cPoints[0]) && U16_IS_TRAIL(element->cPoints[1]))) { // this is a contraction, we should check whether a composed form should also be included
UnicodeString source(element->cPoints, element->cSize);
CanonicalIterator it(source, *status);
source = it.next();
while(!source.isBogus()) {
if(Normalizer::quickCheck(source, UNORM_FCD, *status) != UNORM_NO) {
element->cSize = source.extract(element->cPoints, 128, *status);
uprv_uca_finalizeAddition(t, element, status);
}
source = it.next();
}
CE = element->mapCE;
} else {
CE = uprv_uca_finalizeAddition(t, element, status);
}
return CE;
}
/*void uprv_uca_getMaxExpansionJamo(CompactEIntArray *mapping, */
static void uprv_uca_getMaxExpansionJamo(UNewTrie *mapping,
MaxExpansionTable *maxexpansion,
MaxJamoExpansionTable *maxjamoexpansion,
UBool jamospecial,
UErrorCode *status)
{
const uint32_t VBASE = 0x1161;
const uint32_t TBASE = 0x11A8;
const uint32_t VCOUNT = 21;
const uint32_t TCOUNT = 28;
uint32_t v = VBASE + VCOUNT - 1;
uint32_t t = TBASE + TCOUNT - 1;
uint32_t ce;
while (v >= VBASE) {
/*ce = ucmpe32_get(mapping, v);*/
ce = utrie_get32(mapping, v, NULL);
if (ce < UCOL_SPECIAL_FLAG) {
uprv_uca_setMaxExpansion(ce, 2, maxexpansion, status);
}
v --;
}
while (t >= TBASE)
{
/*ce = ucmpe32_get(mapping, t);*/
ce = utrie_get32(mapping, t, NULL);
if (ce < UCOL_SPECIAL_FLAG) {
uprv_uca_setMaxExpansion(ce, 3, maxexpansion, status);
}
t --;
}
/* According to the docs, 99% of the time, the Jamo will not be special */
if (jamospecial) {
/* gets the max expansion in all unicode characters */
int count = maxjamoexpansion->position;
uint8_t maxTSize = (uint8_t)(maxjamoexpansion->maxLSize +
maxjamoexpansion->maxVSize +
maxjamoexpansion->maxTSize);
uint8_t maxVSize = (uint8_t)(maxjamoexpansion->maxLSize +
maxjamoexpansion->maxVSize);
while (count > 0) {
count --;
if (*(maxjamoexpansion->isV + count) == TRUE) {
uprv_uca_setMaxExpansion(
*(maxjamoexpansion->endExpansionCE + count),
maxVSize, maxexpansion, status);
}
else {
uprv_uca_setMaxExpansion(
*(maxjamoexpansion->endExpansionCE + count),
maxTSize, maxexpansion, status);
}
}
}
}
U_CDECL_BEGIN
static inline uint32_t U_CALLCONV
getFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset)
{
uint32_t value;
uint32_t tag;
UChar32 limit;
UBool inBlockZero;
limit=start+0x400;
while(start<limit) {
value=utrie_get32(trie, start, &inBlockZero);
tag = getCETag(value);
if(inBlockZero == TRUE) {
start+=UTRIE_DATA_BLOCK_LENGTH;
} else if(!(isSpecial(value) && (tag == IMPLICIT_TAG || tag == NOT_FOUND_TAG))) {
/* These are values that are starting in either UCA (IMPLICIT_TAG) or in the
* tailorings (NOT_FOUND_TAG). Presence of these tags means that there is
* nothing in this position and that it should be skipped.
*/
#ifdef UCOL_DEBUG
static int32_t count = 1;
fprintf(stdout, "%i, Folded %08X, value %08X\n", count++, start, value);
#endif
return (uint32_t)(UCOL_SPECIAL_FLAG | (SURROGATE_TAG<<24) | offset);
} else {
++start;
}
}
return 0;
}
U_CDECL_END
#ifdef UCOL_DEBUG
// This is a debug function to print the contents of a trie.
// It is used in conjuction with the code around utrie_unserialize call
UBool enumRange(const void *context, UChar32 start, UChar32 limit, uint32_t value) {
if(start<0x10000) {
fprintf(stdout, "%08X, %08X, %08X\n", start, limit, value);
} else {
fprintf(stdout, "%08X=%04X %04X, %08X=%04X %04X, %08X\n", start, U16_LEAD(start), U16_TRAIL(start), limit, U16_LEAD(limit), U16_TRAIL(limit), value);
}
return TRUE;
}
int32_t
myGetFoldingOffset(uint32_t data) {
if(data > UCOL_NOT_FOUND && getCETag(data) == SURROGATE_TAG) {
return (data&0xFFFFFF);
} else {
return 0;
}
}
#endif
U_CAPI UCATableHeader* U_EXPORT2
uprv_uca_assembleTable(tempUCATable *t, UErrorCode *status) {
/*CompactEIntArray *mapping = t->mapping;*/
UNewTrie *mapping = t->mapping;
ExpansionTable *expansions = t->expansions;
CntTable *contractions = t->contractions;
MaxExpansionTable *maxexpansion = t->maxExpansions;
if(U_FAILURE(*status)) {
return NULL;
}
uint32_t beforeContractions = (uint32_t)((headersize+paddedsize(expansions->position*sizeof(uint32_t)))/sizeof(UChar));
int32_t contractionsSize = 0;
contractionsSize = uprv_cnttab_constructTable(contractions, beforeContractions, status);
/* the following operation depends on the trie data. Therefore, we have to do it before */
/* the trie is compacted */
/* sets jamo expansions */
uprv_uca_getMaxExpansionJamo(mapping, maxexpansion, t->maxJamoExpansions,
t->image->jamoSpecial, status);
/*ucmpe32_compact(mapping);*/
/*UMemoryStream *ms = uprv_mstrm_openNew(8192);*/
/*int32_t mappingSize = ucmpe32_flattenMem(mapping, ms);*/
/*const uint8_t *flattened = uprv_mstrm_getBuffer(ms, &mappingSize);*/
// After setting the jamo expansions, compact the trie and get the needed size
int32_t mappingSize = utrie_serialize(mapping, NULL, 0, getFoldedValue /*getFoldedValue*/, FALSE, status);
uint32_t tableOffset = 0;
uint8_t *dataStart;
/* TODO: LATIN1 array is now in the utrie - it should be removed from the calculation */
uint32_t toAllocate =(uint32_t)(headersize+
paddedsize(expansions->position*sizeof(uint32_t))+
paddedsize(mappingSize)+
paddedsize(contractionsSize*(sizeof(UChar)+sizeof(uint32_t)))+
//paddedsize(0x100*sizeof(uint32_t)) /* Latin1 is now included in the trie */
/* maxexpansion array */
+ paddedsize(maxexpansion->position * sizeof(uint32_t)) +
/* maxexpansion size array */
paddedsize(maxexpansion->position * sizeof(uint8_t)) +
paddedsize(UCOL_UNSAFECP_TABLE_SIZE) + /* Unsafe chars */
paddedsize(UCOL_UNSAFECP_TABLE_SIZE)); /* Contraction Ending chars */
dataStart = (uint8_t *)uprv_malloc(toAllocate);
/* test for NULL */
if (dataStart == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
UCATableHeader *myData = (UCATableHeader *)dataStart;
// Please, do reset all the fields!
uprv_memset(dataStart, 0, toAllocate);
// Make sure we know this is reset
myData->magic = UCOL_HEADER_MAGIC;
myData->isBigEndian = U_IS_BIG_ENDIAN;
myData->charSetFamily = U_CHARSET_FAMILY;
myData->formatVersion[0] = UCA_FORMAT_VERSION_0;
myData->formatVersion[1] = UCA_FORMAT_VERSION_1;
myData->formatVersion[2] = UCA_FORMAT_VERSION_2;
myData->formatVersion[3] = UCA_FORMAT_VERSION_3;
myData->jamoSpecial = t->image->jamoSpecial;
// Don't copy stuff from UCA header!
//uprv_memcpy(myData, t->image, sizeof(UCATableHeader));
myData->contractionSize = contractionsSize;
tableOffset += (uint32_t)(paddedsize(sizeof(UCATableHeader)));
myData->options = tableOffset;
uprv_memcpy(dataStart+tableOffset, t->options, sizeof(UColOptionSet));
tableOffset += (uint32_t)(paddedsize(sizeof(UColOptionSet)));
/* copy expansions */
/*myData->expansion = (uint32_t *)dataStart+tableOffset;*/
myData->expansion = tableOffset;
uprv_memcpy(dataStart+tableOffset, expansions->CEs, expansions->position*sizeof(uint32_t));
tableOffset += (uint32_t)(paddedsize(expansions->position*sizeof(uint32_t)));
/* contractions block */
if(contractionsSize != 0) {
/* copy contraction index */
/*myData->contractionIndex = (UChar *)(dataStart+tableOffset);*/
myData->contractionIndex = tableOffset;
uprv_memcpy(dataStart+tableOffset, contractions->codePoints, contractionsSize*sizeof(UChar));
tableOffset += (uint32_t)(paddedsize(contractionsSize*sizeof(UChar)));
/* copy contraction collation elements */
/*myData->contractionCEs = (uint32_t *)(dataStart+tableOffset);*/
myData->contractionCEs = tableOffset;
uprv_memcpy(dataStart+tableOffset, contractions->CEs, contractionsSize*sizeof(uint32_t));
tableOffset += (uint32_t)(paddedsize(contractionsSize*sizeof(uint32_t)));
} else {
myData->contractionIndex = 0;
myData->contractionCEs = 0;
}
/* copy mapping table */
/*myData->mappingPosition = dataStart+tableOffset;*/
/*myData->mappingPosition = tableOffset;*/
/*uprv_memcpy(dataStart+tableOffset, flattened, mappingSize);*/
myData->mappingPosition = tableOffset;
utrie_serialize(mapping, dataStart+tableOffset, toAllocate-tableOffset, getFoldedValue, FALSE, status);
#ifdef UCOL_DEBUG
// This is debug code to dump the contents of the trie. It needs two functions defined above
{
UTrie UCAt = { 0 };
uint32_t trieWord;
utrie_unserialize(&UCAt, dataStart+tableOffset, 9999999, status);
UCAt.getFoldingOffset = myGetFoldingOffset;
if(U_SUCCESS(*status)) {
utrie_enum(&UCAt, NULL, enumRange, NULL);
}
trieWord = UTRIE_GET32_FROM_LEAD(&UCAt, 0xDC01);
}
#endif
tableOffset += paddedsize(mappingSize);
int32_t i = 0;
/* copy max expansion table */
myData->endExpansionCE = tableOffset;
myData->endExpansionCECount = maxexpansion->position - 1;
/* not copying the first element which is a dummy */
uprv_memcpy(dataStart + tableOffset, maxexpansion->endExpansionCE + 1,
(maxexpansion->position - 1) * sizeof(uint32_t));
tableOffset += (uint32_t)(paddedsize((maxexpansion->position)* sizeof(uint32_t)));
myData->expansionCESize = tableOffset;
uprv_memcpy(dataStart + tableOffset, maxexpansion->expansionCESize + 1,
(maxexpansion->position - 1) * sizeof(uint8_t));
tableOffset += (uint32_t)(paddedsize((maxexpansion->position)* sizeof(uint8_t)));
/* Unsafe chars table. Finish it off, then copy it. */
uprv_uca_unsafeCPAddCCNZ(t, status);
if (t->UCA != 0) { /* Or in unsafebits from UCA, making a combined table. */
for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) {
t->unsafeCP[i] |= t->UCA->unsafeCP[i];
}
}
myData->unsafeCP = tableOffset;
uprv_memcpy(dataStart + tableOffset, t->unsafeCP, UCOL_UNSAFECP_TABLE_SIZE);
tableOffset += paddedsize(UCOL_UNSAFECP_TABLE_SIZE);
/* Finish building Contraction Ending chars hash table and then copy it out. */
if (t->UCA != 0) { /* Or in unsafebits from UCA, making a combined table. */
for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) {
t->contrEndCP[i] |= t->UCA->contrEndCP[i];
}
}
myData->contrEndCP = tableOffset;
uprv_memcpy(dataStart + tableOffset, t->contrEndCP, UCOL_UNSAFECP_TABLE_SIZE);
tableOffset += paddedsize(UCOL_UNSAFECP_TABLE_SIZE);
if(tableOffset != toAllocate) {
#ifdef UCOL_DEBUG
fprintf(stderr, "calculation screwup!!! Expected to write %i but wrote %i instead!!!\n", toAllocate, tableOffset);
#endif
*status = U_INTERNAL_PROGRAM_ERROR;
uprv_free(dataStart);
return 0;
}
myData->size = tableOffset;
/* This should happen upon ressurection */
/*const uint8_t *mapPosition = (uint8_t*)myData+myData->mappingPosition;*/
/*uprv_mstrm_close(ms);*/
return myData;
}
struct enumStruct {
tempUCATable *t;
UCollator *tempColl;
UCollationElements* colEl;
const Normalizer2Impl *nfcImpl;
UnicodeSet *closed;
int32_t noOfClosures;
UErrorCode *status;
};
U_CDECL_BEGIN
static UBool U_CALLCONV
_enumCategoryRangeClosureCategory(const void *context, UChar32 start, UChar32 limit, UCharCategory type) {
if (type != U_UNASSIGNED && type != U_PRIVATE_USE_CHAR) { // if the range is assigned - we might ommit more categories later
UErrorCode *status = ((enumStruct *)context)->status;
tempUCATable *t = ((enumStruct *)context)->t;
UCollator *tempColl = ((enumStruct *)context)->tempColl;
UCollationElements* colEl = ((enumStruct *)context)->colEl;
UCAElements el;
UChar decompBuffer[4];
const UChar *decomp;
int32_t noOfDec = 0;
UChar32 u32 = 0;
UChar comp[2];
uint32_t len = 0;
for(u32 = start; u32 < limit; u32++) {
decomp = ((enumStruct *)context)->nfcImpl->
getDecomposition(u32, decompBuffer, noOfDec);
//if((noOfDec = unorm_normalize(comp, len, UNORM_NFD, 0, decomp, 256, status)) > 1
//|| (noOfDec == 1 && *decomp != (UChar)u32))
if(decomp != NULL)
{
len = 0;
U16_APPEND_UNSAFE(comp, len, u32);
if(ucol_strcoll(tempColl, comp, len, decomp, noOfDec) != UCOL_EQUAL) {
#ifdef UCOL_DEBUG
fprintf(stderr, "Closure: U+%04X -> ", u32);
UChar32 c;
int32_t i = 0;
while(i < noOfDec) {
U16_NEXT(decomp, i, noOfDec, c);
fprintf(stderr, "%04X ", c);
}
fprintf(stderr, "\n");
// print CEs for code point vs. decomposition
fprintf(stderr, "U+%04X CEs: ", u32);
UCollationElements *iter = ucol_openElements(tempColl, comp, len, status);
int32_t ce;
while((ce = ucol_next(iter, status)) != UCOL_NULLORDER) {
fprintf(stderr, "%08X ", ce);
}
fprintf(stderr, "\nDecomp CEs: ");
ucol_setText(iter, decomp, noOfDec, status);
while((ce = ucol_next(iter, status)) != UCOL_NULLORDER) {
fprintf(stderr, "%08X ", ce);
}
fprintf(stderr, "\n");
ucol_closeElements(iter);
#endif
if(((enumStruct *)context)->closed != NULL) {
((enumStruct *)context)->closed->add(u32);
}
((enumStruct *)context)->noOfClosures++;
el.cPoints = (UChar *)decomp;
el.cSize = noOfDec;
el.noOfCEs = 0;
el.prefix = el.prefixChars;
el.prefixSize = 0;
UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, &el);
el.cPoints = comp;
el.cSize = len;
el.prefix = el.prefixChars;
el.prefixSize = 0;
if(prefix == NULL) {
el.noOfCEs = 0;
ucol_setText(colEl, decomp, noOfDec, status);
while((el.CEs[el.noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) {
el.noOfCEs++;
}
} else {
el.noOfCEs = 1;
el.CEs[0] = prefix->mapCE;
// This character uses a prefix. We have to add it
// to the unsafe table, as it decomposed form is already
// in. In Japanese, this happens for \u309e & \u30fe
// Since unsafeCPSet is static in ucol_elm, we are going
// to wrap it up in the uprv_uca_unsafeCPAddCCNZ function
}
uprv_uca_addAnElement(t, &el, status);
}
}
}
}
return TRUE;
}
U_CDECL_END
static void
uprv_uca_setMapCE(tempUCATable *t, UCAElements *element, UErrorCode *status) {
uint32_t expansion = 0;
int32_t j;
ExpansionTable *expansions = t->expansions;
if(element->noOfCEs == 2 // a two CE expansion
&& isContinuation(element->CEs[1]) // which is a continuation
&& (element->CEs[1] & (~(0xFF << 24 | UCOL_CONTINUATION_MARKER))) == 0 // that has only primaries in continuation,
&& (((element->CEs[0]>>8) & 0xFF) == UCOL_BYTE_COMMON) // a common secondary
&& ((element->CEs[0] & 0xFF) == UCOL_BYTE_COMMON) // and a common tertiary
) {
element->mapCE = UCOL_SPECIAL_FLAG | (LONG_PRIMARY_TAG<<24) // a long primary special
| ((element->CEs[0]>>8) & 0xFFFF00) // first and second byte of primary
| ((element->CEs[1]>>24) & 0xFF); // third byte of primary
} else {
expansion = (uint32_t)(UCOL_SPECIAL_FLAG | (EXPANSION_TAG<<UCOL_TAG_SHIFT)
| (((uprv_uca_addExpansion(expansions, element->CEs[0], status)+(headersize>>2))<<4)
& 0xFFFFF0));
for(j = 1; j<(int32_t)element->noOfCEs; j++) {
uprv_uca_addExpansion(expansions, element->CEs[j], status);
}
if(element->noOfCEs <= 0xF) {
expansion |= element->noOfCEs;
} else {
uprv_uca_addExpansion(expansions, 0, status);
}
element->mapCE = expansion;
uprv_uca_setMaxExpansion(element->CEs[element->noOfCEs - 1],
(uint8_t)element->noOfCEs,
t->maxExpansions,
status);
}
}
static void
uprv_uca_addFCD4AccentedContractions(tempUCATable *t,
UCollationElements* colEl,
UChar *data,
int32_t len,
UCAElements *el,
UErrorCode *status) {
UChar decomp[256], comp[256];
int32_t decLen, compLen;
decLen = unorm_normalize(data, len, UNORM_NFD, 0, decomp, 256, status);
compLen = unorm_normalize(data, len, UNORM_NFC, 0, comp, 256, status);
decomp[decLen] = comp[compLen] = 0;
el->cPoints = decomp;
el->cSize = decLen;
el->noOfCEs = 0;
el->prefixSize = 0;
el->prefix = el->prefixChars;
UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, el);
el->cPoints = comp;
el->cSize = compLen;
el->prefix = el->prefixChars;
el->prefixSize = 0;
if(prefix == NULL) {
el->noOfCEs = 0;
ucol_setText(colEl, decomp, decLen, status);
while((el->CEs[el->noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) {
el->noOfCEs++;
}
uprv_uca_setMapCE(t, el, status);
uprv_uca_addAnElement(t, el, status);
}
el->cPoints=NULL; /* don't leak reference to stack */
}
static void
uprv_uca_addMultiCMContractions(tempUCATable *t,
UCollationElements* colEl,
tempTailorContext *c,
UCAElements *el,
UErrorCode *status) {
CombinClassTable *cmLookup = t->cmLookup;
UChar newDecomp[256];
int32_t maxComp, newDecLen;
const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status);
if (U_FAILURE(*status)) {
return;
}
int16_t curClass = nfcImpl->getFCD16(c->tailoringCM) & 0xff;
CompData *precomp = c->precomp;
int32_t compLen = c->compLen;
UChar *comp = c->comp;
maxComp = c->precompLen;
for (int32_t j=0; j < maxComp; j++) {
int32_t count=0;
do {
if ( count == 0 ) { // Decompose the saved precomposed char.
UChar temp[2];
temp[0]=precomp[j].cp;
temp[1]=0;
newDecLen = unorm_normalize(temp, 1, UNORM_NFD, 0,
newDecomp, sizeof(newDecomp)/sizeof(UChar), status);
newDecomp[newDecLen++] = cmLookup->cPoints[c->cmPos];
}
else { // swap 2 combining marks when they are equal.
uprv_memcpy(newDecomp, c->decomp, sizeof(UChar)*(c->decompLen));
newDecLen = c->decompLen;
newDecomp[newDecLen++] = precomp[j].cClass;
}
newDecomp[newDecLen] = 0;
compLen = unorm_normalize(newDecomp, newDecLen, UNORM_NFC, 0,
comp, 256, status);
if (compLen==1) {
comp[compLen++] = newDecomp[newDecLen++] = c->tailoringCM;
comp[compLen] = newDecomp[newDecLen] = 0;
el->cPoints = newDecomp;
el->cSize = newDecLen;
UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, el);
el->cPoints = c->comp;
el->cSize = compLen;
el->prefix = el->prefixChars;
el->prefixSize = 0;
if(prefix == NULL) {
el->noOfCEs = 0;
ucol_setText(colEl, newDecomp, newDecLen, status);
while((el->CEs[el->noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) {
el->noOfCEs++;
}
uprv_uca_setMapCE(t, el, status);
uprv_uca_finalizeAddition(t, el, status);
// Save the current precomposed char and its class to find any
// other combining mark combinations.
precomp[c->precompLen].cp=comp[0];
precomp[c->precompLen].cClass = curClass;
c->precompLen++;
}
}
} while (++count<2 && (precomp[j].cClass == curClass));
}
}
static void
uprv_uca_addTailCanonicalClosures(tempUCATable *t,
UCollationElements* colEl,
UChar baseCh,
UChar cMark,
UCAElements *el,
UErrorCode *status) {
CombinClassTable *cmLookup = t->cmLookup;
const Normalizer2Impl *nfcImpl = Normalizer2Factory::getNFCImpl(*status);
if (U_FAILURE(*status)) {
return;
}
int16_t maxIndex = nfcImpl->getFCD16(cMark) & 0xff;
UCAElements element;
uint16_t *index;
UChar decomp[256];
UChar comp[256];
CompData precomp[256]; // precomposed array
int32_t precompLen = 0; // count for precomp
int32_t i, len, decompLen, replacedPos;
tempTailorContext c;
if ( cmLookup == NULL ) {
return;
}
index = cmLookup->index;
int32_t cClass=nfcImpl->getFCD16(cMark) & 0xff;
maxIndex = (int32_t)index[(nfcImpl->getFCD16(cMark) & 0xff)-1];
c.comp = comp;
c.decomp = decomp;
c.precomp = precomp;
c.tailoringCM = cMark;
if (cClass>0) {
maxIndex = (int32_t)index[cClass-1];
}
else {
maxIndex=0;
}
decomp[0]=baseCh;
for ( i=0; i<maxIndex ; i++ ) {
decomp[1] = cmLookup->cPoints[i];
decomp[2]=0;
decompLen=2;
len = unorm_normalize(decomp, decompLen, UNORM_NFC, 0, comp, 256, status);
if (len==1) {
// Save the current precomposed char and its class to find any
// other combining mark combinations.
precomp[precompLen].cp=comp[0];
precomp[precompLen].cClass =
index[nfcImpl->getFCD16(decomp[1]) & 0xff];
precompLen++;
replacedPos=0;
for (decompLen=0; decompLen< (int32_t)el->cSize; decompLen++) {
decomp[decompLen] = el->cPoints[decompLen];
if (decomp[decompLen]==cMark) {
replacedPos = decompLen; // record the position for later use
}
}
if ( replacedPos != 0 ) {
decomp[replacedPos]=cmLookup->cPoints[i];
}
decomp[decompLen] = 0;
len = unorm_normalize(decomp, decompLen, UNORM_NFC, 0, comp, 256, status);
comp[len++] = decomp[decompLen++] = cMark;
comp[len] = decomp[decompLen] = 0;
element.cPoints = decomp;
element.cSize = decompLen;
element.noOfCEs = 0;
element.prefix = el->prefixChars;
element.prefixSize = 0;
UCAElements *prefix=(UCAElements *)uhash_get(t->prefixLookup, &element);
element.cPoints = comp;
element.cSize = len;
element.prefix = el->prefixChars;
element.prefixSize = 0;
if(prefix == NULL) {
element.noOfCEs = 0;
ucol_setText(colEl, decomp, decompLen, status);
while((element.CEs[element.noOfCEs] = ucol_next(colEl, status)) != (uint32_t)UCOL_NULLORDER) {
element.noOfCEs++;
}
uprv_uca_setMapCE(t, &element, status);
uprv_uca_finalizeAddition(t, &element, status);
}
// This is a fix for tailoring contractions with accented
// character at the end of contraction string.
if ((len>2) &&
(nfcImpl->getFCD16(comp[len-2]) & 0xff00)==0) {
uprv_uca_addFCD4AccentedContractions(t, colEl, comp, len, &element, status);
}
if (precompLen >1) {
c.compLen = len;
c.decompLen = decompLen;
c.precompLen = precompLen;
c.cmPos = i;
uprv_uca_addMultiCMContractions(t, colEl, &c, &element, status);
precompLen = c.precompLen;
}
}
}
}
U_CFUNC int32_t U_EXPORT2
uprv_uca_canonicalClosure(tempUCATable *t,
UColTokenParser *src,
UnicodeSet *closed,
UErrorCode *status)
{
enumStruct context;
context.closed = closed;
context.noOfClosures = 0;
UCAElements el;
UColToken *tok;
uint32_t i = 0, j = 0;
UChar baseChar, firstCM;
context.nfcImpl=Normalizer2Factory::getNFCImpl(*status);
if(U_FAILURE(*status)) {
return 0;
}
UCollator *tempColl = NULL;
tempUCATable *tempTable = uprv_uca_cloneTempTable(t, status);
// Check for null pointer
if (U_FAILURE(*status)) {
return 0;
}
UCATableHeader *tempData = uprv_uca_assembleTable(tempTable, status);
tempColl = ucol_initCollator(tempData, 0, t->UCA, status);
if ( tempTable->cmLookup != NULL ) {
t->cmLookup = tempTable->cmLookup; // copy over to t
tempTable->cmLookup = NULL;
}
uprv_uca_closeTempTable(tempTable);
if(U_SUCCESS(*status)) {
tempColl->ucaRules = NULL;
tempColl->actualLocale = NULL;
tempColl->validLocale = NULL;
tempColl->requestedLocale = NULL;
tempColl->hasRealData = TRUE;
tempColl->freeImageOnClose = TRUE;
} else if(tempData != 0) {
uprv_free(tempData);
}
/* produce canonical closure */
UCollationElements* colEl = ucol_openElements(tempColl, NULL, 0, status);
// Check for null pointer
if (U_FAILURE(*status)) {
return 0;
}
context.t = t;
context.tempColl = tempColl;
context.colEl = colEl;
context.status = status;
u_enumCharTypes(_enumCategoryRangeClosureCategory, &context);
if ( (src==NULL) || !src->buildCCTabFlag ) {
ucol_closeElements(colEl);
ucol_close(tempColl);
return context.noOfClosures; // no extra contraction needed to add
}
for (i=0; i < src->resultLen; i++) {
baseChar = firstCM= (UChar)0;
tok = src->lh[i].first;
while (tok != NULL && U_SUCCESS(*status)) {
el.prefix = el.prefixChars;
el.cPoints = el.uchars;
if(tok->prefix != 0) {
el.prefixSize = tok->prefix>>24;
uprv_memcpy(el.prefix, src->source + (tok->prefix & 0x00FFFFFF), el.prefixSize*sizeof(UChar));
el.cSize = (tok->source >> 24)-(tok->prefix>>24);
uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF)+(tok->prefix>>24) + src->source, el.cSize*sizeof(UChar));
} else {
el.prefixSize = 0;
*el.prefix = 0;
el.cSize = (tok->source >> 24);
uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, el.cSize*sizeof(UChar));
}
if(src->UCA != NULL) {
for(j = 0; j<el.cSize; j++) {
int16_t fcd = context.nfcImpl->getFCD16(el.cPoints[j]);
if ( (fcd & 0xff) == 0 ) {
baseChar = el.cPoints[j]; // last base character
firstCM=0; // reset combining mark value
}
else {
if ( (baseChar!=0) && (firstCM==0) ) {
firstCM = el.cPoints[j]; // first combining mark
}
}
}
}
if ( (baseChar!= (UChar)0) && (firstCM != (UChar)0) ) {
// find all the canonical rules
uprv_uca_addTailCanonicalClosures(t, colEl, baseChar, firstCM, &el, status);
}
tok = tok->next;
}
}
ucol_closeElements(colEl);
ucol_close(tempColl);
return context.noOfClosures;
}
#endif /* #if !UCONFIG_NO_COLLATION */