scuffed-code/icu4c/source/i18n/uspoof_impl.cpp

985 lines
32 KiB
C++
Raw Normal View History

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (C) 2008-2016, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/uspoof.h"
#include "unicode/uchar.h"
#include "unicode/uniset.h"
#include "unicode/utf16.h"
#include "utrie2.h"
#include "cmemory.h"
#include "cstring.h"
#include "scriptset.h"
#include "umutex.h"
#include "udataswp.h"
#include "uassert.h"
#include "ucln_in.h"
#include "uspoof_impl.h"
#if !UCONFIG_NO_NORMALIZATION
U_NAMESPACE_BEGIN
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SpoofImpl)
SpoofImpl::SpoofImpl(SpoofData *data, UErrorCode& status) {
construct(status);
fSpoofData = data;
}
SpoofImpl::SpoofImpl(UErrorCode& status) {
construct(status);
// TODO: Call this method where it is actually needed, instead of in the
// constructor, to allow for lazy data loading. See #12696.
fSpoofData = SpoofData::getDefault(status);
}
SpoofImpl::SpoofImpl() {
UErrorCode status = U_ZERO_ERROR;
construct(status);
// TODO: Call this method where it is actually needed, instead of in the
// constructor, to allow for lazy data loading. See #12696.
fSpoofData = SpoofData::getDefault(status);
}
void SpoofImpl::construct(UErrorCode& status) {
fMagic = USPOOF_MAGIC;
fChecks = USPOOF_ALL_CHECKS;
fSpoofData = NULL;
fAllowedCharsSet = NULL;
fAllowedLocales = NULL;
fRestrictionLevel = USPOOF_HIGHLY_RESTRICTIVE;
if (U_FAILURE(status)) { return; }
UnicodeSet *allowedCharsSet = new UnicodeSet(0, 0x10ffff);
fAllowedCharsSet = allowedCharsSet;
fAllowedLocales = uprv_strdup("");
if (fAllowedCharsSet == NULL || fAllowedLocales == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
allowedCharsSet->freeze();
}
// Copy Constructor, used by the user level clone() function.
SpoofImpl::SpoofImpl(const SpoofImpl &src, UErrorCode &status) :
fMagic(0), fChecks(USPOOF_ALL_CHECKS), fSpoofData(NULL), fAllowedCharsSet(NULL) ,
fAllowedLocales(NULL) {
if (U_FAILURE(status)) {
return;
}
fMagic = src.fMagic;
fChecks = src.fChecks;
if (src.fSpoofData != NULL) {
fSpoofData = src.fSpoofData->addReference();
}
fAllowedCharsSet = static_cast<const UnicodeSet *>(src.fAllowedCharsSet->clone());
fAllowedLocales = uprv_strdup(src.fAllowedLocales);
if (fAllowedCharsSet == NULL || fAllowedLocales == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
fRestrictionLevel = src.fRestrictionLevel;
}
SpoofImpl::~SpoofImpl() {
fMagic = 0; // head off application errors by preventing use of
// of deleted objects.
if (fSpoofData != NULL) {
fSpoofData->removeReference(); // Will delete if refCount goes to zero.
}
delete fAllowedCharsSet;
uprv_free((void *)fAllowedLocales);
}
// Cast this instance as a USpoofChecker for the C API.
USpoofChecker *SpoofImpl::asUSpoofChecker() {
return reinterpret_cast<USpoofChecker*>(this);
}
//
// Incoming parameter check on Status and the SpoofChecker object
// received from the C API.
//
const SpoofImpl *SpoofImpl::validateThis(const USpoofChecker *sc, UErrorCode &status) {
if (U_FAILURE(status)) {
return NULL;
}
if (sc == NULL) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
SpoofImpl *This = (SpoofImpl *)sc;
if (This->fMagic != USPOOF_MAGIC) {
status = U_INVALID_FORMAT_ERROR;
return NULL;
}
if (This->fSpoofData != NULL && !This->fSpoofData->validateDataVersion(status)) {
return NULL;
}
return This;
}
SpoofImpl *SpoofImpl::validateThis(USpoofChecker *sc, UErrorCode &status) {
return const_cast<SpoofImpl *>
(SpoofImpl::validateThis(const_cast<const USpoofChecker *>(sc), status));
}
void SpoofImpl::setAllowedLocales(const char *localesList, UErrorCode &status) {
UnicodeSet allowedChars;
UnicodeSet *tmpSet = NULL;
const char *locStart = localesList;
const char *locEnd = NULL;
const char *localesListEnd = localesList + uprv_strlen(localesList);
int32_t localeListCount = 0; // Number of locales provided by caller.
// Loop runs once per locale from the localesList, a comma separated list of locales.
do {
locEnd = uprv_strchr(locStart, ',');
if (locEnd == NULL) {
locEnd = localesListEnd;
}
while (*locStart == ' ') {
locStart++;
}
const char *trimmedEnd = locEnd-1;
while (trimmedEnd > locStart && *trimmedEnd == ' ') {
trimmedEnd--;
}
if (trimmedEnd <= locStart) {
break;
}
const char *locale = uprv_strndup(locStart, (int32_t)(trimmedEnd + 1 - locStart));
localeListCount++;
// We have one locale from the locales list.
// Add the script chars for this locale to the accumulating set of allowed chars.
// If the locale is no good, we will be notified back via status.
addScriptChars(locale, &allowedChars, status);
uprv_free((void *)locale);
if (U_FAILURE(status)) {
break;
}
locStart = locEnd + 1;
} while (locStart < localesListEnd);
// If our caller provided an empty list of locales, we disable the allowed characters checking
if (localeListCount == 0) {
uprv_free((void *)fAllowedLocales);
fAllowedLocales = uprv_strdup("");
tmpSet = new UnicodeSet(0, 0x10ffff);
if (fAllowedLocales == NULL || tmpSet == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
tmpSet->freeze();
delete fAllowedCharsSet;
fAllowedCharsSet = tmpSet;
fChecks &= ~USPOOF_CHAR_LIMIT;
return;
}
// Add all common and inherited characters to the set of allowed chars.
UnicodeSet tempSet;
tempSet.applyIntPropertyValue(UCHAR_SCRIPT, USCRIPT_COMMON, status);
allowedChars.addAll(tempSet);
tempSet.applyIntPropertyValue(UCHAR_SCRIPT, USCRIPT_INHERITED, status);
allowedChars.addAll(tempSet);
// If anything went wrong, we bail out without changing
// the state of the spoof checker.
if (U_FAILURE(status)) {
return;
}
// Store the updated spoof checker state.
tmpSet = static_cast<UnicodeSet *>(allowedChars.clone());
const char *tmpLocalesList = uprv_strdup(localesList);
if (tmpSet == NULL || tmpLocalesList == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_free((void *)fAllowedLocales);
fAllowedLocales = tmpLocalesList;
tmpSet->freeze();
delete fAllowedCharsSet;
fAllowedCharsSet = tmpSet;
fChecks |= USPOOF_CHAR_LIMIT;
}
const char * SpoofImpl::getAllowedLocales(UErrorCode &/*status*/) {
return fAllowedLocales;
}
// Given a locale (a language), add all the characters from all of the scripts used with that language
// to the allowedChars UnicodeSet
void SpoofImpl::addScriptChars(const char *locale, UnicodeSet *allowedChars, UErrorCode &status) {
UScriptCode scripts[30];
int32_t numScripts = uscript_getCode(locale, scripts, UPRV_LENGTHOF(scripts), &status);
if (U_FAILURE(status)) {
return;
}
if (status == U_USING_DEFAULT_WARNING) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
UnicodeSet tmpSet;
int32_t i;
for (i=0; i<numScripts; i++) {
tmpSet.applyIntPropertyValue(UCHAR_SCRIPT, scripts[i], status);
allowedChars->addAll(tmpSet);
}
}
// Computes the augmented script set for a code point, according to UTS 39 section 5.1.
void SpoofImpl::getAugmentedScriptSet(UChar32 codePoint, ScriptSet& result, UErrorCode& status) {
result.resetAll();
result.setScriptExtensions(codePoint, status);
if (U_FAILURE(status)) { return; }
// Section 5.1 step 1
if (result.test(USCRIPT_HAN, status)) {
result.set(USCRIPT_HAN_WITH_BOPOMOFO, status);
result.set(USCRIPT_JAPANESE, status);
result.set(USCRIPT_KOREAN, status);
}
if (result.test(USCRIPT_HIRAGANA, status)) {
result.set(USCRIPT_JAPANESE, status);
}
if (result.test(USCRIPT_KATAKANA, status)) {
result.set(USCRIPT_JAPANESE, status);
}
if (result.test(USCRIPT_HANGUL, status)) {
result.set(USCRIPT_KOREAN, status);
}
if (result.test(USCRIPT_BOPOMOFO, status)) {
result.set(USCRIPT_HAN_WITH_BOPOMOFO, status);
}
// Section 5.1 step 2
if (result.test(USCRIPT_COMMON, status) || result.test(USCRIPT_INHERITED, status)) {
result.setAll();
}
}
// Computes the resolved script set for a string, according to UTS 39 section 5.1.
void SpoofImpl::getResolvedScriptSet(const UnicodeString& input, ScriptSet& result, UErrorCode& status) const {
getResolvedScriptSetWithout(input, USCRIPT_CODE_LIMIT, result, status);
}
// Computes the resolved script set for a string, omitting characters having the specified script.
// If USCRIPT_CODE_LIMIT is passed as the second argument, all characters are included.
void SpoofImpl::getResolvedScriptSetWithout(const UnicodeString& input, UScriptCode script, ScriptSet& result, UErrorCode& status) const {
result.setAll();
ScriptSet temp;
UChar32 codePoint;
for (int32_t i = 0; i < input.length(); i += U16_LENGTH(codePoint)) {
codePoint = input.char32At(i);
// Compute the augmented script set for the character
getAugmentedScriptSet(codePoint, temp, status);
if (U_FAILURE(status)) { return; }
// Intersect the augmented script set with the resolved script set, but only if the character doesn't
// have the script specified in the function call
if (script == USCRIPT_CODE_LIMIT || !temp.test(script, status)) {
result.intersect(temp);
}
}
}
// Computes the set of numerics for a string, according to UTS 39 section 5.3.
void SpoofImpl::getNumerics(const UnicodeString& input, UnicodeSet& result, UErrorCode& /*status*/) const {
result.clear();
UChar32 codePoint;
for (int32_t i = 0; i < input.length(); i += U16_LENGTH(codePoint)) {
codePoint = input.char32At(i);
// Store a representative character for each kind of decimal digit
if (u_charType(codePoint) == U_DECIMAL_DIGIT_NUMBER) {
// Store the zero character as a representative for comparison.
// Unicode guarantees it is codePoint - value
result.add(codePoint - (UChar32)u_getNumericValue(codePoint));
}
}
}
// Computes the restriction level of a string, according to UTS 39 section 5.2.
URestrictionLevel SpoofImpl::getRestrictionLevel(const UnicodeString& input, UErrorCode& status) const {
// Section 5.2 step 1:
if (!fAllowedCharsSet->containsAll(input)) {
return USPOOF_UNRESTRICTIVE;
}
// Section 5.2 step 2
// Java use a static UnicodeSet for this test. In C++, avoid the static variable
// and just do a simple for loop.
UBool allASCII = TRUE;
for (int32_t i=0, length=input.length(); i<length; i++) {
if (input.charAt(i) > 0x7f) {
allASCII = FALSE;
break;
}
}
if (allASCII) {
return USPOOF_ASCII;
}
// Section 5.2 steps 3:
ScriptSet resolvedScriptSet;
getResolvedScriptSet(input, resolvedScriptSet, status);
if (U_FAILURE(status)) { return USPOOF_UNRESTRICTIVE; }
// Section 5.2 step 4:
if (!resolvedScriptSet.isEmpty()) {
return USPOOF_SINGLE_SCRIPT_RESTRICTIVE;
}
// Section 5.2 step 5:
ScriptSet resolvedNoLatn;
getResolvedScriptSetWithout(input, USCRIPT_LATIN, resolvedNoLatn, status);
if (U_FAILURE(status)) { return USPOOF_UNRESTRICTIVE; }
// Section 5.2 step 6:
if (resolvedNoLatn.test(USCRIPT_HAN_WITH_BOPOMOFO, status)
|| resolvedNoLatn.test(USCRIPT_JAPANESE, status)
|| resolvedNoLatn.test(USCRIPT_KOREAN, status)) {
return USPOOF_HIGHLY_RESTRICTIVE;
}
// Section 5.2 step 7:
if (!resolvedNoLatn.isEmpty()
&& !resolvedNoLatn.test(USCRIPT_CYRILLIC, status)
&& !resolvedNoLatn.test(USCRIPT_GREEK, status)
&& !resolvedNoLatn.test(USCRIPT_CHEROKEE, status)) {
return USPOOF_MODERATELY_RESTRICTIVE;
}
// Section 5.2 step 8:
return USPOOF_MINIMALLY_RESTRICTIVE;
}
int32_t SpoofImpl::findHiddenOverlay(const UnicodeString& input, UErrorCode&) const {
bool sawLeadCharacter = false;
for (int32_t i=0; i<input.length();) {
UChar32 cp = input.char32At(i);
if (sawLeadCharacter && cp == 0x0307) {
return i;
}
uint8_t combiningClass = u_getCombiningClass(cp);
// Skip over characters except for those with combining class 0 (non-combining characters) or with
// combining class 230 (same class as U+0307)
U_ASSERT(u_getCombiningClass(0x0307) == 230);
if (combiningClass == 0 || combiningClass == 230) {
sawLeadCharacter = isIllegalCombiningDotLeadCharacter(cp);
}
i += U16_LENGTH(cp);
}
return -1;
}
static inline bool isIllegalCombiningDotLeadCharacterNoLookup(UChar32 cp) {
return cp == u'i' || cp == u'j' || cp == u'ı' || cp == u'ȷ' || cp == u'l' ||
u_hasBinaryProperty(cp, UCHAR_SOFT_DOTTED);
}
bool SpoofImpl::isIllegalCombiningDotLeadCharacter(UChar32 cp) const {
if (isIllegalCombiningDotLeadCharacterNoLookup(cp)) {
return true;
}
UnicodeString skelStr;
fSpoofData->confusableLookup(cp, skelStr);
UChar32 finalCp = skelStr.char32At(skelStr.moveIndex32(skelStr.length(), -1));
if (finalCp != cp && isIllegalCombiningDotLeadCharacterNoLookup(finalCp)) {
return true;
}
return false;
}
// Convert a text format hex number. Utility function used by builder code. Static.
// Input: UChar *string text. Output: a UChar32
// Input has been pre-checked, and will have no non-hex chars.
// The number must fall in the code point range of 0..0x10ffff
// Static Function.
UChar32 SpoofImpl::ScanHex(const UChar *s, int32_t start, int32_t limit, UErrorCode &status) {
if (U_FAILURE(status)) {
return 0;
}
U_ASSERT(limit-start > 0);
uint32_t val = 0;
int i;
for (i=start; i<limit; i++) {
int digitVal = s[i] - 0x30;
if (digitVal>9) {
digitVal = 0xa + (s[i] - 0x41); // Upper Case 'A'
}
if (digitVal>15) {
digitVal = 0xa + (s[i] - 0x61); // Lower Case 'a'
}
U_ASSERT(digitVal <= 0xf);
val <<= 4;
val += digitVal;
}
if (val > 0x10ffff) {
status = U_PARSE_ERROR;
val = 0;
}
return (UChar32)val;
}
//-----------------------------------------
//
// class CheckResult Implementation
//
//-----------------------------------------
CheckResult::CheckResult() : fMagic(USPOOF_CHECK_MAGIC) {
clear();
}
USpoofCheckResult* CheckResult::asUSpoofCheckResult() {
return reinterpret_cast<USpoofCheckResult*>(this);
}
//
// Incoming parameter check on Status and the CheckResult object
// received from the C API.
//
const CheckResult* CheckResult::validateThis(const USpoofCheckResult *ptr, UErrorCode &status) {
if (U_FAILURE(status)) { return NULL; }
if (ptr == NULL) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
CheckResult *This = (CheckResult*) ptr;
if (This->fMagic != USPOOF_CHECK_MAGIC) {
status = U_INVALID_FORMAT_ERROR;
return NULL;
}
return This;
}
CheckResult* CheckResult::validateThis(USpoofCheckResult *ptr, UErrorCode &status) {
return const_cast<CheckResult *>
(CheckResult::validateThis(const_cast<const USpoofCheckResult*>(ptr), status));
}
void CheckResult::clear() {
fChecks = 0;
fNumerics.clear();
fRestrictionLevel = USPOOF_UNDEFINED_RESTRICTIVE;
}
int32_t CheckResult::toCombinedBitmask(int32_t enabledChecks) {
if ((enabledChecks & USPOOF_AUX_INFO) != 0 && fRestrictionLevel != USPOOF_UNDEFINED_RESTRICTIVE) {
return fChecks | fRestrictionLevel;
} else {
return fChecks;
}
}
CheckResult::~CheckResult() {
}
//----------------------------------------------------------------------------------------------
//
// class SpoofData Implementation
//
//----------------------------------------------------------------------------------------------
UBool SpoofData::validateDataVersion(UErrorCode &status) const {
if (U_FAILURE(status) ||
fRawData == NULL ||
fRawData->fMagic != USPOOF_MAGIC ||
fRawData->fFormatVersion[0] != USPOOF_CONFUSABLE_DATA_FORMAT_VERSION ||
fRawData->fFormatVersion[1] != 0 ||
fRawData->fFormatVersion[2] != 0 ||
fRawData->fFormatVersion[3] != 0) {
status = U_INVALID_FORMAT_ERROR;
return FALSE;
}
return TRUE;
}
static UBool U_CALLCONV
spoofDataIsAcceptable(void *context,
const char * /* type */, const char * /*name*/,
const UDataInfo *pInfo) {
if(
pInfo->size >= 20 &&
pInfo->isBigEndian == U_IS_BIG_ENDIAN &&
pInfo->charsetFamily == U_CHARSET_FAMILY &&
pInfo->dataFormat[0] == 0x43 && // dataFormat="Cfu "
pInfo->dataFormat[1] == 0x66 &&
pInfo->dataFormat[2] == 0x75 &&
pInfo->dataFormat[3] == 0x20 &&
pInfo->formatVersion[0] == USPOOF_CONFUSABLE_DATA_FORMAT_VERSION
) {
UVersionInfo *version = static_cast<UVersionInfo *>(context);
if(version != NULL) {
uprv_memcpy(version, pInfo->dataVersion, 4);
}
return TRUE;
} else {
return FALSE;
}
}
// Methods for the loading of the default confusables data file. The confusable
// data is loaded only when it is needed.
//
// SpoofData::getDefault() - Return the default confusables data, and call the
// initOnce() if it is not available. Adds a reference
// to the SpoofData that the caller is responsible for
// decrementing when they are done with the data.
//
// uspoof_loadDefaultData - Called once, from initOnce(). The resulting SpoofData
// is shared by all spoof checkers using the default data.
//
// uspoof_cleanupDefaultData - Called during cleanup.
//
static UInitOnce gSpoofInitDefaultOnce = U_INITONCE_INITIALIZER;
static SpoofData* gDefaultSpoofData;
static UBool U_CALLCONV
uspoof_cleanupDefaultData(void) {
if (gDefaultSpoofData) {
// Will delete, assuming all user-level spoof checkers were closed.
gDefaultSpoofData->removeReference();
gDefaultSpoofData = nullptr;
gSpoofInitDefaultOnce.reset();
}
return TRUE;
}
static void U_CALLCONV uspoof_loadDefaultData(UErrorCode& status) {
UDataMemory *udm = udata_openChoice(nullptr, "cfu", "confusables",
spoofDataIsAcceptable,
nullptr, // context, would receive dataVersion if supplied.
&status);
if (U_FAILURE(status)) { return; }
gDefaultSpoofData = new SpoofData(udm, status);
if (U_FAILURE(status)) {
delete gDefaultSpoofData;
gDefaultSpoofData = nullptr;
return;
}
if (gDefaultSpoofData == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
ucln_i18n_registerCleanup(UCLN_I18N_SPOOFDATA, uspoof_cleanupDefaultData);
}
SpoofData* SpoofData::getDefault(UErrorCode& status) {
umtx_initOnce(gSpoofInitDefaultOnce, &uspoof_loadDefaultData, status);
if (U_FAILURE(status)) { return NULL; }
gDefaultSpoofData->addReference();
return gDefaultSpoofData;
}
SpoofData::SpoofData(UDataMemory *udm, UErrorCode &status)
{
reset();
if (U_FAILURE(status)) {
return;
}
fUDM = udm;
// fRawData is non-const because it may be constructed by the data builder.
fRawData = reinterpret_cast<SpoofDataHeader *>(
const_cast<void *>(udata_getMemory(udm)));
validateDataVersion(status);
initPtrs(status);
}
SpoofData::SpoofData(const void *data, int32_t length, UErrorCode &status)
{
reset();
if (U_FAILURE(status)) {
return;
}
if ((size_t)length < sizeof(SpoofDataHeader)) {
status = U_INVALID_FORMAT_ERROR;
return;
}
if (data == NULL) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
void *ncData = const_cast<void *>(data);
fRawData = static_cast<SpoofDataHeader *>(ncData);
if (length < fRawData->fLength) {
status = U_INVALID_FORMAT_ERROR;
return;
}
validateDataVersion(status);
initPtrs(status);
}
// Spoof Data constructor for use from data builder.
// Initializes a new, empty data area that will be populated later.
SpoofData::SpoofData(UErrorCode &status) {
reset();
if (U_FAILURE(status)) {
return;
}
fDataOwned = true;
// The spoof header should already be sized to be a multiple of 16 bytes.
// Just in case it's not, round it up.
uint32_t initialSize = (sizeof(SpoofDataHeader) + 15) & ~15;
U_ASSERT(initialSize == sizeof(SpoofDataHeader));
fRawData = static_cast<SpoofDataHeader *>(uprv_malloc(initialSize));
fMemLimit = initialSize;
if (fRawData == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(fRawData, 0, initialSize);
fRawData->fMagic = USPOOF_MAGIC;
fRawData->fFormatVersion[0] = USPOOF_CONFUSABLE_DATA_FORMAT_VERSION;
fRawData->fFormatVersion[1] = 0;
fRawData->fFormatVersion[2] = 0;
fRawData->fFormatVersion[3] = 0;
initPtrs(status);
}
// reset() - initialize all fields.
// Should be updated if any new fields are added.
// Called by constructors to put things in a known initial state.
void SpoofData::reset() {
fRawData = NULL;
fDataOwned = FALSE;
fUDM = NULL;
fMemLimit = 0;
fRefCount = 1;
fCFUKeys = NULL;
fCFUValues = NULL;
fCFUStrings = NULL;
}
// SpoofData::initPtrs()
// Initialize the pointers to the various sections of the raw data.
//
// This function is used both during the Trie building process (multiple
// times, as the individual data sections are added), and
// during the opening of a Spoof Checker from prebuilt data.
//
// The pointers for non-existent data sections (identified by an offset of 0)
// are set to NULL.
//
// Note: During building the data, adding each new data section
// reallocs the raw data area, which likely relocates it, which
// in turn requires reinitializing all of the pointers into it, hence
// multiple calls to this function during building.
//
void SpoofData::initPtrs(UErrorCode &status) {
fCFUKeys = NULL;
fCFUValues = NULL;
fCFUStrings = NULL;
if (U_FAILURE(status)) {
return;
}
if (fRawData->fCFUKeys != 0) {
fCFUKeys = (int32_t *)((char *)fRawData + fRawData->fCFUKeys);
}
if (fRawData->fCFUStringIndex != 0) {
fCFUValues = (uint16_t *)((char *)fRawData + fRawData->fCFUStringIndex);
}
if (fRawData->fCFUStringTable != 0) {
fCFUStrings = (UChar *)((char *)fRawData + fRawData->fCFUStringTable);
}
}
SpoofData::~SpoofData() {
if (fDataOwned) {
uprv_free(fRawData);
}
fRawData = NULL;
if (fUDM != NULL) {
udata_close(fUDM);
}
fUDM = NULL;
}
void SpoofData::removeReference() {
if (umtx_atomic_dec(&fRefCount) == 0) {
delete this;
}
}
SpoofData *SpoofData::addReference() {
umtx_atomic_inc(&fRefCount);
return this;
}
void *SpoofData::reserveSpace(int32_t numBytes, UErrorCode &status) {
if (U_FAILURE(status)) {
return NULL;
}
if (!fDataOwned) {
U_ASSERT(FALSE);
status = U_INTERNAL_PROGRAM_ERROR;
return NULL;
}
numBytes = (numBytes + 15) & ~15; // Round up to a multiple of 16
uint32_t returnOffset = fMemLimit;
fMemLimit += numBytes;
fRawData = static_cast<SpoofDataHeader *>(uprv_realloc(fRawData, fMemLimit));
fRawData->fLength = fMemLimit;
uprv_memset((char *)fRawData + returnOffset, 0, numBytes);
initPtrs(status);
return (char *)fRawData + returnOffset;
}
int32_t SpoofData::serialize(void *buf, int32_t capacity, UErrorCode &status) const {
int32_t dataSize = fRawData->fLength;
if (capacity < dataSize) {
status = U_BUFFER_OVERFLOW_ERROR;
return dataSize;
}
uprv_memcpy(buf, fRawData, dataSize);
return dataSize;
}
int32_t SpoofData::size() const {
return fRawData->fLength;
}
//-------------------------------
//
// Front-end APIs for SpoofData
//
//-------------------------------
int32_t SpoofData::confusableLookup(UChar32 inChar, UnicodeString &dest) const {
// Perform a binary search.
// [lo, hi), i.e lo is inclusive, hi is exclusive.
// The result after the loop will be in lo.
int32_t lo = 0;
int32_t hi = length();
do {
int32_t mid = (lo + hi) / 2;
if (codePointAt(mid) > inChar) {
hi = mid;
} else if (codePointAt(mid) < inChar) {
lo = mid;
} else {
// Found result. Break early.
lo = mid;
break;
}
} while (hi - lo > 1);
// Did we find an entry? If not, the char maps to itself.
if (codePointAt(lo) != inChar) {
dest.append(inChar);
return 1;
}
// Add the element to the string builder and return.
return appendValueTo(lo, dest);
}
int32_t SpoofData::length() const {
return fRawData->fCFUKeysSize;
}
UChar32 SpoofData::codePointAt(int32_t index) const {
return ConfusableDataUtils::keyToCodePoint(fCFUKeys[index]);
}
int32_t SpoofData::appendValueTo(int32_t index, UnicodeString& dest) const {
int32_t stringLength = ConfusableDataUtils::keyToLength(fCFUKeys[index]);
// Value is either a char (for strings of length 1) or
// an index into the string table (for longer strings)
uint16_t value = fCFUValues[index];
if (stringLength == 1) {
dest.append((UChar)value);
} else {
dest.append(fCFUStrings + value, stringLength);
}
return stringLength;
}
U_NAMESPACE_END
U_NAMESPACE_USE
//-----------------------------------------------------------------------------
//
// uspoof_swap - byte swap and char encoding swap of spoof data
//
//-----------------------------------------------------------------------------
U_CAPI int32_t U_EXPORT2
uspoof_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData,
UErrorCode *status) {
if (status == NULL || U_FAILURE(*status)) {
return 0;
}
if(ds==NULL || inData==NULL || length<-1 || (length>0 && outData==NULL)) {
*status=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
//
// Check that the data header is for spoof data.
// (Header contents are defined in gencfu.cpp)
//
const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData+4);
if(!( pInfo->dataFormat[0]==0x43 && /* dataFormat="Cfu " */
pInfo->dataFormat[1]==0x66 &&
pInfo->dataFormat[2]==0x75 &&
pInfo->dataFormat[3]==0x20 &&
pInfo->formatVersion[0]==USPOOF_CONFUSABLE_DATA_FORMAT_VERSION &&
pInfo->formatVersion[1]==0 &&
pInfo->formatVersion[2]==0 &&
pInfo->formatVersion[3]==0 )) {
udata_printError(ds, "uspoof_swap(): data format %02x.%02x.%02x.%02x "
"(format version %02x %02x %02x %02x) is not recognized\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0], pInfo->formatVersion[1],
pInfo->formatVersion[2], pInfo->formatVersion[3]);
*status=U_UNSUPPORTED_ERROR;
return 0;
}
//
// Swap the data header. (This is the generic ICU Data Header, not the uspoof Specific
// header). This swap also conveniently gets us
// the size of the ICU d.h., which lets us locate the start
// of the uspoof specific data.
//
int32_t headerSize=udata_swapDataHeader(ds, inData, length, outData, status);
//
// Get the Spoof Data Header, and check that it appears to be OK.
//
//
const uint8_t *inBytes =(const uint8_t *)inData+headerSize;
SpoofDataHeader *spoofDH = (SpoofDataHeader *)inBytes;
if (ds->readUInt32(spoofDH->fMagic) != USPOOF_MAGIC ||
ds->readUInt32(spoofDH->fLength) < sizeof(SpoofDataHeader))
{
udata_printError(ds, "uspoof_swap(): Spoof Data header is invalid.\n");
*status=U_UNSUPPORTED_ERROR;
return 0;
}
//
// Prefight operation? Just return the size
//
int32_t spoofDataLength = ds->readUInt32(spoofDH->fLength);
int32_t totalSize = headerSize + spoofDataLength;
if (length < 0) {
return totalSize;
}
//
// Check that length passed in is consistent with length from Spoof data header.
//
if (length < totalSize) {
udata_printError(ds, "uspoof_swap(): too few bytes (%d after ICU Data header) for spoof data.\n",
spoofDataLength);
*status=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
//
// Swap the Data. Do the data itself first, then the Spoof Data Header, because
// we need to reference the header to locate the data, and an
// inplace swap of the header leaves it unusable.
//
uint8_t *outBytes = (uint8_t *)outData + headerSize;
SpoofDataHeader *outputDH = (SpoofDataHeader *)outBytes;
int32_t sectionStart;
int32_t sectionLength;
//
// If not swapping in place, zero out the output buffer before starting.
// Gaps may exist between the individual sections, and these must be zeroed in
// the output buffer. The simplest way to do that is to just zero the whole thing.
//
if (inBytes != outBytes) {
uprv_memset(outBytes, 0, spoofDataLength);
}
// Confusables Keys Section (fCFUKeys)
sectionStart = ds->readUInt32(spoofDH->fCFUKeys);
sectionLength = ds->readUInt32(spoofDH->fCFUKeysSize) * 4;
ds->swapArray32(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status);
// String Index Section
sectionStart = ds->readUInt32(spoofDH->fCFUStringIndex);
sectionLength = ds->readUInt32(spoofDH->fCFUStringIndexSize) * 2;
ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status);
// String Table Section
sectionStart = ds->readUInt32(spoofDH->fCFUStringTable);
sectionLength = ds->readUInt32(spoofDH->fCFUStringTableLen) * 2;
ds->swapArray16(ds, inBytes+sectionStart, sectionLength, outBytes+sectionStart, status);
// And, last, swap the header itself.
// int32_t fMagic // swap this
// uint8_t fFormatVersion[4] // Do not swap this, just copy
// int32_t fLength and all the rest // Swap the rest, all is 32 bit stuff.
//
uint32_t magic = ds->readUInt32(spoofDH->fMagic);
ds->writeUInt32((uint32_t *)&outputDH->fMagic, magic);
if (outputDH->fFormatVersion != spoofDH->fFormatVersion) {
uprv_memcpy(outputDH->fFormatVersion, spoofDH->fFormatVersion, sizeof(spoofDH->fFormatVersion));
}
// swap starting at fLength
ds->swapArray32(ds, &spoofDH->fLength, sizeof(SpoofDataHeader)-8 /* minus magic and fFormatVersion[4] */, &outputDH->fLength, status);
return totalSize;
}
#endif