scuffed-code/icu4c/source/common/rbbitblb.cpp

754 lines
24 KiB
C++
Raw Normal View History

//
// rbbitblb.cpp
//
/*
**********************************************************************
* Copyright (c) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/unistr.h"
#include "rbbitblb.h"
#include "rbbirb.h"
#include "rbbisetb.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
U_NAMESPACE_BEGIN
const char RBBITableBuilder::fgClassID=0;
RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode) :
fTree(*rootNode) {
fRB = rb;
fStatus = fRB->fStatus;
fDStates = new UVector(*fStatus);
}
RBBITableBuilder::~RBBITableBuilder() {
int i;
for (i=0; i<fDStates->size(); i++) {
delete (RBBIStateDescriptor *)fDStates->elementAt(i);
}
delete fDStates;
}
//-----------------------------------------------------------------------------
//
// RBBITableBuilder::build - This is the main function for building the DFA state transtion
// table from the RBBI rules parse tree.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::build() {
if (U_FAILURE(*fStatus)) {
return;
}
// If there were no rules, just return. This situation can easily arise
// for the reverse rules.
if (fTree==NULL) {
return;
}
//
// Walk through the tree, replacing any references to $variables with a copy of the
// parse tree for the substition expression.
//
fTree->flattenVariables();
if (fRB->fDebugEnv && strstr(fRB->fDebugEnv, "ftree")) {
printf("Parse tree after flattening variable references.\n");
fTree->printTree(TRUE);
}
//
// Add a unique right-end marker to the expression.
// Appears as a cat-node, left child being the original tree,
// right child being the end marker.
//
RBBINode *cn = new RBBINode(RBBINode::opCat);
cn->fLeftChild = fTree;
fTree->fParent = cn;
cn->fRightChild = new RBBINode(RBBINode::endMark);
cn->fRightChild->fParent = cn;
fTree = cn;
//
// Replace all references to UnicodeSets with the tree for the equivalent
// expression.
//
fTree->flattenSets();
if (fRB->fDebugEnv && strstr(fRB->fDebugEnv, "stree")) {
printf("Parse tree after flattening Unicode Set references.\n");
fTree->printTree(TRUE);
}
//
// calculate the functions nullable, firstpos, lastpos and followpos on
// nodes in the parse tree.
// See the alogrithm description in Aho.
// Understanding how this works by looking at the code alone will be
// nearly impossible.
//
calcNullable(fTree);
calcFirstPos(fTree);
calcLastPos(fTree);
calcFollowPos(fTree);
if (fRB->fDebugEnv && strstr(fRB->fDebugEnv, "pos")) {
printf("\n\n");
printPosSets(fTree);
}
//
// Build the DFA state transition tables.
//
buildStateTable();
flagAcceptingStates();
flagLookAheadStates();
flagTaggedStates();
if (fRB->fDebugEnv && strstr(fRB->fDebugEnv, "states")) {printStates();};
}
//-----------------------------------------------------------------------------
//
// calcNullable. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcNullable(RBBINode *n) {
if (n == NULL) {
return;
}
if (n->fType == RBBINode::setRef ||
n->fType == RBBINode::endMark ) {
// These are non-empty leaf node types.
n->fNullable = FALSE;
return;
}
if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) {
// Lookahead marker node. It's a leaf, so no recursion on children.
// It's nullable because it does not match any literal text from the input stream.
n->fNullable = TRUE;
return;
}
// The node is not a leaf.
// Calculate nullable on its children.
calcNullable(n->fLeftChild);
calcNullable(n->fRightChild);
// Apply functions from table 3.40 in Aho
if (n->fType == RBBINode::opOr) {
n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable;
}
else if (n->fType == RBBINode::opCat) {
n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable;
}
else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) {
n->fNullable = TRUE;
}
else {
n->fNullable = FALSE;
}
}
//-----------------------------------------------------------------------------
//
// calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcFirstPos(RBBINode *n) {
if (n == NULL) {
return;
}
if (n->fType == RBBINode::leafChar ||
n->fType == RBBINode::endMark ||
n->fType == RBBINode::lookAhead ||
n->fType == RBBINode::tag) {
// These are non-empty leaf node types.
n->fFirstPosSet->addElement(n, *fStatus);
return;
}
// The node is not a leaf.
// Calculate firstPos on its children.
calcFirstPos(n->fLeftChild);
calcFirstPos(n->fRightChild);
// Apply functions from table 3.40 in Aho
if (n->fType == RBBINode::opOr) {
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
}
else if (n->fType == RBBINode::opCat) {
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
if (n->fLeftChild->fNullable) {
setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
}
}
else if (n->fType == RBBINode::opStar ||
n->fType == RBBINode::opQuestion ||
n->fType == RBBINode::opPlus) {
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
}
}
//-----------------------------------------------------------------------------
//
// calcLastPos. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcLastPos(RBBINode *n) {
if (n == NULL) {
return;
}
if (n->fType == RBBINode::leafChar ||
n->fType == RBBINode::endMark ||
n->fType == RBBINode::lookAhead ||
n->fType == RBBINode::tag) {
// These are non-empty leaf node types.
n->fLastPosSet->addElement(n, *fStatus);
return;
}
// The node is not a leaf.
// Calculate lastPos on its children.
calcLastPos(n->fLeftChild);
calcLastPos(n->fRightChild);
// Apply functions from table 3.40 in Aho
if (n->fType == RBBINode::opOr) {
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
}
else if (n->fType == RBBINode::opCat) {
setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
if (n->fRightChild->fNullable) {
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
}
}
else if (n->fType == RBBINode::opStar ||
n->fType == RBBINode::opQuestion ||
n->fType == RBBINode::opPlus) {
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
}
}
//-----------------------------------------------------------------------------
//
// calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcFollowPos(RBBINode *n) {
if (n == NULL ||
n->fType == RBBINode::leafChar ||
n->fType == RBBINode::endMark) {
return;
}
calcFollowPos(n->fLeftChild);
calcFollowPos(n->fRightChild);
// Aho rule #1
if (n->fType == RBBINode::opCat) {
RBBINode *i; // is 'i' in Aho's description
uint32_t ix;
UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet;
UVector *FirstPosOfRightChild = n->fRightChild->fFirstPosSet;
for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) {
i = (RBBINode *)LastPosOfLeftChild->elementAt(ix);
setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet);
}
}
// Aho rule #2
if (n->fType == RBBINode::opStar ||
n->fType == RBBINode::opPlus) {
RBBINode *i; // again, n and i are the names from Aho's description.
uint32_t ix;
for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) {
i = (RBBINode *)n->fLastPosSet->elementAt(ix);
setAdd(i->fFollowPos, n->fFirstPosSet);
}
}
}
//-----------------------------------------------------------------------------
//
// buildStateTable() Determine the set of runtime DFA states and the
// transition tables for these states, by the algorithm
// of fig. 3.44 in Aho.
//
// Most of the comments are quotes of Aho's psuedo-code.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::buildStateTable() {
//
// Add a dummy state 0 - the stop state. Not from Aho.
int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1;
RBBIStateDescriptor *failState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
failState->fPositions = new UVector(*fStatus);
fDStates->addElement(failState, *fStatus);
// initially, the only unmarked state in Dstates is firstpos(root),
// where toot is the root of the syntax tree for (r)#;
RBBIStateDescriptor *initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
initialState->fPositions = new UVector(*fStatus);
setAdd(initialState->fPositions, fTree->fFirstPosSet);
fDStates->addElement(initialState, *fStatus);
// while there is an unmarked state T in Dstates do begin
for (;;) {
RBBIStateDescriptor *T = NULL;
int32_t tx;
for (tx=1; tx<fDStates->size(); tx++) {
RBBIStateDescriptor *temp;
temp = (RBBIStateDescriptor *)fDStates->elementAt(tx);
if (temp->fMarked == FALSE) {
T = temp;
break;
}
}
if (T == NULL) {
break;
}
// mark T;
T->fMarked = TRUE;
// for each input symbol a do begin
int32_t a;
for (a = 1; a<=lastInputSymbol; a++) {
// let U be the set of positions that are in followpos(p)
// for some position p in T
// such that the symbol at position p is a;
UVector *U = NULL;
RBBINode *p;
int32_t px;
for (px=0; px<T->fPositions->size(); px++) {
p = (RBBINode *)T->fPositions->elementAt(px);
if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) {
if (U == NULL) {
U = new UVector(*fStatus);
}
setAdd(U, p->fFollowPos);
}
}
// if U is not empty and not in DStates then
int32_t ux;
UBool UinDstates = FALSE;
if (U != NULL) {
assert(U->size() > 0);
int ix;
for (ix=0; ix<fDStates->size(); ix++) {
RBBIStateDescriptor *temp2;
temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix);
if (setEquals(U, temp2->fPositions)) {
delete U;
U = temp2->fPositions;
ux = ix;
UinDstates = TRUE;
break;
}
}
// Add U as an unmarked state to Dstates
if (!UinDstates)
{
RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
newState->fPositions = U;
fDStates->addElement(newState, *fStatus);
ux = fDStates->size()-1;
}
// Dtran[T, a] := U;
T->fDtran->setElementAt(ux, a);
}
}
}
}
//-----------------------------------------------------------------------------
//
// flagAcceptingStates Identify accepting states.
// TODO: implementation for tagging of rule match values
// will probably end up here.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::flagAcceptingStates() {
UVector endMarkerNodes(*fStatus);
RBBINode *endMarker;
int32_t i;
int32_t n;
fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
for (i=0; i<endMarkerNodes.size(); i++) {
endMarker = (RBBINode *)endMarkerNodes.elementAt(i);
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
if (sd->fPositions->indexOf(endMarker) >= 0) {
// Any non-zero value for fAccepting means this is an accepting node.
// The value is what will be returned to the user as the break status.
// If no other value was specified, force it to -1.
sd->fAccepting = endMarker->fVal;
if (sd->fAccepting == 0) {
sd->fAccepting = -1;
}
// If the end marker node is from a look-ahead rule, set
// the fLookAhead field or this state also.
if (endMarker->fLookAheadEnd) {
sd->fLookAhead = sd->fAccepting;
}
}
}
}
}
//-----------------------------------------------------------------------------
//
// flagLookAheadStates
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::flagLookAheadStates() {
UVector lookAheadNodes(*fStatus);
RBBINode *lookAheadNode;
int32_t i;
int32_t n;
fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus);
for (i=0; i<lookAheadNodes.size(); i++) {
lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i);
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
if (sd->fPositions->indexOf(lookAheadNode) >= 0) {
sd->fLookAhead = lookAheadNode->fVal;
}
}
}
}
//-----------------------------------------------------------------------------
//
// flagTaggedStates
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::flagTaggedStates() {
UVector tagNodes(*fStatus);
RBBINode *tagNode;
int32_t i;
int32_t n;
fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus);
for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em)
tagNode = (RBBINode *)tagNodes.elementAt(i);
for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table)
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t
if (sd->fTagVal < tagNode->fVal) {
// If more than one rule tag applies to this state, the larger
// tag takes precedence.
sd->fTagVal = tagNode->fVal;
}
}
}
}
}
//-----------------------------------------------------------------------------
//
// setAdd Set operation on UVector
// dest = dest union source
// Elements may only appear once. Order is unimportant.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::setAdd(UVector *dest, UVector *source) {
int destOriginalSize = dest->size();
int sourceSize = source->size();
int32_t si, di;
for (si=0; si<sourceSize; si++) {
void *elToAdd = source->elementAt(si);
for (di=0; di<destOriginalSize; di++) {
if (dest->elementAt(di) == elToAdd) {
goto elementAlreadyInDest;
}
}
dest->addElement(elToAdd, *fStatus);
elementAlreadyInDest: ;
}
}
//-----------------------------------------------------------------------------
//
// setEqual Set operation on UVector.
// Compare for equality.
// Elements may appear only once.
// Elements may appear in any order.
//
//-----------------------------------------------------------------------------
UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) {
int32_t aSize = a->size();
int32_t bSize = b->size();
if (aSize != bSize) {
return FALSE;
}
int32_t ax;
int32_t bx;
int32_t firstBx = 0;
void *aVal;
void *bVal;
for (ax=0; ax<aSize; ax++) {
aVal = a->elementAt(ax);
for (bx=firstBx; bx<bSize; bx++) {
bVal = b->elementAt(bx);
if (aVal == bVal) {
if (bx==firstBx) {
firstBx++;
}
break;
}
}
if (aVal != bVal) {
return FALSE;
}
}
return TRUE;
}
//-----------------------------------------------------------------------------
//
// printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos
// for each node in the tree.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::printPosSets(RBBINode *n) {
if (n==NULL) {
return;
}
n->print();
printf(" Nullable: %s\n", n->fNullable?"TRUE":"FALSE");
printf(" firstpos: ");
printSet(n->fFirstPosSet);
printf(" lastpos: ");
printSet(n->fLastPosSet);
printf(" followpos: ");
printSet(n->fFollowPos);
printPosSets(n->fLeftChild);
printPosSets(n->fRightChild);
}
//-----------------------------------------------------------------------------
//
// getTableSize() Calculate the size of the runtime form of this
// state transition table.
//
//-----------------------------------------------------------------------------
int32_t RBBITableBuilder::getTableSize() {
int32_t size = 0;
int32_t numRows;
int32_t numCols;
int32_t rowSize;
if (fTree == NULL) {
return 0;
}
size = sizeof(RBBIStateTable) - 4; // The header, with no rows to the table.
numRows = fDStates->size();
numCols = fRB->fSetBuilder->getNumCharCategories();
// Note The declaration of RBBIStateTableRow is for a table of two columns.
// Therefore we subtract two from numCols when determining
// how much storage to add to a row for the total columns.
rowSize = sizeof(RBBIStateTableRow) + sizeof(uint16_t)*(numCols-2);
size += numRows * rowSize;
return size;
}
//-----------------------------------------------------------------------------
//
// exportTable() export the state transition table in the format required
// by the runtime engine. getTableSize() bytes of memory
// must be available at the output address "where".
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::exportTable(void *where) {
RBBIStateTable *table = (RBBIStateTable *)where;
uint32_t state;
int col;
if (U_FAILURE(*fStatus) || fTree == NULL) {
return;
}
if (fRB->fSetBuilder->getNumCharCategories() > 0x7fff ||
fDStates->size() > 0x7fff) {
*fStatus = U_BRK_INTERNAL_ERROR;
return;
}
table->fRowLen = sizeof(RBBIStateTableRow) +
sizeof(uint16_t) * (fRB->fSetBuilder->getNumCharCategories() - 2);
table->fNumStates = fDStates->size();
for (state=0; state<table->fNumStates; state++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
assert (-32768 < sd->fAccepting && sd->fAccepting <= 32767);
assert (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767);
row->fAccepting = (int16_t)sd->fAccepting;
row->fLookAhead = (int16_t)sd->fLookAhead;
row->fTag = (int16_t)sd->fTagVal;
for (col=0; col<fRB->fSetBuilder->getNumCharCategories(); col++) {
row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col);
}
}
}
//-----------------------------------------------------------------------------
//
// printSet Debug function. Print the contents of a UVector
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::printSet(UVector *s) {
int32_t i;
for (i=0; i<s->size(); i++) {
void *v = s->elementAt(i);
printf("%10x", v);
}
printf("\n");
}
//-----------------------------------------------------------------------------
//
// printStates Debug Function. Dump the fully constructed state transition table.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::printStates() {
int c; // input "character"
int n; // state number
printf("state | i n p u t s y m b o l s \n");
printf(" | Acc LA Tag");
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {printf(" %2d", c);};
printf("\n");
printf(" |---------------");
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {printf("---");};
printf("\n");
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
printf(" %3d | " , n);
printf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagVal);
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
printf(" %2d", sd->fDtran->elementAti(c));
}
printf("\n");
}
printf("\n\n");
}
//-----------------------------------------------------------------------------
//
// RBBIStateDescriptor Methods. This is a very struct-like class
// Most access is directly to the fields.
//
//-----------------------------------------------------------------------------
const char RBBIStateDescriptor::fgClassID=0;
RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) {
fMarked = FALSE;
fAccepting = 0;
fLookAhead = 0;
fTagVal = 0;
fPositions = NULL;
fDtran = NULL;
/* test for buffer overflows */
if (U_FAILURE(*fStatus)) {
return;
}
fDtran = new UVector(lastInputSymbol+1, *fStatus);
/* test for NULL */
if (fDtran == NULL) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized.
// It is indexed by input symbols, and will
// hold the next state number for each
// symbol.
}
RBBIStateDescriptor::~RBBIStateDescriptor() {
delete fPositions;
delete fDtran;
fPositions = NULL;
fDtran = NULL;
}
U_NAMESPACE_END