1278 lines
46 KiB
C++
1278 lines
46 KiB
C++
|
#include "uniset.h"
|
||
|
|
||
|
/**
|
||
|
* A mutable set of Unicode characters. Objects of this class
|
||
|
* represent <em>character classes</em> used in regular expressions.
|
||
|
* Such classes specify a subset of the set of all Unicode characters,
|
||
|
* which in this implementation is the characters from U+0000 to
|
||
|
* U+FFFF, ignoring surrogates.
|
||
|
*
|
||
|
* <p>This class supports two APIs. The first is modeled after Java 2's
|
||
|
* <code>java.util.Set</code> interface, although this class does not
|
||
|
* implement that interface. All methods of <code>Set</code> are
|
||
|
* supported, with the modification that they take a character range
|
||
|
* or single character instead of an <code>Object</code>, and they
|
||
|
* take a <code>UnicodeSet</code> instead of a <code>Collection</code>.
|
||
|
*
|
||
|
* <p>The second API is the
|
||
|
* <code>applyPattern()</code>/<code>toPattern()</code> API from the
|
||
|
* <code>java.text.Format</code>-derived classes. Unlike the
|
||
|
* methods that add characters, add categories, and control the logic
|
||
|
* of the set, the method <code>applyPattern()</code> sets all
|
||
|
* attributes of a <code>UnicodeSet</code> at once, based on a
|
||
|
* string pattern.
|
||
|
*
|
||
|
* <p>In addition, the set complement operation is supported through
|
||
|
* the <code>complement()</code> method.
|
||
|
*
|
||
|
* <p><b>Pattern syntax</b></p>
|
||
|
*
|
||
|
* Patterns are accepted by the constructors and the
|
||
|
* <code>applyPattern()</code> methods and returned by the
|
||
|
* <code>toPattern()</code> method. These patterns follow a syntax
|
||
|
* similar to that employed by version 8 regular expression character
|
||
|
* classes:
|
||
|
*
|
||
|
* <blockquote><code>
|
||
|
* pattern := ('[' '^'? item* ']') | ('[:' '^'? category ':]')<br>
|
||
|
* item := char | (char '-' char) | pattern-expr<br>
|
||
|
* pattern-expr := pattern | pattern-expr pattern | pattern-expr op pattern<br>
|
||
|
* op := '&' | '-'<br>
|
||
|
* special := '[' | ']' | '-'<br>
|
||
|
* char := <em>any character that is not</em> special |
|
||
|
* ('\' <em>any character</em>) |
|
||
|
* ('\\u' hex hex hex hex)<br>
|
||
|
* hex := <em>any hex digit, as defined by </em>Character.digit(c, 16)
|
||
|
* </code>
|
||
|
*
|
||
|
* <br>Legend:
|
||
|
*
|
||
|
* <table>
|
||
|
* <tr><td width=20%><code>a:=b</code>
|
||
|
* <td><code>a</code> may be replaced by
|
||
|
* <code>b</code>
|
||
|
* <tr><td><code>a?</code>
|
||
|
* <td>zero or one instance of <code>a</code><br>
|
||
|
* <tr><td><code>a*</code>
|
||
|
* <td>one or more instances of <code>a</code><br>
|
||
|
* <tr><td><code>a|b</code>
|
||
|
* <td>either <code>a</code> or <code>b</code><br>
|
||
|
* <tr><td><code>'a'</code>
|
||
|
* <td>the literal string between the quotes
|
||
|
* </table>
|
||
|
* </blockquote>
|
||
|
*
|
||
|
* Patterns specify individual characters, ranges of characters, and
|
||
|
* Unicode character categories. When elements are concatenated, they
|
||
|
* specify their union. To complement a set, place a '^' immediately
|
||
|
* after the opening '[' or '[:'. In any other location, '^' has no
|
||
|
* special meaning.
|
||
|
*
|
||
|
* <p>Ranges are indicated by placing two a '-' between two
|
||
|
* characters, as in "a-z". This specifies the range of all
|
||
|
* characters from the left to the right, in Unicode order. If the
|
||
|
* left and right characters are the same, then the range consists of
|
||
|
* just that character. If the left character is greater than the
|
||
|
* right character it is a syntax error. If a '-' occurs as the first
|
||
|
* character after the opening '[' or '[^', or if it occurs as the
|
||
|
* last character before the closing ']', then it is taken as a
|
||
|
* literal. Thus "[a\-b]", "[-ab]", and "[ab-]" all indicate the same
|
||
|
* set of three characters, 'a', 'b', and '-'.
|
||
|
*
|
||
|
* <p>Sets may be intersected using the '&' operator or the asymmetric
|
||
|
* set difference may be taken using the '-' operator, for example,
|
||
|
* "[[:L:]&[\u0000-\u0FFF]]" indicates the set of all Unicode letters
|
||
|
* with values less than 4096. Operators ('&' and '|') have equal
|
||
|
* precedence and bind left-to-right. Thus
|
||
|
* "[[:L:]-[a-z]-[\u0100-\u01FF]]" is equivalent to
|
||
|
* "[[[:L:]-[a-z]]-[\u0100-\u01FF]]". This only really matters for
|
||
|
* difference; intersection is commutative.
|
||
|
*
|
||
|
* <table>
|
||
|
* <tr valign=top><td nowrap><code>[a]</code><td>The set containing 'a'
|
||
|
* <tr valign=top><td nowrap><code>[a-z]</code><td>The set containing 'a'
|
||
|
* through 'z' and all letters in between, in Unicode order
|
||
|
* <tr valign=top><td nowrap><code>[^a-z]</code><td>The set containing
|
||
|
* all characters but 'a' through 'z',
|
||
|
* that is, U+0000 through 'a'-1 and 'z'+1 through U+FFFF
|
||
|
* <tr valign=top><td nowrap><code>[[<em>pat1</em>][<em>pat2</em>]]</code>
|
||
|
* <td>The union of sets specified by <em>pat1</em> and <em>pat2</em>
|
||
|
* <tr valign=top><td nowrap><code>[[<em>pat1</em>]&[<em>pat2</em>]]</code>
|
||
|
* <td>The intersection of sets specified by <em>pat1</em> and <em>pat2</em>
|
||
|
* <tr valign=top><td nowrap><code>[[<em>pat1</em>]-[<em>pat2</em>]]</code>
|
||
|
* <td>The asymmetric difference of sets specified by <em>pat1</em> and
|
||
|
* <em>pat2</em>
|
||
|
* <tr valign=top><td nowrap><code>[:Lu:]</code>
|
||
|
* <td>The set of characters belonging to the given
|
||
|
* Unicode category, as defined by <code>Character.getType()</code>; in
|
||
|
* this case, Unicode uppercase letters
|
||
|
* <tr valign=top><td nowrap><code>[:L:]</code>
|
||
|
* <td>The set of characters belonging to all Unicode categories
|
||
|
* starting wih 'L', that is, <code>[[:Lu:][:Ll:][:Lt:][:Lm:][:Lo:]]</code>.
|
||
|
* </table>
|
||
|
*
|
||
|
* <p><b>Character categories.</b>
|
||
|
*
|
||
|
* Character categories are specified using the POSIX-like syntax
|
||
|
* '[:Lu:]'. The complement of a category is specified by inserting
|
||
|
* '^' after the opening '[:'. The following category names are
|
||
|
* recognized. Actual determination of category data uses
|
||
|
* <code>Character.getType()</code>, so it reflects the underlying
|
||
|
* implmementation used by <code>Character</code>. As of Java 2 and
|
||
|
* JDK 1.1.8, this is Unicode <b>2.x.x - fill in version here</b>.
|
||
|
*
|
||
|
* <pre>
|
||
|
* Normative
|
||
|
* Mn = Mark, Non-Spacing
|
||
|
* Mc = Mark, Spacing Combining
|
||
|
* Me = Mark, Enclosing
|
||
|
*
|
||
|
* Nd = Number, Decimal Digit
|
||
|
* Nl = Number, Letter
|
||
|
* No = Number, Other
|
||
|
*
|
||
|
* Zs = Separator, Space
|
||
|
* Zl = Separator, Line
|
||
|
* Zp = Separator, Paragraph
|
||
|
*
|
||
|
* Cc = Other, Control
|
||
|
* Cf = Other, Format
|
||
|
* Cs = Other, Surrogate
|
||
|
* Co = Other, Private Use
|
||
|
* Cn = Other, Not Assigned
|
||
|
*
|
||
|
* Informative
|
||
|
* Lu = Letter, Uppercase
|
||
|
* Ll = Letter, Lowercase
|
||
|
* Lt = Letter, Titlecase
|
||
|
* Lm = Letter, Modifier
|
||
|
* Lo = Letter, Other
|
||
|
*
|
||
|
* Pc = Punctuation, Connector
|
||
|
* Pd = Punctuation, Dash
|
||
|
* Ps = Punctuation, Open
|
||
|
* Pe = Punctuation, Close
|
||
|
* Pi = Punctuation, Initial quote
|
||
|
* Pf = Punctuation, Final quote
|
||
|
* Po = Punctuation, Other
|
||
|
*
|
||
|
* Sm = Symbol, Math
|
||
|
* Sc = Symbol, Currency
|
||
|
* Sk = Symbol, Modifier
|
||
|
* So = Symbol, Other
|
||
|
* </pre>
|
||
|
* *Unsupported by Java (and hence unsupported by UnicodeSet).
|
||
|
*
|
||
|
* @author Alan Liu
|
||
|
* @version $RCSfile: uniset.cpp,v $ $Revision: 1.1 $ $Date: 1999/10/20 22:06:52 $
|
||
|
*/
|
||
|
|
||
|
// Note: This mapping is different in ICU and Java
|
||
|
const UnicodeString UnicodeSet::CATEGORY_NAMES(
|
||
|
"CnLuLlLtLmLoMnMeMcNdNlNoZsZlZpCcCfCoCsPdPsPePcPoSmScSkSoPiPf");
|
||
|
|
||
|
/**
|
||
|
* A cache mapping character category integers, as returned by
|
||
|
* Character.getType(), to pairs strings. Entries are initially
|
||
|
* null and are created on demand.
|
||
|
*/
|
||
|
UnicodeString* UnicodeSet::CATEGORY_PAIRS_CACHE =
|
||
|
new UnicodeString[Unicode::GENERAL_TYPES_COUNT];
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Debugging and testing
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Return the representation of this set as a list of character
|
||
|
* ranges. Ranges are listed in ascending Unicode order. For
|
||
|
* example, the set [a-zA-M3] is represented as "33AMaz".
|
||
|
*/
|
||
|
const UnicodeString& UnicodeSet::getPairs() const {
|
||
|
return pairs;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Public API
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Constructs an empty set.
|
||
|
*/
|
||
|
UnicodeSet::UnicodeSet() {}
|
||
|
|
||
|
/**
|
||
|
* Constructs a set from the given pattern, optionally ignoring
|
||
|
* white space. See the class description for the syntax of the
|
||
|
* pattern language.
|
||
|
* @param pattern a string specifying what characters are in the set
|
||
|
* @param ignoreSpaces if <code>true</code>, all spaces in the
|
||
|
* pattern are ignored, except those preceded by '\\'. Spaces are
|
||
|
* those characters for which <code>Character.isSpaceChar()</code>
|
||
|
* is <code>true</code>.
|
||
|
* @exception <code>IllegalArgumentException</code> if the pattern
|
||
|
* contains a syntax error.
|
||
|
*/
|
||
|
UnicodeSet::UnicodeSet(const UnicodeString& pattern, bool_t ignoreSpaces,
|
||
|
UErrorCode& status) {
|
||
|
applyPattern(pattern, ignoreSpaces, status);
|
||
|
}
|
||
|
|
||
|
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
|
||
|
UErrorCode& status) {
|
||
|
applyPattern(pattern, status);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructs a set from the given Unicode character category.
|
||
|
* @param category an integer indicating the character category as
|
||
|
* returned by <code>Character.getType()</code>.
|
||
|
* @exception <code>IllegalArgumentException</code> if the given
|
||
|
* category is invalid.
|
||
|
*/
|
||
|
UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) {
|
||
|
if (U_SUCCESS(status)) {
|
||
|
if (category < 0 || category >= Unicode::GENERAL_TYPES_COUNT) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
} else {
|
||
|
pairs = getCategoryPairs(category);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Modifies this set to represent the set specified by the given
|
||
|
* pattern, optionally ignoring white space. See the class
|
||
|
* description for the syntax of the pattern language.
|
||
|
* @param pattern a string specifying what characters are in the set
|
||
|
* @param ignoreSpaces if <code>true</code>, all spaces in the
|
||
|
* pattern are ignored. Spaces are those characters for which
|
||
|
* <code>Character.isSpaceChar()</code> is <code>true</code>.
|
||
|
* Characters preceded by '\\' are escaped, losing any special
|
||
|
* meaning they otherwise have. Spaces may be included by
|
||
|
* escaping them.
|
||
|
* @exception <code>IllegalArgumentException</code> if the pattern
|
||
|
* contains a syntax error.
|
||
|
*/
|
||
|
void UnicodeSet::applyPattern(const UnicodeString& pattern,
|
||
|
bool_t ignoreSpaces,
|
||
|
UErrorCode& status) {
|
||
|
if (U_FAILURE(status)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ParsePosition pos(0);
|
||
|
UnicodeString* pat = (UnicodeString*) &pattern;
|
||
|
|
||
|
// To ignore spaces, create a new pattern without spaces. We
|
||
|
// have to process all '\' escapes. If '\' is encountered,
|
||
|
// insert it and the following character (if any -- let parse
|
||
|
// deal with any syntax errors) in the pattern. This allows
|
||
|
// escaped spaces.
|
||
|
if (ignoreSpaces) {
|
||
|
pat = new UnicodeString();
|
||
|
for (int32_t i=0; i<pattern.length(); ++i) {
|
||
|
UChar c = pattern.charAt(i);
|
||
|
if (Unicode::isSpaceChar(c)) {
|
||
|
continue;
|
||
|
}
|
||
|
if (c == '\\' && (i+1) < pattern.length()) {
|
||
|
pat->append(c);
|
||
|
c = pattern.charAt(++i);
|
||
|
// Fall through and append the following char
|
||
|
}
|
||
|
pat->append(c);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
parse(pairs, *pat, pos, status);
|
||
|
if (pos.getIndex() != pat->length()) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
}
|
||
|
if (pat != &pattern) {
|
||
|
delete pat;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a string representation of this set. If the result of
|
||
|
* calling this function is passed to a UnicodeSet constructor, it
|
||
|
* will produce another set that is equal to this one.
|
||
|
*/
|
||
|
UnicodeString& UnicodeSet::toPattern(UnicodeString& result) const {
|
||
|
result.remove().append((UChar)'[');
|
||
|
|
||
|
// iterate through the ranges in the CharSet
|
||
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
||
|
// for a range with the same beginning and ending point,
|
||
|
// output that character, otherwise, output the start and
|
||
|
// end points of the range separated by a dash
|
||
|
result.append(pairs.charAt(i));
|
||
|
if (pairs.charAt(i) != pairs.charAt(i+1)) {
|
||
|
result.append((UChar)'-').append(pairs.charAt(i+1));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return result.append((UChar)']');
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of elements in this set (its cardinality). If this
|
||
|
* set contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
|
||
|
* <tt>Integer.MAX_VALUE</tt>.
|
||
|
*
|
||
|
* @return the number of elements in this set (its cardinality).
|
||
|
*/
|
||
|
int32_t UnicodeSet::size() const {
|
||
|
int32_t n = 0;
|
||
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
||
|
n += pairs.charAt(i+1) - pairs.charAt(i) + 1;
|
||
|
}
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns <tt>true</tt> if this set contains no elements.
|
||
|
*
|
||
|
* @return <tt>true</tt> if this set contains no elements.
|
||
|
*/
|
||
|
bool_t UnicodeSet::isEmpty() const {
|
||
|
return pairs.length() == 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns <tt>true</tt> if this set contains the specified range
|
||
|
* of chars.
|
||
|
*
|
||
|
* @return <tt>true</tt> if this set contains the specified range
|
||
|
* of chars.
|
||
|
*/
|
||
|
bool_t UnicodeSet::contains(UChar first, UChar last) const {
|
||
|
// Set i to the end of the smallest range such that its end
|
||
|
// point >= last, or pairs.length() if no such range exists.
|
||
|
int32_t i = 1;
|
||
|
while (i<pairs.length() && last>pairs.charAt(i)) i+=2;
|
||
|
return i<pairs.length() && first>=pairs.charAt(i-1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns <tt>true</tt> if this set contains the specified char.
|
||
|
*
|
||
|
* @return <tt>true</tt> if this set contains the specified char.
|
||
|
*/
|
||
|
bool_t UnicodeSet::contains(UChar c) const {
|
||
|
return contains(c, c);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds the specified range to this set if it is not already
|
||
|
* present. If this set already contains the specified range,
|
||
|
* the call leaves this set unchanged. If <code>last > first</code>
|
||
|
* then an empty range is added, leaving the set unchanged.
|
||
|
*
|
||
|
* @param first first character, inclusive, of range to be added
|
||
|
* to this set.
|
||
|
* @param last last character, inclusive, of range to be added
|
||
|
* to this set.
|
||
|
*/
|
||
|
void UnicodeSet::add(UChar first, UChar last) {
|
||
|
if (first <= last) {
|
||
|
addPair(pairs, first, last);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds the specified character to this set if it is not already
|
||
|
* present. If this set already contains the specified character,
|
||
|
* the call leaves this set unchanged.
|
||
|
*/
|
||
|
void UnicodeSet::add(UChar c) {
|
||
|
add(c, c);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the specified range from this set if it is present.
|
||
|
* The set will not contain the specified range once the call
|
||
|
* returns. If <code>last > first</code> then an empty range is
|
||
|
* removed, leaving the set unchanged.
|
||
|
*
|
||
|
* @param first first character, inclusive, of range to be removed
|
||
|
* from this set.
|
||
|
* @param last last character, inclusive, of range to be removed
|
||
|
* from this set.
|
||
|
*/
|
||
|
void UnicodeSet::remove(UChar first, UChar last) {
|
||
|
if (first <= last) {
|
||
|
removePair(pairs, first, last);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes the specified character from this set if it is present.
|
||
|
* The set will not contain the specified range once the call
|
||
|
* returns.
|
||
|
*/
|
||
|
void UnicodeSet::remove(UChar c) {
|
||
|
remove(c, c);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns <tt>true</tt> if the specified set is a <i>subset</i>
|
||
|
* of this set.
|
||
|
*
|
||
|
* @param c set to be checked for containment in this set.
|
||
|
* @return <tt>true</tt> if this set contains all of the elements of the
|
||
|
* specified set.
|
||
|
*/
|
||
|
bool_t UnicodeSet::containsAll(const UnicodeSet& c) const {
|
||
|
// The specified set is a subset if all of its pairs are contained
|
||
|
// in this set.
|
||
|
int32_t i = 1;
|
||
|
for (int32_t j=0; j<c.pairs.length(); j+=2) {
|
||
|
UChar last = c.pairs.charAt(j+1);
|
||
|
// Set i to the end of the smallest range such that its
|
||
|
// end point >= last, or pairs.length() if no such range
|
||
|
// exists.
|
||
|
while (i<pairs.length() && last>pairs.charAt(i)) i+=2;
|
||
|
if (i>pairs.length() || c.pairs.charAt(j) < pairs.charAt(i-1)) {
|
||
|
return FALSE;
|
||
|
}
|
||
|
}
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds all of the elements in the specified set to this set if
|
||
|
* they're not already present. This operation effectively
|
||
|
* modifies this set so that its value is the <i>union</i> of the two
|
||
|
* sets. The behavior of this operation is unspecified if the specified
|
||
|
* collection is modified while the operation is in progress.
|
||
|
*
|
||
|
* @param c set whose elements are to be added to this set.
|
||
|
* @see #add(char, char)
|
||
|
*/
|
||
|
void UnicodeSet::addAll(const UnicodeSet& c) {
|
||
|
doUnion(pairs, c.pairs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retains only the elements in this set that are contained in the
|
||
|
* specified set. In other words, removes from this set all of
|
||
|
* its elements that are not contained in the specified set. This
|
||
|
* operation effectively modifies this set so that its value is
|
||
|
* the <i>intersection</i> of the two sets.
|
||
|
*
|
||
|
* @param c set that defines which elements this set will retain.
|
||
|
*/
|
||
|
void UnicodeSet::retainAll(const UnicodeSet& c) {
|
||
|
doIntersection(pairs, c.pairs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes from this set all of its elements that are contained in the
|
||
|
* specified set. This operation effectively modifies this
|
||
|
* set so that its value is the <i>asymmetric set difference</i> of
|
||
|
* the two sets.
|
||
|
*
|
||
|
* @param c set that defines which elements will be removed from
|
||
|
* this set.
|
||
|
*/
|
||
|
void UnicodeSet::removeAll(const UnicodeSet& c) {
|
||
|
doDifference(pairs, c.pairs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Inverts this set. This operation modifies this set so that
|
||
|
* its value is its complement. This is equivalent to the pseudo code:
|
||
|
* <code>this = new CharSet("[\u0000-\uFFFF]").removeAll(this)</code>.
|
||
|
*/
|
||
|
void UnicodeSet::complement() {
|
||
|
doComplement(pairs);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes all of the elements from this set. This set will be
|
||
|
* empty after this call returns.
|
||
|
*/
|
||
|
void UnicodeSet::clear() {
|
||
|
pairs.remove();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compares the specified object with this set for equality. Returns
|
||
|
* <tt>true</tt> if the specified object is also a set, the two sets
|
||
|
* have the same size, and every member of the specified set is
|
||
|
* contained in this set (or equivalently, every member of this set is
|
||
|
* contained in the specified set).
|
||
|
*
|
||
|
* @param o Object to be compared for equality with this set.
|
||
|
* @return <tt>true</tt> if the specified Object is equal to this set.
|
||
|
*/
|
||
|
bool_t UnicodeSet::operator==(const UnicodeSet& o) const {
|
||
|
return pairs == o.pairs;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the hash code value for this set.
|
||
|
*
|
||
|
* @return the hash code value for this set.
|
||
|
* @see Object#hashCode()
|
||
|
*/
|
||
|
int32_t UnicodeSet::hashCode() const {
|
||
|
return pairs.hashCode();
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Implementation: Pattern parsing
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Parses the given pattern, starting at the given position. The
|
||
|
* character at pattern.charAt(pos.getIndex()) must be '[', or the
|
||
|
* parse fails. Parsing continues until the corresponding closing
|
||
|
* ']'. If a syntax error is encountered between the opening and
|
||
|
* closing brace, the parse fails. Upon return from a U_SUCCESSful
|
||
|
* parse, the ParsePosition is updated to point to the character
|
||
|
* following the closing ']', and a StringBuffer containing a
|
||
|
* pairs list for the parsed pattern is returned. This method calls
|
||
|
* itself recursively to parse embedded subpatterns.
|
||
|
*
|
||
|
* @param pattern the string containing the pattern to be parsed.
|
||
|
* The portion of the string from pos.getIndex(), which must be a
|
||
|
* '[', to the corresponding closing ']', is parsed.
|
||
|
* @param pos upon entry, the position at which to being parsing.
|
||
|
* The character at pattern.charAt(pos.getIndex()) must be a '['.
|
||
|
* Upon return from a U_SUCCESSful parse, pos.getIndex() is either
|
||
|
* the character after the closing ']' of the parsed pattern, or
|
||
|
* pattern.length() if the closing ']' is the last character of
|
||
|
* the pattern string.
|
||
|
* @return a StringBuffer containing a pairs list for the parsed
|
||
|
* substring of <code>pattern</code>
|
||
|
* @exception IllegalArgumentException if the parse fails.
|
||
|
*/
|
||
|
UnicodeString& UnicodeSet::parse(UnicodeString& pairsBuf /*result*/,
|
||
|
const UnicodeString& pattern,
|
||
|
ParsePosition& pos,
|
||
|
UErrorCode& status) {
|
||
|
if (U_FAILURE(status)) {
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
|
||
|
bool_t invert = FALSE;
|
||
|
pairsBuf.remove();
|
||
|
|
||
|
/**
|
||
|
* Nodes: 0 - idle, waiting for '['
|
||
|
* 10 - like 11, but immediately after "[" or "[^"
|
||
|
* 11 - awaiting x, "]", "[...]", or "[:...:]"
|
||
|
* 21 - after x
|
||
|
* 23 - after x-
|
||
|
*
|
||
|
* The parsing state machine moves from node 0 through zero or more
|
||
|
* other nodes back to node 0, in a U_SUCCESSful parse.
|
||
|
*/
|
||
|
int32_t node = 0;
|
||
|
UChar first = 0;
|
||
|
int32_t i;
|
||
|
/**
|
||
|
* This loop iterates over the characters in the pattern. We
|
||
|
* start at the position specified by pos. We exit the loop
|
||
|
* when either a matching closing ']' is seen, or we read all
|
||
|
* characters of the pattern.
|
||
|
*/
|
||
|
for (i=pos.getIndex(); i<pattern.length(); ++i) {
|
||
|
UChar c = pattern.charAt(i); /**
|
||
|
* Handle escapes here. If a character is escaped, then
|
||
|
* it assumes its literal value. This is true for all
|
||
|
* characters, both special characters and characters with
|
||
|
* no special meaning. We also interpret '\\uxxxx' Unicode
|
||
|
* escapes here.
|
||
|
*/
|
||
|
bool_t isLiteral = FALSE;
|
||
|
if (c == '\\') {
|
||
|
++i;
|
||
|
if (i < pattern.length()) {
|
||
|
c = pattern.charAt(i);
|
||
|
isLiteral = TRUE;
|
||
|
if (c == 'u') {
|
||
|
if ((i+4) >= pattern.length()) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
c = (UChar)0x0000;
|
||
|
for (int32_t j=(++i)+4; i<j; ++i) { // [sic]
|
||
|
// TO DO: Change this to use Unicode::digit()
|
||
|
// when that method exists.
|
||
|
int32_t digit = /*Unicode::*/UnicodeSet::digit(pattern.charAt(i), 16);
|
||
|
if (digit<0) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
c = (UChar) ((c << 4) | digit);
|
||
|
}
|
||
|
--i; // Move i back to last parsed character
|
||
|
}
|
||
|
} else {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* Within this loop, we handle each of the four
|
||
|
* conditions: '[', ']', '-', other. The first three
|
||
|
* characters must not be escaped.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* An opening bracket indicates either the first bracket
|
||
|
* of the entire subpattern we are parsing, in which case
|
||
|
* we are in node 0 and move into node 10. We also check
|
||
|
* for an immediately following '^', indicating the
|
||
|
* complement of the following pattern. ('^' is any other
|
||
|
* position has no special meaning.) If we are not in
|
||
|
* node 0, '[' represents a nested subpattern that must be
|
||
|
* recursively parsed and checked for following operators
|
||
|
* ('&' or '|'). If two nested subpatterns follow one
|
||
|
* another with no operator, their union is formed, just
|
||
|
* as with any other elements that follow one another
|
||
|
* without intervening operator. The other thing we
|
||
|
* handle here is the syntax "[:Xx:]" or "[:X:]" that
|
||
|
* indicates a Unicode category or supercategory.
|
||
|
*/
|
||
|
if (!isLiteral && c == '[') {
|
||
|
bool_t parseOp = FALSE;
|
||
|
UChar d = charAfter(pattern, i);
|
||
|
// "[:...:]" represents a character category
|
||
|
if (d == ':') {
|
||
|
if (node == 23) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
if (node == 21) {
|
||
|
addPair(pairsBuf, first, first);
|
||
|
node = 11;
|
||
|
}
|
||
|
i += 2;
|
||
|
int32_t j = pattern.indexOf(":]", i);
|
||
|
if (j < 0) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
UnicodeString categoryName;
|
||
|
pattern.extract(i, j-i, categoryName);
|
||
|
UnicodeString temp;
|
||
|
doUnion(pairsBuf,
|
||
|
getCategoryPairs(temp, categoryName, status));
|
||
|
if (U_FAILURE(status)) {
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
i = j+1;
|
||
|
if (node == 10) {
|
||
|
node = 11;
|
||
|
parseOp = TRUE;
|
||
|
} else if (node == 0) {
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
if (node == 0) {
|
||
|
node = 10;
|
||
|
if (d == '^') {
|
||
|
invert = TRUE;
|
||
|
++i;
|
||
|
}
|
||
|
} else {
|
||
|
// Nested '['
|
||
|
pos.setIndex(i);
|
||
|
UnicodeString subPairs; // Pairs for the nested []
|
||
|
doUnion(pairsBuf, parse(subPairs, pattern, pos, status));
|
||
|
if (U_FAILURE(status)) {
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
i = pos.getIndex() - 1; // Subtract 1 to point at ']'
|
||
|
parseOp = TRUE;
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* parseOp is true after "[:...:]" or a nested
|
||
|
* "[...]". It is false only after the final closing
|
||
|
* ']'. If parseOp is true, we look past the closing
|
||
|
* ']' to see if we have an operator character. If
|
||
|
* so, we parse the subsequent "[...]" recursively,
|
||
|
* then perform the operation. We do this in a loop
|
||
|
* until there are no more operators. Note that this
|
||
|
* means the operators have equal precedence and are
|
||
|
* bound left-to-right.
|
||
|
*/
|
||
|
if (parseOp) {
|
||
|
for (;;) {
|
||
|
// Is the next character an operator?
|
||
|
UChar op = charAfter(pattern, i);
|
||
|
if (op == '-' || op == '&') {
|
||
|
pos.setIndex(i+2); // Add 2 to point AFTER op
|
||
|
UnicodeString rhs;
|
||
|
parse(rhs, pattern, pos, status);
|
||
|
if (U_FAILURE(status)) {
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
if (op == '-') {
|
||
|
doDifference(pairsBuf, rhs);
|
||
|
} else if (op == '&') {
|
||
|
doIntersection(pairsBuf, rhs);
|
||
|
}
|
||
|
i = pos.getIndex() - 1; // - 1 to point at ']'
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* A closing bracket can only be a closing bracket for
|
||
|
* "[...]", since the closing bracket for "[:...:]" is
|
||
|
* taken care of when the initial "[:" is seen. When we
|
||
|
* see a closing bracket, we then know, if we were in node
|
||
|
* 21 (after x) or 23 (after x-) that nothing more is
|
||
|
* coming, and we add the last character(s) we saw to the
|
||
|
* set. Note that a trailing '-' assumes its literal
|
||
|
* meaning, just as a leading '-' after "[" or "[^".
|
||
|
*/
|
||
|
else if (!isLiteral && c == ']') {
|
||
|
if (node == 0) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
if (node == 21 || node == 23) {
|
||
|
addPair(pairsBuf, first, first);
|
||
|
if (node == 23) {
|
||
|
addPair(pairsBuf, '-', '-');
|
||
|
}
|
||
|
}
|
||
|
node = 0;
|
||
|
break;
|
||
|
}
|
||
|
/**
|
||
|
* '-' has the following interpretations: 1. Within
|
||
|
* "[...]", between two letters, it indicates a range.
|
||
|
* 2. Between two nested bracket patterns, "[[...]-[...]",
|
||
|
* it indicates asymmetric difference. 3. At the start of
|
||
|
* a bracket pattern, "[-...]", "[^-...]", it indicates
|
||
|
* the literal character '-'. 4. At the end of a bracket
|
||
|
* pattern, "[...-]", it indicates the literal character
|
||
|
* '-'.
|
||
|
*
|
||
|
* We handle cases 1 and 3 here. Cases 2 and 4 are
|
||
|
* handled in the ']' parsing code.
|
||
|
*/
|
||
|
else if (!isLiteral && c == '-') {
|
||
|
if (node == 10) {
|
||
|
addPair(pairsBuf, c, c); // Handle "[-...]", "[^-...]"
|
||
|
} else if (node == 21) {
|
||
|
node = 23;
|
||
|
} else {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
}
|
||
|
/**
|
||
|
* If we fall through to this point, we have a literal
|
||
|
* character, either one that has been escaped with a
|
||
|
* backslash, escaped with a backslash u, or that isn't
|
||
|
* a special '[', ']', or '-'.
|
||
|
*
|
||
|
* Literals can either start a range "x-...", end a range,
|
||
|
* "...-x", or indicate a single character "x".
|
||
|
*/
|
||
|
else {
|
||
|
if (node == 10 || node == 11) {
|
||
|
first = c;
|
||
|
node = 21;
|
||
|
} else if (node == 21) {
|
||
|
addPair(pairsBuf, first, first);
|
||
|
first = c;
|
||
|
node = 21;
|
||
|
} else if (node == 23) {
|
||
|
if (c < first) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
addPair(pairsBuf, first, c);
|
||
|
node = 11;
|
||
|
} else {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (node != 0) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
/**
|
||
|
* i indexes the last character we parsed or is
|
||
|
* pattern.length(). In the latter case, the node will not be
|
||
|
* zero, since we have run off the end without finding a
|
||
|
* closing ']'. Therefore, the above statement will have
|
||
|
* thrown an exception, and we'll never get here. If we get
|
||
|
* here, we know i < pattern.length(), and we set the
|
||
|
* ParsePosition to the next character to be parsed.
|
||
|
*/
|
||
|
pos.setIndex(i+1);
|
||
|
/**
|
||
|
* If we saw a '^' after the initial '[' of this pattern, then
|
||
|
* perform the complement. (Inversion after '[:' is handled
|
||
|
* elsewhere.)
|
||
|
*/
|
||
|
if (invert) {
|
||
|
doComplement(pairsBuf);
|
||
|
}
|
||
|
|
||
|
return pairsBuf;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Implementation: Efficient in-place union & difference
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Performs a union operation: adds the range 'c'-'d' to the given
|
||
|
* pairs list. The pairs list is modified in place. The result
|
||
|
* is normalized (in order and as short as possible). For
|
||
|
* example, addPair("am", 'l', 'q') => "aq". addPair("ampz", 'n',
|
||
|
* 'o') => "az".
|
||
|
*/
|
||
|
void UnicodeSet::addPair(UnicodeString& pairs, UChar c, UChar d) {
|
||
|
UChar a = 0;
|
||
|
UChar b = 0;
|
||
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
||
|
UChar e = pairs.charAt(i);
|
||
|
UChar f = pairs.charAt(i+1);
|
||
|
if (e <= (d+1) && c <= (f+1)) {
|
||
|
// Merge with this range
|
||
|
f = (UChar) icu_max(d, f);
|
||
|
|
||
|
// Check to see if we need to merge with the
|
||
|
// subsequent range also. This happens if we have
|
||
|
// "abdf" and are merging in "cc". We only need to
|
||
|
// check on the right side -- never on the left.
|
||
|
if ((i+2) < pairs.length() &&
|
||
|
pairs.charAt(i+2) == (f+1)) {
|
||
|
f = pairs.charAt(i+3);
|
||
|
pairs.remove(i+2, 2);
|
||
|
}
|
||
|
pairs.setCharAt(i, (UChar) icu_min(c, e));
|
||
|
pairs.setCharAt(i+1, f);
|
||
|
return;
|
||
|
} else if ((b+1) < c && (d+1) < e) {
|
||
|
// Insert before this range c, then d
|
||
|
pairs.insert(i, d); // d gets moved to i+1 by next insert
|
||
|
pairs.insert(i, c);
|
||
|
return;
|
||
|
}
|
||
|
a = e;
|
||
|
b = f;
|
||
|
}
|
||
|
// If nothing else, fall through and append this new range to
|
||
|
// the end.
|
||
|
pairs.append(c).append(d);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs an asymmetric difference: removes the range 'c'-'d'
|
||
|
* from the pairs list. The pairs list is modified in place. The
|
||
|
* result is normalized (in order and as short as possible). For
|
||
|
* example, removePair("am", 'l', 'q') => "ak".
|
||
|
* removePair("ampz", 'l', 'q') => "akrz".
|
||
|
*/
|
||
|
void UnicodeSet::removePair(UnicodeString& pairs, UChar c, UChar d) {
|
||
|
// Iterate over pairs until we find a pair that overlaps
|
||
|
// with the given range.
|
||
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
||
|
UChar b = pairs.charAt(i+1);
|
||
|
if (b < c) {
|
||
|
// Range at i is entirely before the given range,
|
||
|
// since we have a-b < c-d. No overlap yet...keep
|
||
|
// iterating.
|
||
|
continue;
|
||
|
}
|
||
|
UChar a = pairs.charAt(i);
|
||
|
if (d < a) {
|
||
|
// Range at i is entirely after the given range; c-d <
|
||
|
// a-b. Since ranges are in order, nothing else will
|
||
|
// overlap.
|
||
|
break;
|
||
|
}
|
||
|
// Once we get here, we know c <= b and d >= a.
|
||
|
// rangeEdited is set to true if we have modified the
|
||
|
// range a-b (the range at i) in place.
|
||
|
bool_t rangeEdited = FALSE;
|
||
|
if (c > a) {
|
||
|
// If c is after a and before b, then we have overlap
|
||
|
// of this sort: a--c==b--d or a--c==d--b, where a-b
|
||
|
// and c-d are the ranges of interest. We need to
|
||
|
// add the range a,c-1.
|
||
|
pairs.setCharAt(i+1, (UChar)(c-1));
|
||
|
// i is already a
|
||
|
rangeEdited = TRUE;
|
||
|
}
|
||
|
if (d < b) {
|
||
|
// If d is after a and before b, we overlap like this:
|
||
|
// c--a==d--b or a--c==d--b, where a-b is the range at
|
||
|
// i and c-d is the range being removed. We need to
|
||
|
// add the range d+1,b.
|
||
|
if (rangeEdited) {
|
||
|
// Insert {d+1, b}
|
||
|
pairs.insert(i+2, b); // b moves to i+3 by next insert:
|
||
|
pairs.insert(i+2, (UChar)(d+1));
|
||
|
i += 2;
|
||
|
} else {
|
||
|
pairs.setCharAt(i, (UChar)(d+1));
|
||
|
// i+1 is already b
|
||
|
rangeEdited = TRUE;
|
||
|
}
|
||
|
}
|
||
|
if (!rangeEdited) {
|
||
|
// If we didn't add any ranges, that means the entire
|
||
|
// range a-b must be deleted, since we have
|
||
|
// c--a==b--d.
|
||
|
pairs.remove(i, 2);
|
||
|
i -= 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Implementation: Fundamental operators
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Changes the pairs list to represent the complement of the set it
|
||
|
* currently represents. The pairs list will be normalized (in
|
||
|
* order and in shortest possible form) if the original pairs list
|
||
|
* was normalized.
|
||
|
*/
|
||
|
void UnicodeSet::doComplement(UnicodeString& pairs) {
|
||
|
if (pairs.length() == 0) {
|
||
|
pairs.append((UChar)0x0000).append((UChar)0xffff);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Change each end to a start and each start to an end of the
|
||
|
// gaps between the ranges. That is, 3-7 9-12 becomes x-2 8-8
|
||
|
// 13-x, where 'x' represents a range that must now be fixed
|
||
|
// up.
|
||
|
for (int32_t i=0; i<pairs.length(); i+=2) {
|
||
|
pairs.setCharAt(i, (UChar) (pairs.charAt(i) - 1));
|
||
|
pairs.setCharAt(i+1, (UChar) (pairs.charAt(i+1) + 1));
|
||
|
}
|
||
|
|
||
|
// Fix up the initial range, either by adding a start point of
|
||
|
// U+0000, or by deleting the range altogether, if the
|
||
|
// original range was U+0000 - x.
|
||
|
if (pairs.charAt(0) == (UChar)0xFFFF) {
|
||
|
pairs.remove(0, 1);
|
||
|
} else {
|
||
|
pairs.insert(0, (UChar)0x0000);
|
||
|
}
|
||
|
|
||
|
// Fix up the final range, either by adding an end point of
|
||
|
// U+FFFF, or by deleting the range altogether, if the
|
||
|
// original range was x - U+FFFF.
|
||
|
if (pairs.charAt(pairs.length() - 1) == (UChar)0x0000) {
|
||
|
pairs.remove(pairs.length() - 1);
|
||
|
} else {
|
||
|
pairs.append((UChar)0xFFFF);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Given two pairs lists, changes the first in place to represent
|
||
|
* the union of the two sets.
|
||
|
*/
|
||
|
void UnicodeSet::doUnion(UnicodeString& c1, const UnicodeString& c2) {
|
||
|
UnicodeString result;
|
||
|
|
||
|
int32_t i = 0;
|
||
|
int32_t j = 0;
|
||
|
|
||
|
// consider all the characters in both strings
|
||
|
while (i < c1.length() && j < c2.length()) {
|
||
|
UChar ub;
|
||
|
|
||
|
// the first character in the result is the lower of the
|
||
|
// starting characters of the two strings, and "ub" gets
|
||
|
// set to the upper bound of that range
|
||
|
if (c1.charAt(i) < c2.charAt(j)) {
|
||
|
result.append(c1.charAt(i));
|
||
|
ub = c1.charAt(++i);
|
||
|
}
|
||
|
else {
|
||
|
result.append(c2.charAt(j));
|
||
|
ub = c2.charAt(++j);
|
||
|
}
|
||
|
|
||
|
// for as long as one of our two pointers is pointing to a range's
|
||
|
// end point, or i is pointing to a character that is less than
|
||
|
// "ub" plus one (the "plus one" stitches touching ranges together)...
|
||
|
while (i % 2 == 1 || j % 2 == 1 || (i < c1.length() && c1.charAt(i)
|
||
|
<= ub + 1)) {
|
||
|
// advance i to the first character that is greater than
|
||
|
// "ub" plus one
|
||
|
while (i < c1.length() && c1.charAt(i) <= ub + 1)
|
||
|
++i;
|
||
|
|
||
|
// if i points to the endpoint of a range, update "ub"
|
||
|
// to that character, or if i points to the start of
|
||
|
// a range and the endpoint of the preceding range is
|
||
|
// greater than "ub", update "up" to _that_ character
|
||
|
if (i % 2 == 1)
|
||
|
ub = c1.charAt(i);
|
||
|
else if (i > 0 && c1.charAt(i - 1) > ub)
|
||
|
ub = c1.charAt(i - 1);
|
||
|
|
||
|
// now advance j to the first character that is greater
|
||
|
// that "ub" plus one
|
||
|
while (j < c2.length() && c2.charAt(j) <= ub + 1)
|
||
|
++j;
|
||
|
|
||
|
// if j points to the endpoint of a range, update "ub"
|
||
|
// to that character, or if j points to the start of
|
||
|
// a range and the endpoint of the preceding range is
|
||
|
// greater than "ub", update "up" to _that_ character
|
||
|
if (j % 2 == 1)
|
||
|
ub = c2.charAt(j);
|
||
|
else if (j > 0 && c2.charAt(j - 1) > ub)
|
||
|
ub = c2.charAt(j - 1);
|
||
|
}
|
||
|
// when we finally fall out of this loop, we will have stitched
|
||
|
// together a series of ranges that overlap or touch, i and j
|
||
|
// will both point to starting points of ranges, and "ub" will
|
||
|
// be the endpoint of the range we're working on. Write "ub"
|
||
|
// to the result
|
||
|
result.append(ub);
|
||
|
|
||
|
// loop back around to create the next range in the result
|
||
|
}
|
||
|
|
||
|
// we fall out to here when we've exhausted all the characters in
|
||
|
// one of the operands. We can append all of the remaining characters
|
||
|
// in the other operand without doing any extra work.
|
||
|
if (i < c1.length())
|
||
|
result.append(c1, i, LONG_MAX);
|
||
|
if (j < c2.length())
|
||
|
result.append(c2, j, LONG_MAX);
|
||
|
|
||
|
c1 = result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Given two pairs lists, changes the first in place to represent
|
||
|
* the asymmetric difference of the two sets.
|
||
|
*/
|
||
|
void UnicodeSet::doDifference(UnicodeString& pairs, const UnicodeString& pairs2) {
|
||
|
UnicodeString p2(pairs2);
|
||
|
doComplement(p2);
|
||
|
doIntersection(pairs, p2);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Given two pairs lists, changes the first in place to represent
|
||
|
* the intersection of the two sets.
|
||
|
*/
|
||
|
void UnicodeSet::doIntersection(UnicodeString& c1, const UnicodeString& c2) {
|
||
|
UnicodeString result;
|
||
|
|
||
|
int32_t i = 0;
|
||
|
int32_t j = 0;
|
||
|
int32_t oldI;
|
||
|
int32_t oldJ;
|
||
|
|
||
|
// iterate until we've exhausted one of the operands
|
||
|
while (i < c1.length() && j < c2.length()) {
|
||
|
|
||
|
// advance j until it points to a character that is larger than
|
||
|
// the one i points to. If this is the beginning of a one-
|
||
|
// character range, advance j to point to the end
|
||
|
if (i < c1.length() && i % 2 == 0) {
|
||
|
while (j < c2.length() && c2.charAt(j) < c1.charAt(i))
|
||
|
++j;
|
||
|
if (j < c2.length() && j % 2 == 0 && c2.charAt(j) == c1.charAt(i))
|
||
|
++j;
|
||
|
}
|
||
|
|
||
|
// if j points to the endpoint of a range, save the current
|
||
|
// value of i, then advance i until it reaches a character
|
||
|
// which is larger than the character pointed at
|
||
|
// by j. All of the characters we've advanced over (except
|
||
|
// the one currently pointed to by i) are added to the result
|
||
|
oldI = i;
|
||
|
while (j % 2 == 1 && i < c1.length() && c1.charAt(i) <= c2.charAt(j))
|
||
|
++i;
|
||
|
result.append(c1, oldI, i-oldI);
|
||
|
|
||
|
// if i points to the endpoint of a range, save the current
|
||
|
// value of j, then advance j until it reaches a character
|
||
|
// which is larger than the character pointed at
|
||
|
// by i. All of the characters we've advanced over (except
|
||
|
// the one currently pointed to by i) are added to the result
|
||
|
oldJ = j;
|
||
|
while (i % 2 == 1 && j < c2.length() && c2.charAt(j) <= c1.charAt(i))
|
||
|
++j;
|
||
|
result.append(c2, oldJ, j-oldJ);
|
||
|
|
||
|
// advance i until it points to a character larger than j
|
||
|
// If it points at the beginning of a one-character range,
|
||
|
// advance it to the end of that range
|
||
|
if (j < c2.length() && j % 2 == 0) {
|
||
|
while (i < c1.length() && c1.charAt(i) < c2.charAt(j))
|
||
|
++i;
|
||
|
if (i < c1.length() && i % 2 == 0 && c2.charAt(j) == c1.charAt(i))
|
||
|
++i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
c1 = result;
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Implementation: Generation of pairs for Unicode categories
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Returns a pairs string for the given category, given its name.
|
||
|
* The category name must be either a two-letter name, such as
|
||
|
* "Lu", or a one letter name, such as "L". One-letter names
|
||
|
* indicate the logical union of all two-letter names that start
|
||
|
* with that letter. Case is significant. If the name starts
|
||
|
* with the character '^' then the complement of the given
|
||
|
* character set is returned.
|
||
|
*
|
||
|
* Although individual categories such as "Lu" are cached, we do
|
||
|
* not currently cache single-letter categories such as "L" or
|
||
|
* complements such as "^Lu" or "^L". It would be easy to cache
|
||
|
* these as well in a hashtable should the need arise.
|
||
|
*/
|
||
|
UnicodeString& UnicodeSet::getCategoryPairs(UnicodeString& result,
|
||
|
const UnicodeString& catName,
|
||
|
UErrorCode& status) {
|
||
|
if (U_FAILURE(status)) {
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// The temporary cat is only really needed if invert is true.
|
||
|
// TO DO: Allocate cat on the heap only if needed.
|
||
|
UnicodeString cat(catName);
|
||
|
bool_t invert = (catName.length() > 1 &&
|
||
|
catName.charAt(0) == '^');
|
||
|
if (invert) {
|
||
|
cat.remove(0, 1);
|
||
|
}
|
||
|
|
||
|
result.remove();
|
||
|
|
||
|
// if we have two characters, search the category map for that
|
||
|
// code and either construct and return a UnicodeSet from the
|
||
|
// data in the category map or throw an exception
|
||
|
if (cat.length() == 2) {
|
||
|
int32_t i = CATEGORY_NAMES.indexOf(cat);
|
||
|
if (i>=0 && i%2==0) {
|
||
|
i /= 2;
|
||
|
result = getCategoryPairs((int8_t)i);
|
||
|
if (!invert) {
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
} else if (cat.length() == 1) {
|
||
|
// if we have one character, search the category map for
|
||
|
// codes beginning with that letter, and union together
|
||
|
// all of the matching sets that we find (or throw an
|
||
|
// exception if there are no matches)
|
||
|
for (int32_t i=0; i<Unicode::GENERAL_TYPES_COUNT; ++i) {
|
||
|
if (CATEGORY_NAMES.charAt(2*i) == cat.charAt(0)) {
|
||
|
const UnicodeString& pairs = getCategoryPairs((int8_t)i);
|
||
|
if (result.length() == 0) {
|
||
|
result = pairs;
|
||
|
} else {
|
||
|
doUnion(result, pairs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (result.length() == 0) {
|
||
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if (invert) {
|
||
|
doComplement(result);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a pairs string for the given category. This string is
|
||
|
* cached and returned again if this method is called again with
|
||
|
* the same parameter.
|
||
|
*/
|
||
|
const UnicodeString& UnicodeSet::getCategoryPairs(int8_t cat) {
|
||
|
// In order to tell what cache entries are empty, we assume
|
||
|
// every category specifies at least one character. Thus
|
||
|
// pair lists in the cache that are empty are uninitialized.
|
||
|
if (CATEGORY_PAIRS_CACHE[cat].length() == 0) {
|
||
|
// Walk through all Unicode characters, noting the start
|
||
|
// and end of each range for which Character.getType(c)
|
||
|
// returns the given category integer. Since we are
|
||
|
// iterating in order, we can simply append the resulting
|
||
|
// ranges to the pairs string.
|
||
|
UnicodeString& pairs = CATEGORY_PAIRS_CACHE[cat];
|
||
|
int32_t first = -1;
|
||
|
int32_t last = -2;
|
||
|
for (int32_t i=0; i<=0xFFFF; ++i) {
|
||
|
if (Unicode::getType((UChar)i) == cat) {
|
||
|
if ((last+1) == i) {
|
||
|
last = i;
|
||
|
} else {
|
||
|
if (first >= 0) {
|
||
|
pairs.append((UChar)first).append((UChar)last);
|
||
|
}
|
||
|
first = last = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (first >= 0) {
|
||
|
pairs.append((UChar)first).append((UChar)last);
|
||
|
}
|
||
|
}
|
||
|
return CATEGORY_PAIRS_CACHE[cat];
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
// Implementation: Utility methods
|
||
|
//----------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
* Returns the character after the given position, or '\uFFFF' if
|
||
|
* there is none.
|
||
|
*/
|
||
|
UChar UnicodeSet::charAfter(const UnicodeString& str, int32_t i) {
|
||
|
return ((++i) < str.length()) ? str.charAt(i) : (UChar)0xFFFF;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* TEMPORARY WORKAROUND UNTIL Unicode::digit() exists.
|
||
|
* Return the digit value of the given UChar, or -1. The radix
|
||
|
* value is ignored for now and hardcoded as 16.
|
||
|
*/
|
||
|
int8_t UnicodeSet::digit(UChar c, int8_t radix) {
|
||
|
int32_t d = Unicode::digitValue(c);
|
||
|
if (d < 0) {
|
||
|
if (c >= (UChar)'a' && c <= (UChar)'f') {
|
||
|
d = c - (UChar)('a' - 10);
|
||
|
} else if (c >= (UChar)'A' && c <= (UChar)'F') {
|
||
|
d = c - (UChar)('A' - 10);
|
||
|
}
|
||
|
}
|
||
|
return (int8_t)d;
|
||
|
}
|