scuffed-code/tools/unicode/c/gennames/gennames.c

1602 lines
47 KiB
C
Raw Normal View History

/*
*******************************************************************************
*
* Copyright (C) 1999-2010, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: gennames.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 1999sep30
* created by: Markus W. Scherer
*
* This program reads the Unicode character database text file,
* parses it, and extracts the character code,
* the "modern" character name, and optionally the
* Unicode 1.0 character name, and (starting with ICU 2.2) the ISO 10646 comment.
* It then tokenizes and compresses the names and builds
* compact binary tables for random-access lookup
* in a u_charName() API function.
*
* unames.icu file format (after UDataInfo header etc. - see udata.c)
* (all data is static const)
*
* UDataInfo fields:
* dataFormat "unam"
* formatVersion 1.0
* dataVersion = Unicode version from -u or --unicode command line option, defaults to 3.0.0
*
* -- data-based names
* uint32_t tokenStringOffset,
* groupsOffset,
* groupStringOffset,
* algNamesOffset;
*
* uint16_t tokenCount;
* uint16_t tokenTable[tokenCount];
*
* char tokenStrings[]; -- padded to even count
*
* -- strings (groupStrings) are tokenized as follows:
* for each character c
* if(c>=tokenCount) write that character c directly
* else
* token=tokenTable[c];
* if(token==0xfffe) -- lead byte of double-byte token
* token=tokenTable[c<<8|next character];
* if(token==-1)
* write c directly
* else
* tokenString=tokenStrings+token; (tokenStrings=start of names data + tokenStringOffset;)
* append zero-terminated tokenString;
*
* Different strings for a code point - normal name, 1.0 name, and ISO comment -
* are separated by ';'.
*
* uint16_t groupCount;
* struct {
* uint16_t groupMSB; -- for a group of 32 character names stored, this is code point>>5
* uint16_t offsetHigh; -- group strings are at start of names data + groupStringsOffset + this 32 bit-offset
* uint16_t offsetLow;
* } groupTable[groupCount];
*
* char groupStrings[]; -- padded to 4-count
*
* -- The actual, tokenized group strings are not zero-terminated because
* that would take up too much space.
* Instead, they are preceeded by their length, written in a variable-length sequence:
* For each of the 32 group strings, one or two nibbles are stored for its length.
* Nibbles (4-bit values, half-bytes) are read MSB first.
* A nibble with a value of 0..11 directly indicates the length of the name string.
* A nibble n with a value of 12..15 is a lead nibble and forms a value with the following nibble m
* by (((n-12)<<4)|m)+12, reaching values of 12..75.
* These lengths are sequentially for each tokenized string, not for the de-tokenized result.
* For the de-tokenizing, see token description above; the strings immediately follow the
* 32 lengths.
*
* -- algorithmic names
*
* typedef struct AlgorithmicRange {
* uint32_t rangeStart, rangeEnd;
* uint8_t algorithmType, algorithmVariant;
* uint16_t rangeSize;
* } AlgorithmicRange;
*
* uint32_t algRangesCount; -- number of data blocks for ranges of
* algorithmic names (Unicode 3.0.0: 3, hardcoded in gennames)
*
* struct {
* AlgorithmicRange algRange;
* uint8_t algRangeData[]; -- padded to 4-count except in last range
* } algRanges[algNamesCount];
* -- not a real array because each part has a different size
* of algRange.rangeSize (including AlgorithmicRange)
*
* -- algorithmic range types:
*
* 0 Names are formed from a string prefix that is stored in
* the algRangeData (zero-terminated), followed by the Unicode code point
* of the character in hexadecimal digits;
* algRange.algorithmVariant digits are written
*
* 1 Names are formed by calculating modulo-factors of the code point value as follows:
* algRange.algorithmVariant is the count of modulo factors
* algRangeData contains
* uint16_t factors[algRange.algorithmVariant];
* char strings[];
* the first zero-terminated string is written as the prefix; then:
*
* The rangeStart is subtracted; with the difference, here "code":
* for(i=algRange.algorithmVariant-1 to 0 step -1)
* index[i]=code%factor[i];
* code/=factor[i];
*
* The strings after the prefix are short pieces that are then appended to the result
* according to index[0..algRange.algorithmVariant-1].
*/
#include <stdio.h>
#include "unicode/utypes.h"
2001-01-03 00:18:57 +00:00
#include "unicode/putil.h"
#include "unicode/uclean.h"
#include "unicode/udata.h"
#include "cmemory.h"
#include "cstring.h"
#include "uarrsort.h"
#include "unewdata.h"
#include "uoptions.h"
#include "uparse.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
#define STRING_STORE_SIZE 1000000
#define GROUP_STORE_SIZE 5000
#define GROUP_SHIFT 5
#define LINES_PER_GROUP (1UL<<GROUP_SHIFT)
#define GROUP_MASK (LINES_PER_GROUP-1)
#define MAX_LINE_COUNT 50000
#define MAX_WORD_COUNT 20000
#define MAX_GROUP_COUNT 5000
#define DATA_NAME "unames"
#define DATA_TYPE "icu"
#define VERSION_STRING "unam"
#define NAME_SEPARATOR_CHAR ';'
#define ISO_DATA_NAME "ucomment"
/* Unicode versions --------------------------------------------------------- */
enum {
UNI_1_0,
UNI_1_1,
UNI_2_0,
UNI_3_0,
UNI_3_1,
UNI_3_2,
UNI_4_0,
UNI_4_0_1,
UNI_4_1,
UNI_5_0,
UNI_5_1,
UNI_5_2,
UNI_6_0,
UNI_VER_COUNT
};
static const UVersionInfo
unicodeVersions[]={
{ 1, 0, 0, 0 },
{ 1, 1, 0, 0 },
{ 2, 0, 0, 0 },
{ 3, 0, 0, 0 },
{ 3, 1, 0, 0 },
{ 3, 2, 0, 0 },
{ 4, 0, 0, 0 },
{ 4, 0, 1, 0 },
{ 4, 1, 0, 0 },
{ 5, 0, 0, 0 },
{ 5, 1, 0, 0 },
{ 5, 2, 0, 0 },
{ 6, 0, 0, 0 }
};
static int32_t ucdVersion=UNI_5_2;
static int32_t
findUnicodeVersion(const UVersionInfo version) {
int32_t i;
for(i=0; /* while(version>unicodeVersions[i]) {} */
i<UNI_VER_COUNT && uprv_memcmp(version, unicodeVersions[i], 4)>0;
++i) {}
if(0<i && i<UNI_VER_COUNT && uprv_memcmp(version, unicodeVersions[i], 4)<0) {
--i; /* fix 4.0.2 to land before 4.1, for valid x>=ucdVersion comparisons */
}
return i; /* version>=unicodeVersions[i] && version<unicodeVersions[i+1]; possible: i==UNI_VER_COUNT */
}
/* generator data ----------------------------------------------------------- */
/* UDataInfo cf. udata.h */
static UDataInfo dataInfo={
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
sizeof(UChar),
0,
{0x75, 0x6e, 0x61, 0x6d}, /* dataFormat="unam" */
{1, 0, 0, 0}, /* formatVersion */
{3, 0, 0, 0} /* dataVersion */
};
static UBool beVerbose=FALSE, beQuiet=FALSE, haveCopyright=TRUE;
typedef struct Options {
UBool storeNames;
UBool store10Names;
UBool storeISOComments;
} Options;
/*
* Pair of code point and name alias.
* Try to keep sizeof(CpNameAlias) a multiple of 4 to avoid padding.
*/
typedef struct CpNameAlias {
uint32_t code;
char nameAlias[124];
} CpNameAlias;
static CpNameAlias cpNameAliases[50];
static uint32_t cpNameAliasesIndex=0, cpNameAliasesTop=0;
static uint8_t stringStore[STRING_STORE_SIZE],
groupStore[GROUP_STORE_SIZE],
lineLengths[LINES_PER_GROUP];
static uint32_t lineTop=0, groupBottom, wordBottom=STRING_STORE_SIZE, lineLengthsTop;
typedef struct {
uint32_t code;
int16_t length;
uint8_t *s;
} Line;
typedef struct {
int32_t weight; /* -(cost for token) + (number of occurences) * (length-1) */
int16_t count;
int16_t length;
uint8_t *s;
} Word;
static Line lines[MAX_LINE_COUNT];
static Word words[MAX_WORD_COUNT];
static uint32_t lineCount=0, wordCount=0;
static int16_t leadByteCount;
#define LEADBYTE_LIMIT 16
static int16_t tokens[LEADBYTE_LIMIT*256];
static uint32_t tokenCount;
/* prototypes --------------------------------------------------------------- */
static void
init(void);
static void
parseNameAliases(const char *filename, Options *options);
static void
parseDB(const char *filename, Options *options);
static void
parseName(char *name, int16_t length);
static int16_t
skipNoise(char *line, int16_t start, int16_t limit);
static int16_t
getWord(char *line, int16_t start, int16_t limit);
static void
compress(void);
static void
compressLines(void);
static int16_t
compressLine(uint8_t *s, int16_t length, int16_t *pGroupTop);
static int32_t
compareWords(const void *context, const void *word1, const void *word2);
static void
generateData(const char *dataDir, Options *options);
static uint32_t
generateAlgorithmicData(UNewDataMemory *pData, Options *options);
static int16_t
findToken(uint8_t *s, int16_t length);
static Word *
findWord(char *s, int16_t length);
static Word *
addWord(char *s, int16_t length);
static void
countWord(Word *word);
static void
addLine(uint32_t code, char *names[], int16_t lengths[], int16_t count);
static void
addGroup(uint32_t groupMSB, uint8_t *strings, int16_t length);
static uint32_t
addToken(uint8_t *s, int16_t length);
static void
appendLineLength(int16_t length);
static void
appendLineLengthNibble(uint8_t nibble);
static uint8_t *
allocLine(int32_t length);
static uint8_t *
allocWord(uint32_t length);
/* -------------------------------------------------------------------------- */
enum {
HELP_H,
HELP_QUESTION_MARK,
VERBOSE,
QUIET,
COPYRIGHT,
DESTDIR,
UNICODE,
UNICODE1_NAMES,
NO_ISO_COMMENTS,
ONLY_ISO_COMMENTS
};
static UOption options[]={
UOPTION_HELP_H,
UOPTION_HELP_QUESTION_MARK,
UOPTION_VERBOSE,
UOPTION_QUIET,
UOPTION_COPYRIGHT,
UOPTION_DESTDIR,
{ "unicode", NULL, NULL, NULL, 'u', UOPT_REQUIRES_ARG, 0 },
{ "unicode1-names", NULL, NULL, NULL, '1', UOPT_NO_ARG, 0 },
{ "no-iso-comments", NULL, NULL, NULL, '\1', UOPT_NO_ARG, 0 },
{ "only-iso-comments", NULL, NULL, NULL, '\1', UOPT_NO_ARG, 0 }
};
extern int
main(int argc, char* argv[]) {
UVersionInfo version;
Options moreOptions={ TRUE, FALSE, TRUE };
UErrorCode errorCode = U_ZERO_ERROR;
U_MAIN_INIT_ARGS(argc, argv);
/* Initialize ICU */
u_init(&errorCode);
if (U_FAILURE(errorCode) && errorCode != U_FILE_ACCESS_ERROR) {
/* Note: u_init() will try to open ICU property data.
* failures here are expected when building ICU from scratch.
* ignore them.
*/
fprintf(stderr, "%s: can not initialize ICU. errorCode = %s\n",
argv[0], u_errorName(errorCode));
exit(1);
}
/* preset then read command line options */
options[DESTDIR].value=u_getDataDirectory();
options[UNICODE].value="4.1";
argc=u_parseArgs(argc, argv, LENGTHOF(options), options);
/* error handling, printing usage message */
if(argc<0) {
fprintf(stderr,
"error in command line argument \"%s\"\n",
argv[-argc]);
} else if(argc<2) {
argc=-1;
}
if(argc<0 || options[HELP_H].doesOccur || options[HELP_QUESTION_MARK].doesOccur) {
/*
* Broken into chucks because the C89 standard says the minimum
* required supported string length is 509 bytes.
*/
fprintf(stderr,
"Usage: %s [-1[+|-]] [-v[+|-]] [-c[+|-]] [filename_ud [filename_na]]\n"
"\n"
"Read the UnicodeData.txt file and \n"
"create a binary file " DATA_NAME "." DATA_TYPE " with the character names\n"
"\n"
"\tfilename_ud absolute path/filename for the UnicodeData.txt file\n"
"\t (default: standard input)\n"
"\tfilename_na absolute path/filename for the NameAliases.txt file\n"
"\t (default: no name aliases)\n"
"\n",
argv[0]);
fprintf(stderr,
"Options:\n"
"\t-h or -? or --help this usage text\n"
"\t-v or --verbose verbose output\n"
"\t-q or --quiet no output\n"
"\t-c or --copyright include a copyright notice\n"
"\t-d or --destdir destination directory, followed by the path\n"
"\t-u or --unicode Unicode version, followed by the version like 3.0.0\n");
fprintf(stderr,
"\t-1 or --unicode1-names store Unicode 1.0 character names\n"
"\t --no-iso-comments do not store ISO comments\n"
"\t --only-iso-comments write ucomment.icu with only ISO comments\n");
return argc<0 ? U_ILLEGAL_ARGUMENT_ERROR : U_ZERO_ERROR;
}
/* get the options values */
beVerbose=options[VERBOSE].doesOccur;
beQuiet=options[QUIET].doesOccur;
haveCopyright=options[COPYRIGHT].doesOccur;
moreOptions.store10Names=options[UNICODE1_NAMES].doesOccur;
moreOptions.storeISOComments=!options[NO_ISO_COMMENTS].doesOccur;
if(options[ONLY_ISO_COMMENTS].doesOccur) {
moreOptions.storeNames=moreOptions.store10Names=FALSE;
moreOptions.storeISOComments=TRUE;
}
/* set the Unicode version */
u_versionFromString(version, options[UNICODE].value);
uprv_memcpy(dataInfo.dataVersion, version, 4);
ucdVersion=findUnicodeVersion(version);
init();
if(argc>=3) {
parseNameAliases(argv[2], &moreOptions);
}
parseDB(argc>=2 ? argv[1] : "-", &moreOptions);
compress();
generateData(options[DESTDIR].value, &moreOptions);
u_cleanup();
return 0;
}
static void
init() {
int i;
for(i=0; i<256; ++i) {
tokens[i]=0;
}
}
/* parsing ------------------------------------------------------------------ */
/* get a name, strip leading and trailing whitespace */
static int16_t
getName(char **pStart, char *limit) {
/* strip leading whitespace */
char *start=(char *)u_skipWhitespace(*pStart);
/* strip trailing whitespace */
while(start<limit && (*(limit-1)==' ' || *(limit-1)=='\t')) {
--limit;
}
/* return results */
*pStart=start;
return (int16_t)(limit-start);
}
static void U_CALLCONV
nameAliasesLineFn(void *context,
char *fields[][2], int32_t fieldCount,
UErrorCode *pErrorCode) {
char *name;
int16_t length=0;
static uint32_t prevCode=0;
uint32_t code=0;
if(U_FAILURE(*pErrorCode)) {
return;
}
/* get the character code */
code=uprv_strtoul(fields[0][0], NULL, 16);
/* get the character name */
name=fields[1][0];
length=getName(&name, fields[1][1]);
if(length==0 || length>=sizeof(cpNameAliases[cpNameAliasesTop].nameAlias)) {
fprintf(stderr, "gennames: error - name alias %s empty or too long for code point U+%04lx\n",
name, (unsigned long)code);
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
/* check for non-character code points */
if(!U_IS_UNICODE_CHAR(code)) {
fprintf(stderr, "gennames: error - name alias for non-character code point U+%04lx\n",
(unsigned long)code);
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
/* check that the code points (code) are in ascending order */
if(code<=prevCode && code>0) {
fprintf(stderr, "gennames: error - NameAliases entries out of order, U+%04lx after U+%04lx\n",
(unsigned long)code, (unsigned long)prevCode);
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
prevCode=code;
if(cpNameAliasesTop>=LENGTHOF(cpNameAliases)) {
fprintf(stderr, "gennames: error - too many name aliases\n");
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
cpNameAliases[cpNameAliasesTop].code=code;
uprv_memcpy(cpNameAliases[cpNameAliasesTop].nameAlias, name, length);
cpNameAliases[cpNameAliasesTop].nameAlias[length]=0;
++cpNameAliasesTop;
parseName(name, length);
}
static void U_CALLCONV
lineFn(void *context,
char *fields[][2], int32_t fieldCount,
UErrorCode *pErrorCode) {
Options *storeOptions=(Options *)context;
char *names[4];
int16_t lengths[4]={ 0, 0, 0, 0 };
static uint32_t prevCode=0;
uint32_t code=0;
if(U_FAILURE(*pErrorCode)) {
return;
}
/* get the character code */
code=uprv_strtoul(fields[0][0], NULL, 16);
/* get the character name */
if(storeOptions->storeNames) {
names[0]=fields[1][0];
lengths[0]=getName(names+0, fields[1][1]);
if(names[0][0]=='<') {
/* do not store pseudo-names in <> brackets */
lengths[0]=0;
}
}
/* store 1.0 names */
/* get the second character name, the one from Unicode 1.0 */
if(storeOptions->store10Names) {
names[1]=fields[10][0];
lengths[1]=getName(names+1, fields[10][1]);
if(names[1][0]=='<') {
/* do not store pseudo-names in <> brackets */
lengths[1]=0;
}
}
/* get the ISO 10646 comment */
if(storeOptions->storeISOComments) {
names[2]=fields[11][0];
lengths[2]=getName(names+2, fields[11][1]);
}
if(lengths[0]+lengths[1]+lengths[2]==0) {
return;
}
/* check for non-character code points */
if(!U_IS_UNICODE_CHAR(code)) {
fprintf(stderr, "gennames: error - properties for non-character code point U+%04lx\n",
(unsigned long)code);
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
/* check that the code points (code) are in ascending order */
if(code<=prevCode && code>0) {
fprintf(stderr, "gennames: error - UnicodeData entries out of order, U+%04lx after U+%04lx\n",
(unsigned long)code, (unsigned long)prevCode);
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
prevCode=code;
parseName(names[0], lengths[0]);
parseName(names[1], lengths[1]);
parseName(names[2], lengths[2]);
if(cpNameAliasesIndex<cpNameAliasesTop && code>=cpNameAliases[cpNameAliasesIndex].code) {
if(code==cpNameAliases[cpNameAliasesIndex].code) {
names[3]=cpNameAliases[cpNameAliasesIndex].nameAlias;
lengths[3]=(int16_t)uprv_strlen(cpNameAliases[cpNameAliasesIndex].nameAlias);
++cpNameAliasesIndex;
} else {
fprintf(stderr, "gennames: error - NameAlias but no UnicodeData entry for U+%04lx\n",
(unsigned long)code);
*pErrorCode=U_PARSE_ERROR;
exit(U_PARSE_ERROR);
}
}
/*
* set the count argument to
* 1: only store regular names, or only store ISO 10646 comments
* 2: store regular and 1.0 names
* 3: store names and ISO 10646 comment
* 4: also store name alias
*
* addLine() will ignore empty trailing names
*/
if(storeOptions->storeNames) {
/* store names and comments as parsed according to storeOptions */
addLine(code, names, lengths, LENGTHOF(names));
} else {
/* store only ISO 10646 comments */
addLine(code, names+2, lengths+2, 1);
}
}
static void
parseNameAliases(const char *filename, Options *storeOptions) {
char *fields[2][2];
UErrorCode errorCode=U_ZERO_ERROR;
if(!storeOptions->storeNames) {
return;
}
u_parseDelimitedFile(filename, ';', fields, 2, nameAliasesLineFn, NULL, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "gennames parse error: %s\n", u_errorName(errorCode));
exit(errorCode);
}
if(!beQuiet) {
printf("number of name aliases: %lu\n", (unsigned long)cpNameAliasesTop);
}
}
static void
parseDB(const char *filename, Options *storeOptions) {
char *fields[15][2];
UErrorCode errorCode=U_ZERO_ERROR;
u_parseDelimitedFile(filename, ';', fields, 15, lineFn, storeOptions, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "gennames parse error: %s\n", u_errorName(errorCode));
exit(errorCode);
}
if(cpNameAliasesIndex<cpNameAliasesTop) {
fprintf(stderr, "gennames: error - NameAlias but no UnicodeData entry for U+%04lx\n",
(unsigned long)cpNameAliases[cpNameAliasesIndex].code);
exit(U_PARSE_ERROR);
}
if(!beQuiet) {
printf("size of all names in the database: %lu\n",
(unsigned long)lineTop);
printf("number of named Unicode characters: %lu\n",
(unsigned long)lineCount);
printf("number of words in the dictionary from these names: %lu\n",
(unsigned long)wordCount);
}
}
static void
parseName(char *name, int16_t length) {
int16_t start=0, limit, wordLength/*, prevStart=-1*/;
Word *word;
while(start<length) {
/* skip any "noise" characters */
limit=skipNoise(name, start, length);
if(start<limit) {
/*prevStart=-1;*/
start=limit;
}
if(start==length) {
break;
}
/* get a word and add it if it is longer than 1 */
limit=getWord(name, start, length);
wordLength=(int16_t)(limit-start);
if(wordLength>1) {
word=findWord(name+start, wordLength);
if(word==NULL) {
word=addWord(name+start, wordLength);
}
countWord(word);
}
#if 0
/*
* if there was a word before this
* (with no noise in between), then add the pair of words, too
*/
if(prevStart!=-1) {
wordLength=limit-prevStart;
word=findWord(name+prevStart, wordLength);
if(word==NULL) {
word=addWord(name+prevStart, wordLength);
}
countWord(word);
}
#endif
/*prevStart=start;*/
start=limit;
}
}
static UBool U_INLINE
isWordChar(char c) {
return ('A'<=c && c<='I') || /* EBCDIC-safe check for letters */
('J'<=c && c<='R') ||
('S'<=c && c<='Z') ||
('a'<=c && c<='i') || /* lowercase letters for ISO comments */
('j'<=c && c<='r') ||
('s'<=c && c<='z') ||
('0'<=c && c<='9');
}
static int16_t
skipNoise(char *line, int16_t start, int16_t limit) {
/* skip anything that is not part of a word in this sense */
while(start<limit && !isWordChar(line[start])) {
++start;
}
return start;
}
static int16_t
getWord(char *line, int16_t start, int16_t limit) {
char c=0; /* initialize to avoid a compiler warning although the code was safe */
/* a unicode character name word consists of A-Z0-9 */
while(start<limit && isWordChar(line[start])) {
++start;
}
/* include a following space or dash */
if(start<limit && ((c=line[start])==' ' || c=='-')) {
++start;
}
return start;
}
/* compressing -------------------------------------------------------------- */
static void
compress() {
uint32_t i, letterCount;
int16_t wordNumber;
UErrorCode errorCode;
/* sort the words in reverse order by weight */
errorCode=U_ZERO_ERROR;
uprv_sortArray(words, wordCount, sizeof(Word),
compareWords, NULL, FALSE, &errorCode);
/* remove the words that do not save anything */
while(wordCount>0 && words[wordCount-1].weight<1) {
--wordCount;
}
/* count the letters in the token range */
letterCount=0;
for(i=LEADBYTE_LIMIT; i<256; ++i) {
if(tokens[i]==-1) {
++letterCount;
}
}
if(!beQuiet) {
printf("number of letters used in the names: %d\n", (int)letterCount);
}
/* do we need double-byte tokens? */
if(wordCount+letterCount<=256) {
/* no, single-byte tokens are enough */
leadByteCount=0;
for(i=0, wordNumber=0; wordNumber<(int16_t)wordCount; ++i) {
if(tokens[i]!=-1) {
tokens[i]=wordNumber;
if(beVerbose) {
printf("tokens[0x%03x]: word%8ld \"%.*s\"\n",
(int)i, (long)words[wordNumber].weight,
words[wordNumber].length, words[wordNumber].s);
}
++wordNumber;
}
}
tokenCount=i;
} else {
/*
* The tokens that need two token bytes
* get their weight reduced by their count
* because they save less.
*/
tokenCount=256-letterCount;
for(i=tokenCount; i<wordCount; ++i) {
words[i].weight-=words[i].count;
}
/* sort these words in reverse order by weight */
errorCode=U_ZERO_ERROR;
uprv_sortArray(words+tokenCount, wordCount-tokenCount, sizeof(Word),
compareWords, NULL, FALSE, &errorCode);
/* remove the words that do not save anything */
while(wordCount>0 && words[wordCount-1].weight<1) {
--wordCount;
}
/* how many tokens and lead bytes do we have now? */
tokenCount=wordCount+letterCount+(LEADBYTE_LIMIT-1);
/*
* adjust upwards to take into account that
* double-byte tokens must not
* use NAME_SEPARATOR_CHAR as a second byte
*/
tokenCount+=(tokenCount-256+254)/255;
leadByteCount=(int16_t)(tokenCount>>8);
if(leadByteCount<LEADBYTE_LIMIT) {
/* adjust for the real number of lead bytes */
tokenCount-=(LEADBYTE_LIMIT-1)-leadByteCount;
} else {
/* limit the number of lead bytes */
leadByteCount=LEADBYTE_LIMIT-1;
tokenCount=LEADBYTE_LIMIT*256;
wordCount=tokenCount-letterCount-(LEADBYTE_LIMIT-1);
/* adjust again to skip double-byte tokens with ';' */
wordCount-=(tokenCount-256+254)/255;
}
/* set token 0 to word 0 */
tokens[0]=0;
if(beVerbose) {
printf("tokens[0x000]: word%8ld \"%.*s\"\n",
(long)words[0].weight,
words[0].length, words[0].s);
}
wordNumber=1;
/* set the lead byte tokens */
for(i=1; (int16_t)i<=leadByteCount; ++i) {
tokens[i]=-2;
}
/* set the tokens */
for(; i<256; ++i) {
/* if store10Names then the parser set tokens[NAME_SEPARATOR_CHAR]=-1 */
if(tokens[i]!=-1) {
tokens[i]=wordNumber;
if(beVerbose) {
printf("tokens[0x%03x]: word%8ld \"%.*s\"\n",
(int)i, (long)words[wordNumber].weight,
words[wordNumber].length, words[wordNumber].s);
}
++wordNumber;
}
}
/* continue above 255 where there are no letters */
for(; (uint32_t)wordNumber<wordCount; ++i) {
if((i&0xff)==NAME_SEPARATOR_CHAR) {
tokens[i]=-1; /* do not use NAME_SEPARATOR_CHAR as a second token byte */
} else {
tokens[i]=wordNumber;
if(beVerbose) {
printf("tokens[0x%03x]: word%8ld \"%.*s\"\n",
(int)i, (long)words[wordNumber].weight,
words[wordNumber].length, words[wordNumber].s);
}
++wordNumber;
}
}
tokenCount=i; /* should be already tokenCount={i or i+1} */
}
if(!beQuiet) {
printf("number of lead bytes: %d\n", leadByteCount);
printf("number of single-byte tokens: %lu\n",
(unsigned long)256-letterCount-leadByteCount);
printf("number of tokens: %lu\n", (unsigned long)tokenCount);
}
compressLines();
}
static void
compressLines() {
Line *line=NULL;
uint32_t i=0, inLine, outLine=0xffffffff /* (uint32_t)(-1) */,
groupMSB=0xffff, lineCount2;
int16_t groupTop=0;
/* store the groups like lines, with compressed data after raw strings */
groupBottom=lineTop;
lineCount2=lineCount;
lineCount=0;
/* loop over all lines */
while(i<lineCount2) {
line=lines+i++;
inLine=line->code;
/* segment the lines to groups of 32 */
if(inLine>>GROUP_SHIFT!=groupMSB) {
/* finish the current group with empty lines */
while((++outLine&GROUP_MASK)!=0) {
appendLineLength(0);
}
/* store the group like a line */
if(groupTop>0) {
if(groupTop>GROUP_STORE_SIZE) {
fprintf(stderr, "gennames: group store overflow\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
addGroup(groupMSB, groupStore, groupTop);
}
/* start the new group */
lineLengthsTop=0;
groupTop=0;
groupMSB=inLine>>GROUP_SHIFT;
outLine=(inLine&~GROUP_MASK)-1;
}
/* write empty lines between the previous line in the group and this one */
while(++outLine<inLine) {
appendLineLength(0);
}
/* write characters and tokens for this line */
appendLineLength(compressLine(line->s, line->length, &groupTop));
}
/* finish and store the last group */
if(line && groupMSB!=0xffff) {
/* finish the current group with empty lines */
while((++outLine&GROUP_MASK)!=0) {
appendLineLength(0);
}
/* store the group like a line */
if(groupTop>0) {
if(groupTop>GROUP_STORE_SIZE) {
fprintf(stderr, "gennames: group store overflow\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
addGroup(groupMSB, groupStore, groupTop);
}
}
if(!beQuiet) {
printf("number of groups: %lu\n", (unsigned long)lineCount);
}
}
static int16_t
compressLine(uint8_t *s, int16_t length, int16_t *pGroupTop) {
int16_t start, limit, token, groupTop=*pGroupTop;
start=0;
do {
/* write any "noise" characters */
limit=skipNoise((char *)s, start, length);
while(start<limit) {
groupStore[groupTop++]=s[start++];
}
if(start==length) {
break;
}
/* write a word, as token or directly */
limit=getWord((char *)s, start, length);
if(limit-start==1) {
groupStore[groupTop++]=s[start++];
} else {
token=findToken(s+start, (int16_t)(limit-start));
if(token!=-1) {
if(token>0xff) {
groupStore[groupTop++]=(uint8_t)(token>>8);
}
groupStore[groupTop++]=(uint8_t)token;
start=limit;
} else {
while(start<limit) {
groupStore[groupTop++]=s[start++];
}
}
}
} while(start<length);
length=(int16_t)(groupTop-*pGroupTop);
*pGroupTop=groupTop;
return length;
}
static int32_t
compareWords(const void *context, const void *word1, const void *word2) {
/* reverse sort by word weight */
return ((Word *)word2)->weight-((Word *)word1)->weight;
}
/* generate output data ----------------------------------------------------- */
static void
generateData(const char *dataDir, Options *storeOptions) {
UNewDataMemory *pData;
UErrorCode errorCode=U_ZERO_ERROR;
uint16_t groupWords[3];
uint32_t i, groupTop=lineTop, offset, size,
tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset;
long dataLength;
int16_t token;
pData=udata_create(dataDir,
DATA_TYPE, storeOptions->storeNames ? DATA_NAME : ISO_DATA_NAME,
&dataInfo,
haveCopyright ? U_COPYRIGHT_STRING : NULL, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "gennames: unable to create data memory, error %d\n", errorCode);
exit(errorCode);
}
/* first, see how much space we need, and prepare the token strings */
for(i=0; i<tokenCount; ++i) {
token=tokens[i];
if(token!=-1 && token!=-2) {
tokens[i]=(int16_t)(addToken(words[token].s, words[token].length)-groupTop);
}
}
/*
* Required padding for data swapping:
* The token table undergoes a permutation during data swapping when the
* input and output charsets are different.
* The token table cannot grow during swapping, so we need to make sure that
* the table is long enough for successful in-place permutation.
*
* We simply round up tokenCount to the next multiple of 256 to account for
* all possible permutations.
*
* An optimization is possible if we only ever swap between ASCII and EBCDIC:
*
* If tokenCount>256, then a semicolon (NAME_SEPARATOR_CHAR) is used
* and will be swapped between ASCII and EBCDIC between
* positions 0x3b (ASCII semicolon) and 0x5e (EBCDIC semicolon).
* This should be the only -1 entry in tokens[256..511] on which the data
* swapper bases its trail byte permutation map (trailMap[]).
*
* It would be sufficient to increase tokenCount so that its lower 8 bits
* are at least 0x5e+1 to make room for swapping between the two semicolons.
* For values higher than 0x5e, the trail byte permutation map (trailMap[])
* should always be an identity map, where we do not need additional room.
*/
i=tokenCount;
tokenCount=(tokenCount+0xff)&~0xff;
if(!beQuiet && i<tokenCount) {
printf("number of tokens[] padding entries for data swapping: %lu\n", (unsigned long)(tokenCount-i));
}
for(; i<tokenCount; ++i) {
if((i&0xff)==NAME_SEPARATOR_CHAR) {
tokens[i]=-1; /* do not use NAME_SEPARATOR_CHAR as a second token byte */
} else {
tokens[i]=0; /* unused token for padding */
}
}
/*
* Calculate the total size in bytes of the data including:
* - the offset to the token strings, uint32_t (4)
* - the offset to the group table, uint32_t (4)
* - the offset to the group strings, uint32_t (4)
* - the offset to the algorithmic names, uint32_t (4)
*
* - the number of tokens, uint16_t (2)
* - the token table, uint16_t[tokenCount] (2*tokenCount)
*
* - the token strings, each zero-terminated (tokenSize=(lineTop-groupTop)), 2-padded
*
* - the number of groups, uint16_t (2)
* - the group table, { uint16_t groupMSB, uint16_t offsetHigh, uint16_t offsetLow }[6*groupCount]
*
* - the group strings (groupTop-groupBottom), 2-padded
*
* - the size of the data for the algorithmic names
*/
tokenStringOffset=4+4+4+4+2+2*tokenCount;
groupsOffset=(tokenStringOffset+(lineTop-groupTop)+1)&~1;
groupStringOffset=groupsOffset+2+6*lineCount;
algNamesOffset=(groupStringOffset+(groupTop-groupBottom)+3)&~3;
offset=generateAlgorithmicData(NULL, storeOptions);
size=algNamesOffset+offset;
if(!beQuiet) {
printf("size of the Unicode Names data:\n"
"total data length %lu, token strings %lu, compressed strings %lu, algorithmic names %lu\n",
(unsigned long)size, (unsigned long)(lineTop-groupTop),
(unsigned long)(groupTop-groupBottom), (unsigned long)offset);
}
/* write the data to the file */
/* offsets */
udata_write32(pData, tokenStringOffset);
udata_write32(pData, groupsOffset);
udata_write32(pData, groupStringOffset);
udata_write32(pData, algNamesOffset);
/* token table */
udata_write16(pData, (uint16_t)tokenCount);
udata_writeBlock(pData, tokens, 2*tokenCount);
/* token strings */
udata_writeBlock(pData, stringStore+groupTop, lineTop-groupTop);
if((lineTop-groupTop)&1) {
/* 2-padding */
udata_writePadding(pData, 1);
}
/* group table */
udata_write16(pData, (uint16_t)lineCount);
for(i=0; i<lineCount; ++i) {
/* groupMSB */
groupWords[0]=(uint16_t)lines[i].code;
/* offset */
offset = (uint32_t)((lines[i].s - stringStore)-groupBottom);
groupWords[1]=(uint16_t)(offset>>16);
groupWords[2]=(uint16_t)(offset);
udata_writeBlock(pData, groupWords, 6);
}
/* group strings */
udata_writeBlock(pData, stringStore+groupBottom, groupTop-groupBottom);
/* 4-align the algorithmic names data */
udata_writePadding(pData, algNamesOffset-(groupStringOffset+(groupTop-groupBottom)));
generateAlgorithmicData(pData, storeOptions);
/* finish up */
dataLength=udata_finish(pData, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "gennames: error %d writing the output file\n", errorCode);
exit(errorCode);
}
if(dataLength!=(long)size) {
fprintf(stderr, "gennames: data length %ld != calculated size %lu\n",
dataLength, (unsigned long)size);
exit(U_INTERNAL_PROGRAM_ERROR);
}
}
/* the structure for algorithmic names needs to be 4-aligned */
typedef struct AlgorithmicRange {
uint32_t rangeStart, rangeEnd;
uint8_t algorithmType, algorithmVariant;
uint16_t rangeSize;
} AlgorithmicRange;
static uint32_t
generateAlgorithmicData(UNewDataMemory *pData, Options *storeOptions) {
static char prefix[] = "CJK UNIFIED IDEOGRAPH-";
# define PREFIX_LENGTH 23
# define PREFIX_LENGTH_4 24
uint32_t countAlgRanges;
static AlgorithmicRange cjkExtA={
0x3400, 0x4db5,
0, 4,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static AlgorithmicRange cjk={
0x4e00, 0x9fa5,
0, 4,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static AlgorithmicRange cjkExtB={
0x20000, 0x2a6d6,
0, 5,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static AlgorithmicRange cjkExtC={
0x2a700, 0x2b734,
0, 5,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static AlgorithmicRange cjkExtD={
0x2b740, 0x2b81d,
0, 5,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static char jamo[]=
"HANGUL SYLLABLE \0"
"G\0GG\0N\0D\0DD\0R\0M\0B\0BB\0"
"S\0SS\0\0J\0JJ\0C\0K\0T\0P\0H\0"
"A\0AE\0YA\0YAE\0EO\0E\0YEO\0YE\0O\0"
"WA\0WAE\0OE\0YO\0U\0WEO\0WE\0WI\0"
"YU\0EU\0YI\0I\0"
"\0G\0GG\0GS\0N\0NJ\0NH\0D\0L\0LG\0LM\0"
"LB\0LS\0LT\0LP\0LH\0M\0B\0BS\0"
"S\0SS\0NG\0J\0C\0K\0T\0P\0H"
;
static AlgorithmicRange hangul={
0xac00, 0xd7a3,
1, 3,
sizeof(AlgorithmicRange)+6+sizeof(jamo)
};
/* modulo factors, maximum 8 */
/* 3 factors: 19, 21, 28, most-to-least-significant */
static uint16_t hangulFactors[3]={
19, 21, 28
};
uint32_t size;
size=0;
if(ucdVersion>=UNI_5_2) {
/* Unicode 5.2 and up has a longer CJK Unihan range than before */
cjk.rangeEnd=0x9FCB;
} else if(ucdVersion>=UNI_5_1) {
/* Unicode 5.1 and up has a longer CJK Unihan range than before */
cjk.rangeEnd=0x9FC3;
} else if(ucdVersion>=UNI_4_1) {
/* Unicode 4.1 and up has a longer CJK Unihan range than before */
cjk.rangeEnd=0x9FBB;
}
/* number of ranges of algorithmic names */
if(!storeOptions->storeNames) {
countAlgRanges=0;
} else if(ucdVersion>=UNI_6_0) {
/* Unicode 6.0 and up has 6 ranges including CJK Extension D */
countAlgRanges=6;
} else if(ucdVersion>=UNI_5_2) {
/* Unicode 5.2 and up has 5 ranges including CJK Extension C */
countAlgRanges=5;
} else if(ucdVersion>=UNI_3_1) {
/* Unicode 3.1 and up has 4 ranges including CJK Extension B */
countAlgRanges=4;
} else if(ucdVersion>=UNI_3_0) {
/* Unicode 3.0 has 3 ranges including CJK Extension A */
countAlgRanges=3;
} else {
/* Unicode 2.0 has 2 ranges including Hangul and CJK Unihan */
countAlgRanges=2;
}
if(pData!=NULL) {
udata_write32(pData, countAlgRanges);
} else {
size+=4;
}
if(countAlgRanges==0) {
return size;
}
/*
* each range:
* uint32_t rangeStart
* uint32_t rangeEnd
* uint8_t algorithmType
* uint8_t algorithmVariant
* uint16_t size of range data
* uint8_t[size] data
*/
/* range 0: cjk extension a */
if(countAlgRanges>=3) {
if(pData!=NULL) {
udata_writeBlock(pData, &cjkExtA, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
}
/* range 1: cjk */
if(pData!=NULL) {
udata_writeBlock(pData, &cjk, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
/* range 2: hangul syllables */
if(pData!=NULL) {
udata_writeBlock(pData, &hangul, sizeof(AlgorithmicRange));
udata_writeBlock(pData, hangulFactors, 6);
udata_writeString(pData, jamo, sizeof(jamo));
} else {
size+=sizeof(AlgorithmicRange)+6+sizeof(jamo);
}
/* range 3: cjk extension b */
if(countAlgRanges>=4) {
if(pData!=NULL) {
udata_writeBlock(pData, &cjkExtB, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
}
/* range 4: cjk extension c */
if(countAlgRanges>=5) {
if(pData!=NULL) {
udata_writeBlock(pData, &cjkExtC, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
}
/* range 5: cjk extension d */
if(countAlgRanges>=6) {
if(pData!=NULL) {
udata_writeBlock(pData, &cjkExtD, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
}
return size;
}
/* helpers ------------------------------------------------------------------ */
static int16_t
findToken(uint8_t *s, int16_t length) {
int16_t i, token;
for(i=0; i<(int16_t)tokenCount; ++i) {
token=tokens[i];
if(token>=0 && length==words[token].length && 0==uprv_memcmp(s, words[token].s, length)) {
return i;
}
}
return -1;
}
static Word *
findWord(char *s, int16_t length) {
uint32_t i;
for(i=0; i<wordCount; ++i) {
if(length==words[i].length && 0==uprv_memcmp(s, words[i].s, length)) {
return words+i;
}
}
return NULL;
}
static Word *
addWord(char *s, int16_t length) {
uint8_t *stringStart;
Word *word;
if(wordCount==MAX_WORD_COUNT) {
fprintf(stderr, "gennames: too many words\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
stringStart=allocWord(length);
uprv_memcpy(stringStart, s, length);
word=words+wordCount;
/*
* Initialize the weight with the costs for this token:
* a zero-terminated string and a 16-bit offset.
*/
word->weight=-(length+1+2);
word->count=0;
word->length=length;
word->s=stringStart;
++wordCount;
return word;
}
static void
countWord(Word *word) {
/* add to the weight the savings: the length of the word minus 1 byte for the token */
word->weight+=word->length-1;
++word->count;
}
static void
addLine(uint32_t code, char *names[], int16_t lengths[], int16_t count) {
uint8_t *stringStart;
Line *line;
int16_t i, length;
if(lineCount==MAX_LINE_COUNT) {
fprintf(stderr, "gennames: too many lines\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
/* find the last non-empty name */
while(count>0 && lengths[count-1]==0) {
--count;
}
if(count==0) {
return; /* should not occur: caller should not have called */
}
/* there will be (count-1) separator characters */
i=count;
length=count-1;
/* add lengths of strings */
while(i>0) {
length+=lengths[--i];
}
/* allocate line memory */
stringStart=allocLine(length);
/* copy all strings into the line memory */
length=0; /* number of chars copied so far */
for(i=0; i<count; ++i) {
if(i>0) {
stringStart[length++]=NAME_SEPARATOR_CHAR;
}
if(lengths[i]>0) {
uprv_memcpy(stringStart+length, names[i], lengths[i]);
length+=lengths[i];
}
}
line=lines+lineCount;
line->code=code;
line->length=length;
line->s=stringStart;
++lineCount;
/* prevent a character value that is actually in a name from becoming a token */
while(length>0) {
tokens[stringStart[--length]]=-1;
}
}
static void
addGroup(uint32_t groupMSB, uint8_t *strings, int16_t length) {
uint8_t *stringStart;
Line *line;
if(lineCount==MAX_LINE_COUNT) {
fprintf(stderr, "gennames: too many groups\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
/* store the line lengths first, then the strings */
lineLengthsTop=(lineLengthsTop+1)/2;
stringStart=allocLine(lineLengthsTop+length);
uprv_memcpy(stringStart, lineLengths, lineLengthsTop);
uprv_memcpy(stringStart+lineLengthsTop, strings, length);
line=lines+lineCount;
line->code=groupMSB;
line->length=length;
line->s=stringStart;
++lineCount;
}
static uint32_t
addToken(uint8_t *s, int16_t length) {
uint8_t *stringStart;
stringStart=allocLine(length+1);
uprv_memcpy(stringStart, s, length);
stringStart[length]=0;
return (uint32_t)(stringStart - stringStore);
}
static void
appendLineLength(int16_t length) {
if(length>=76) {
fprintf(stderr, "gennames: compressed line too long\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
if(length>=12) {
length-=12;
appendLineLengthNibble((uint8_t)((length>>4)|12));
}
appendLineLengthNibble((uint8_t)length);
}
static void
appendLineLengthNibble(uint8_t nibble) {
if((lineLengthsTop&1)==0) {
lineLengths[lineLengthsTop/2]=(uint8_t)(nibble<<4);
} else {
lineLengths[lineLengthsTop/2]|=nibble&0xf;
}
++lineLengthsTop;
}
static uint8_t *
allocLine(int32_t length) {
uint32_t top=lineTop+length;
uint8_t *p;
if(top>wordBottom) {
fprintf(stderr, "gennames: out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
p=stringStore+lineTop;
lineTop=top;
return p;
}
static uint8_t *
allocWord(uint32_t length) {
uint32_t bottom=wordBottom-length;
if(lineTop>bottom) {
fprintf(stderr, "gennames: out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
wordBottom=bottom;
return stringStore+bottom;
}
/*
* Hey, Emacs, please set the following:
*
* Local Variables:
* indent-tabs-mode: nil
* End:
*
*/